SABRETALK

PROGRAMMER'S
REFERENCE GUIDE

Release date: 05/13/94
[1ELECTRONIC DATA SYSTEMS

‘ Table of Contents

TABLE OF CONTENTS
TADIE Of CONLENLS. ...u..ceereeueeeraresnissesosssssasosassssssossssssasssassssssssssessasssasssssssssssssasssasssssssssssssssssssnssssssnsass iii
LT 40 Ts 7T 1 o) TN ix
Programmer's Reference Guide Organization...... teesssessaeeaessnessnesessnesstessaessnesnn X
Format of this Guide. cetesstesaisnsssssaesasesas ttesstesatesniestst st e satssaesesasssesanesas xi
Additional SABRETALK PubliCAtions........cocienveiesseissiissinssniosssnossenssssissssssssssssssssssssssssossssossssssssssssssssas xi
CHAPTER 1: PROGRAM COMPONENTS.....ccoviivnrunniiiecsssssssssssssssccsss 1
PROGRAM COMPONENTS.......cccoeevmrrecssscnnarnnees cereesssssnnnnsttttttttttttttteeesssssssssssssssssssrsssans 1
Statement ClassifiCAtION.cc.eeuirtirieriiteteiee ettt ettt ettt sttt sb b s b sttt e st et e e e e e e et et eneenee 1
General StateIMENTt SIIUCLUTE.c..couertertertetetetetetet et et eteeteste et e beste st esbe b et et ente e enteuteateaeeateseebesbeebeebesbesbeenneenaeeeneens 2
COITIMIILS. ...ttt ettt ettt sttt e s bt e st e s et e b e e s bt e be e saaeeabtesan e e bt e saa e eabeeeaaesabeesaneeaseesaneeensraeessnnneesss 3
BYWOTES. ...ttt ettt s bt et e bttt e bt et eat e s bt e at e s bt et e saeeabe s bt et e e at e b e e st eabeea e e beeatenbeeenneeesabeean 3
IMACTO KEYWOIAS. ..eutenteeieetieieeiteste ettt ettt ettt ettt et sa et e bt e et sute et e st e sbe et e s bt eabe bt eab e s bt et e e bt enteeueensesaeenaeentesaeensenseenses 4
Assembler Language INSIIUCHIONS.cecuertrrierierieriereet ettt ettt ettt et e st e te st e be st esbesbesbeebesbtensesstensesaeensesaneesnne 5
PROGRAM CONSTRUCTION RULES........cccceerennnns S, D
FOTIMNAL Of PTOGIAITIS.c.teuteuteieiteuteiteitetteteete st te e st et e te st et et et et e st esteaesae e bt ebeeb e st e bess et et ens et entententententessesasesnsesaseenseans 7
CHARACTER SETS....ccccoitinnniiiinisssnrnicssssssssrncssses 9
ALDNADETIC CRATACTEIS: ... eievieriieeieenieeite et e et est e st esteeste e st esteesstesseesseesssaessaesssaesssassseesssasseenssesseenssesseensaesssessnnsens 9
INUIMIETIC CRATACLETS. ...ttt ettt et sttt et et et et et eut et eae e bt e bt e bt sheebe b e st et e be b et enteatentententeebbesutesabeeaseenteens 9
SPECIAL CRATACIETS.....cueetieteiteteeitet ettt ettt sttt ettt e et e e e bt e at et e e at e s bt et e sbe et e saeebesatesbesat e beeabenbeeabenbeentesseensaes 10
COITIPOSILES «.eveeutieiieeiteeite ettt st et e st e s te et e e s bt e s bt e bt e s be e bt e s ab e e st e e st e e bt e eabe s bt e sabeeabtesab e e st eemeeeabaeenaesabeesaseestesnsesannet 10
CHARACTER SET USAGE... cessssssssssnsnnsnnnnnsrnsran cesssssssessnsnnsssssssrsssnnnnnnns 11
SBPATALOTS. ... ettt ettt ettt ettt e bt e e et e e st teeebteeesabee e aba e e s bt e e e ab e e e e abae e e bt e e e abeeeeu st e e e baee e abee e abaeeeabaeeesteeesntraee 11
USE OF DLANKS. ...ttt ettt ettt e st e s e st s b et e e b et e e s et e st e st e st eseeseeseeseeseebees et e sensantensensenteneenes 11
The HeXadeCimal INUITIETICS.eeverueiienieiierieeieet ettt ettt et et e e st e b e s bt et e s bt et e s bt et e bt et e sbt et e eatentesatenaesatesaeenseens 11
MiSCEIlANEOUS CRATACLET SELS.....ccuerteieiruirieeerieeteetertestetentestestete e et et eseseeebesbesae st e be s et entententeneentesesseebesaseenseeseeanean 11
Data Classification ceresssesssesnssnsssssssasosase ctesstessrsssssasesasesstosasessssassessns 13
DATA CONSTRUCTION METHODS. cesssssssennnnnnnnnnnsstnnnans ceseessssennnsnsssetrsnnnnannnns 14
VATTADLES. ...ttt ettt h ettt b b st ettt et et et et e a e a e a e h e e bt be e heeh e e b et et e beteebe e beenbeenne 15
LLIEOTALS. ..ttt et ettt b et b et e bt et e e a e e te et e bt et e s bt e be e bt e beeh e et e e u b et e e a e e bt et e e bt e te e e bee e bbeesabeeeas 15
COMSTAIIES. .. e euuteeuteeiteeteeeiee et et te st e et e et e bt e e bt e bt e st e e bt e sab e e st e eaee e bt e eabe e beesabe e bt e sabe e st e eat e e baeemaeeabeesabeeaseesaseeseennteesannee 15
CHAPTER 2: DATA DEFINITION RULES w17
DECLARE STATEMENT.... cesessssssennnnnststtttttttttateeseessssssans cesesssssnnnnnenststtttttteteeseeenes 17
TINPIICHE LONGEN.c..eeieeieieeeee ettt ettt e e st e e st e te st e ae st e s e entesseensesseensessaensesseesesnsensaesnnseenn 18
DATA TYPES......tiiiiiniinnnriicssssssstiecssssssssrecssasssssssssssss 19
BIINARY DalA...uieuieuieiiiesierieieiesteteteteteeeesessestessessessessesestessensentessestesessessessessessensansensensensensestestessesessessessessessensesses 19
BIT-STINE DALA..c.uttiiuieeieiiierieerteeteest ettt ste st e st e e bt esabeesse e s st e s baesate s bt esabesabeessbeeseesstessaenstesasaesnssaaesssnssaeessnssees 20
DECIMAL DaAL...c.vtteteieteieterteteteteitestsesieesessestestesessestestet et estestssesatesesbesaessessessesteasententeneententesteseesesseesensenseenses 21
DECIMAL FLOAT DaALA..cuttuteutetetetenteeeieeieeie st steste st st steste st este st et estestesessesb e bestesteabens et entent et entestesesbeebesbesseenseenses 22
CHARACTER SN DaAA....ccuteteieieieiieieeienteeteet sttt sttt et et ese et st sbesbesbe st esbesente st ente e estestesesbesbeebessesseseenneennees 23
Numeric Character String DAata.........ccoeetererrieniriereee ettt ettt ettt et e st e be s bt e be st et e et esbeetesseenaeesabeeesbeesabeenas 23
Edited Character-String Data.........ceouereerierierieeieteeteste ettt sttt st e et e be st e b et e st e et e sbeetesaeebesatenbesabenbeeasenseensenn 25
PICTURE Specification for Edited Character-strings..........cccceeeueruereererirereninenenienresresteseeeeeeeeeeeeseesessseesseennes 25
SUPPIESSION CRATACLETS.ceoueiiitieieetieteeteteete sttt ettt ste et e st et e shtesbe s st e besste b e este bt et esaeentesaeensesatensesatesessaseesnne 26
INSETtION CRATACKETS. ... cteuteteieieieteiee ettt ettt ettt et s b e b bt sttt e st et e et et e st et eaeeb e e bt sbeenneesstesaeenaee 26
DIIftiNG CRATACLETS. ...cvietereeiteeeesteeeereetesteeteste e te st estesseestesaeesesseessesssensesssassesnsessesnsesssensesssensesssessessessesnsenseensens 27
Credit (CR) and Debit (DB) COIMPOSILEScceecvereerreseeriesieesseseessesssessesssessesssesseessesssessesssessesssessesssessesssessassseens 28
Floating point Edited CharaCter-String.............cceeeeeieririrerieieseesieeteseseesteeeesseeeesseesaesseessesseessessssesssssessseessseeens 29

Table of Contents

LABEL Daata..c.ueeutitieienierieierietetetest ettt et et s st st be st et et e st et et e st e st s st e bt e bt se e b e b e s et et et emtentent e st e bt e bt ebesa e bt e bt e bt eneen 29
POINTER Data....cuieeriiriiieieieieieteeeeeesi ettt sttt ettt et e et et sa et e bt se e b e be st et et et et emtemeeseeseebesbesse st e beeaneenneen 29
LEEIAL DIALA. ..ottt ettt ettt ettt ettt e et e bt e bt e bt sb et et e s b et et et et e a e eateaeeh e e bt e bt e bt b e beeb et et shteeubesabeeabeeates 30
Literal SpecifiCation SUMIMATYccceeieriieieerietereerteseeteseestesteesesseesesseesesseessesssessesssessesssessesssesseesssesnssessnseesns 32
CHAPTER 3: EXECUTABLE STATEMENTS - RULES......cucoccovvvuricsssnrrcssssssricsssssssssnsssssssssses 33
EXPRESSIONS AND DATA CONVERSIONS... cesesssssssnsrestttttttttttttessssssssssssssssssnrsnnnnsnnns 33
ATTTNIMETIC EXPIOSSIONS. ¢ ..eeutiteitirieeieeieete ettt ettt ettt et e ste et e sbe et e s bt e besbe e be s bt e besst et e est et eeate bt eatesaeenbessaeennseens 34
Data COMVETSIONS. . ..coutiutirerietertereet et ettt ettt et st et st e saesae e st st e st s ae st et e st e s e srtemsesatessesatessesaneseennesseenneesnneenns 35
Relational EXPIOSSIONS.....c..ccuerterteieieieiieene sttt ettt sttt ettt st sa e s e e b b sa et et et et et et entesee st s st saeebesbesseenne 36
Relational OPEIatiOns.........ccecveevererriereesteeeesteetesteetesseetessessesseessesseessesssessesssessesssessesssessesssesseessesssessesssessesssessesssens 36
LOZICAL EXPIOSSIONS.ecverrereeeiereeesieetestestesseestesseestesseessessesssesssessesssessesssessesssessesnsesseensesseessesssessesssessesssessessseessssesnns 38
PAAAINEG. ..ttt ettt sttt b et b e bbb bt et e ae et eae e b e et e s bt et e e b e e beebb e e e baeebbeesateesane 39
Boolean Arithmetic of Logical OPErations.........cccccveeveeveeruerriereeieseeteseesteseesseseesseseessesssessesssessesssessesssessesssesssseens 40
COonCatenation EXPIESSIONS......ccocutirutertiirteritriteeteeitt et e st e st sstt e e et s bt esate s bt e ssbe e bt e s st e e st e s st e s st eeneesabeessaesansaeeesennenes 40
PRIORITY OF OPERATORS ceseessennnnnensennsasstaenan ceerereresnesisnannnnes 42
ASSIGNMENT STATEMENTS... cesesssnnennnens ceeseeeeeennnsesennes .43
STMPIE ASSIGNIMIENL. ... ccueeetieieeeeeieeeerteeeerteetesteste st etesseestesseessesseessesseessesssessesssessesssersesnsessesssensesnsensesssenssessnsessseen 43
MUILIPIE ASSIGIITIENL. ... ecvveieeeeerieiesteetesteesteseesseeeesseestesseessesseessasseessesseessesseessesssessesssassesssensesssenseensessesssesseessessseens 43
Data Conversion, Truncation and Padding............ccceceecierieriesieesieeeesteseesesstesessesessesseessesssessesssessesssessesssseessssesnns 43
STTUCTUTE ASSIGIITIENL. ..ceueeetterieeitentteriteeteeeite et e tte s bt e stee st e e s st e e et e bt e sbeeemee s bt essbesaseessbeesseenmee e st esstesabeesasesaseesnraees 44
Character-string to character-string assigIIMeNLt........cc.ceveeterieriererriererteneerte st et esttes e eseesteestestestesseesabaeessseesbeesnne 47
Arithmetic to arithmetic (*DEC, *NCS, *ECS, *BIN, *DEC FLOAT).....ccccevterteeieeitieeteeeteeeieeseeeeeveeeeeevaeeeenns 47
BIT-StrING 10 BIT-SIIIG. ..ceeuveiiuteeiieeieetteeteetee ettt ettt st et e e bt e bte s bt s bt e sbe e bt e sabe e st e sate s seeeabesseesaseeseesnseennnes 49
ATItRIMEIC t0 BIT-SITING....c.uteeerteeiereeseereesteeeesteetesteesteseesseesseesessesssesseessesssessesssessesssessesssesseensesseessesssesseessssesssseens 49
BIT-StrNG t0 ATIthIMETIC.eevieieieeierieetere et ettt et e st et e saeetesae e se s st e sesstenseensenseensesseensessnseesnsseennseeans 50
Assignment of L.abels and POINLETS..........c.cceevererieeneritestesiteseeetesessseseesesssesesssessesssessesssessesssessesssessesssessesssessesssens 50
GOTO STATEMENTS.....ccoivvuiiiccnssnsnnrmecssssssssnecsssssssssncss 50
DO STATEMENTS....... ceseessssssnsennstststttttttttteesessssssnes ceeteeetesensastssssssissssessetttsanrarsrsssssnssssssssannnes 51
INOD-ILErative DO GIOUP......ceouiiritiriteeiteiiteeteeeite ettt et et e st e et e e bt s bt e s bt e st e s bt e sseeeaeesbeeenbe s btesabeanstesnsaeesannneeessnses 51
Iterative DO Group USing WHILE ClaUSE...........cceecerierierierierterientesteetesteeeesseesesseesesssessesssessesssessesssessesssessessseens 52
Iterative DO Group using a CONtrol Variable...........ccoeiireririririnireeeteeteteteteeeee et e 53
IF STAteIMEILS....ccoivueeeessneesssnnecsssaeecssareesssanecsssseessssseessssnessssssessssssesssssssssssssssssnsessssssssssasssssssssssssnsssssssssssnnns 56
CHAPTER 4: EXPANDED DATA DEFINITION RULES......uuucoicciisiicsssnnniiiccssssssssssssssssssssssssens 59
DATA ORGANIZATION..cccciiiiiiccssrricsssesssriesssssssssnossssssssssess 59
AATTAY S e tteeette ettt ettt et e e ettt eeat e e s at e e e sa bt e e e aab e e s be e e e a bt e e s st e e e b e e e e a bt e s R ae e e e aba e e e Rt et s ne e e e ate e e e bt e e e st e e e nteeeereeennaaeens 59
GENETAl FOTIMAL:....cviteiieieietetee ettt ettt et et ettt a s b b e bt s b et e b et et et et et e st et e st ebeebesbeenbeesseesaeesuee 59
SUDSCIIPLS et teeeiteeteerte ettt st e et e st e e e e et e s beesat e st e e s sbeesbaessbeessaessee s seenstesaseessseensaeassaenseenssesnsaanssesnsaesnsessnssaens 59
STIUCTUTESttt ettt ettt s e et st e bt e st essa e e bt e be e s b e e be e s bt e sae st e e saa e e bt eemaesabeeenaeeesnnaeeesnanrneess 61
General FOIMAat Of @ SIIUCIUTE:coueteieieiete ettt ettt ste st e te et e st e et et estes e e st ssesbesbessessensensentesseesstesseesasesasenans 61
Arrays CONtAINING SIIUCTUTES.cccueiiiiiriieeteritteete ettt et e st st eeeesbeesabesbtesabe e st esseesbeessaesabeesbessstesmseestenneesaseesnns 63
Structures CONLAININE ATTAYS...ccueerterrrerreerrtrerteniteeastesrseeseesaseestesseesstessseesseessseesseesaseessessseesssessseesseessseessaesaseessseess 63
Factoring Of AUTIDULES.cc.eoteiiiieieietece ettt ettt ettt b bbbttt ettt et sae e b s b sae e neene 64
ALIGNED and PACKED AIIDULES......cc.ceueetertirienieieteteteteteteitee sttt ettt et sseste st et et et e st st sseebesbeseesbensesasesmsesane 65
General Format of ALIGNED and PACKED Data:.......cccceeetertrtrerenenenienienientestesseseeeeeeeesessesessessessessessesmeenns 66
STORAGE ALLOCATTION...cuuuuttiicissccssericssssssssrncsssssssssness 67
AUTOMATIC STOTAGE.......eeeeeeeeueererieeteritteeiteerttesteesttestessstestesastesssessstessessstesstessstesssesaseesssessstesssessseessssseesssssseeessnns 68
GENETAL FOTITIAL: ...ttt ettt ettt et ettt e st e a e b e b e bt st et e b et et et et et e st enteaeebeebesbeesbeesaeesanenae 68
ENTRYBLOGCK SOTAZE....c..ceuteutruietertententeniertentetetestestesestestessessessessesessestententenesstasessesseasessessensensensessesnsessesnsesnsens 68
GENETAL FOTTIIAL .. .ceuteiteieetetee ettt sttt et s et e bt e bt et e bt et e e at e bt satesbeeatesaeeabesbteabeeseeabaeennbeesabaeenne 68
CONSTANT SEOTAE.....ueeeerreeeerrtertententeetesteetesteetesseetesseessesutensesmtesbesstebeeateseeatesstensesseensesatensesnsensesasensesnseesnseeenns 69
CONST SEALEIMENLS. ..ceuveeveerutieeeeeteeeiteeteesttesbeesttesteessteeteeeseesseesstesabeessbesastesmbee st esseesseesseesaseesssesaseesnsesssenessnnsen 69
BASED SEOTAEE.....cottieteitteeteetteeteett ettt ettt e e st e st e et e e e bt e et e s bt e sabe e st e sab e e s st e eut e e beeeate s bt e eabe e bt e snb e e e s e nreeesennet 71
GENETAl FOTIMAL:.....cviteieiietetete ettt sttt ettt ettt st b b bt s e et e b et et et et et emt et e st eseebesbeesseesseesaeenaee 71
EXDIICIt POIMEET USAZE. .. .ccueeiireeierierieeiesteetesteetesttetesstesteestessesstessesssesseessesseensesstensesstensesnsensesnsesseensessnseesnsseesnseesns 72

Table of Contents

(@72 0TI v=1 B 20y 0= SRR 72
General Rules for the USe Of POINTEIS:..........coouiiieueeeeieeeeieeeeeeeeeeteeeeseeeeeeseeeenseeeeeseseeseeeesseeeesssnneeeeessesnsssnnnsees 73
DEFINED ATTRIBUTE AND DEFINED STORAGEo oottt e et e e e e e e e 73
(@72 TSI =1 B 20T v 0= L R 73
General Rules for DEFIINED StOTAE:........ccuerterterteteteteiteteetestestestestestetestentententeseesteseesessessessessessanssessessensensensanns 74
INCLUSION STATEMENTS ... cttttttcceeteeneecceeeesssesccsesssssccsssssssscssane 75
R N[O B 81 D) DY N S = 1<) 11 1<) | SRR 75
(@2 0TS =1 B 20T v 0 =L SRR 75
QOINCLUDE StaAtOIMEIIL. ...cieieiuerererirereirereeeereeeeeeeeeeeeeeeeeeessssssssssssssssssssrssseeeeseeseeeesesessssssssssssssssssssssssseseseseeseesesesenneees 76
(@331 =1 B 20) 1 T LSRR PRSP 76
General Rules for %INCLUDE StateIMeNtS:......cccuveeevueeeereeeereeeeereeeesteeeesseeeesseeeesseseesseeeenssseesssesesssssesssssesssseesesnes 76
DATA STATEMENT STRUCTURE SUMMARY ceeeeeeernsenenne el 7
CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULLES........ouueeeeeereeeeceereeecseeccsensses 79
PRECISION....cccccttteeeeeceeeeeececsessesscccsssssseccsssssssccssssssssscssssssssessssssssssssssssssessssssssssssssssssssssssssssssssassssssssasssss 79
ATTTNIMETIC OPETALIONS. ... eeuviriieteeieeteeiteeteete st ettt et e et esteetteste et e tesatesbestesbesasesbesase bt enbesstensesstenseeatansesatensesatensesnseens 79
P2 (o aTo)aT=1 0 Lo B0 Lo] =T (o) s VRO RRRR 79
IMIULEDIICALION. ... ettt ettt ettt e et e st et e st e e st e sseeseesaeessesaeessesasesesnsensesnsanseensenseensesssensesnsensesnsesnn 80

| DA VA 13 (o) s DO PPNt 80
Precision of MOD Operations 0n Decimal Data.........c.cccveevereeriereerieseesieseeseeeesseesesseessesseessesseessesssssessssessssesens 80
Results of Arithmetic Operations on BINARY NUITIDETIS.cc.ccuirererierierterieieteteteeerestestesseseesseseeseessessenteseneens 80
TUIICALION. . uuuuevitiriiieeee et eeeeeeeeeeeeeeeeeei e bbb ebearereeeeeeeeeeeeeeeeeeesesesssssssssssssssasasassassesasaseeeeesesesesasssssssssssssasassnssnnnnseeens 80
FUNC GTIONS. ... ctttteieeeeteeneeceereesseceseesssssessssssssessassssssssansessssns 81
LN E Lo B ST ot o) o - 81
AN I S UV i1 s AT Lol u () s FE TR 82

AV 2 G S RT V1 L o B S [o) o TSRS 83

LAY/ LA U T o I s o Lo o FO USRS 83
MOD BUilt-Iin FUNCHOM.ccouiiieiieeceiee ettt et et eereeeereeeeteeeeesaeeeetseeeesseseessseeeenseeeesseseesneesasseesnsseeennnes 84
ROUND BUilt-in FUNCHIOM. ...ccetviieieiiicieeceieeceeetee e eeteeceieeeeeteeeeesteseenseeesnsaesesseeseessnsssnseeesnseesesssnsssseesonsesesnnnnnes 85

o3 (@A U T o B ST Lot 7o) o FOR 86
ALPHA BUilt-iN FUNCHOMN. c..cciiiiiiiei ittt ettt eceeaate e e e eesaaaeeeeeeesabaseeessesasassessesssseasseessssansessessssnees 86

AL O 02828 (O T T VT Lo T o Lol a o) o VOO 87
INDEX BUILt-I0 FUNCHIOM. c..vvtiiiveiieeeee ettt ettt ettt e et e et e e st e e e bt e e ssateessaseessnseeesnssesssseeesseseeessssssnnnnsnneees 88
SHL BUIIt-in FUNCHIOM. c..uvvviiiiiiciiiiie ettt eette e e ettt e e e cesatateeeeesasaaeeeesssssasseesessssseessessssssessesseseseessrssrrens 89
SHR BUilt-IN FUNCHON.eciovieieieeceeiee et ettt e e eeeeeeeteeeeeaeeeeetaeeeesseseessseeenseseensseseessseeenseseensneeenssnnnseaeeeeennn 89
BSTR (pseudo-variable) Built-in FUNCHON.coctirtirieiieieietereeieseeee sttt ettt sae et st esee st e saesneenn 90
CSTR (pseudo-variable) Built-in FUNCHON........cccveiieieriirierieieseeieseesteseeseeeeesestesseesesseessesssessesseessesssessessseens 91
NSTR (pseudo-variable) Built-in FUNCHON...........ccceveirrviririereeseeteseeeeseeteseesteseeeaeseesaesseesseesee e saeessseesnseesnns 92
VSTR BUIt-IN FUNCHOMN. ...cccitiiiii ettt eeat e e e eeabae e e e eeeabbbeeeesesassreeseesnssaaesessessaseeesesssnsaneeees 93
ADDR BUilt-in FUNCHOMN. ...eciiuvieieiiic ettt eeeee et e e e et s seaeesessteesssseesssaessssseesssseeesssaessnseesesnsesessenssnneeeenns 95
(@S A ST L1 0 S s Vet o) s R 95
LSTR BUilt-in FUINCHON. .veviiiiiiiiiiieeceiteeec ettt ettt e e ee ittt e e eesaaae e e eesasaaeeeesessbsseeseesasssesesessssssssnnssnnnnen 99
BSTM BUilt-iN FUNCHOMN.......ccieitiiieieeeeeeee et et eeeeeceteeeeeteeeeeteeeeesseseeseeeenseeeeesseseesseeenseseensseseesseeeseeeseseennnnes 100
PROGRAMMER-DECLARED FUNCTIONS ... ctttteceeeteneeeceereesseeceesesssescesssssssssssssssssssssssssssssssasse 103
(@13 313 =1 1 2 o) 1 T Lo RO 103
PROCEDURES eeeeeerasecenrscenresesnresesrrsesareetsrsessrrsesersesesrsesarsesrrssesrnesesreesnessesrssssesnsensennens 104
General Format of PROCEDURE SEALEITIEIIES:eeeeuveeiieeeeieeeeeieaeeeesteeeesseeessseeesseeessssesssssesssssssssssessssssssssseseesssnns 104
TNLEITIAL PTOCEAUIES.vvveeiiieiiiiieeceitteeeceeeitee e ettt e e e eerate e e e eesabaeeeeeeebaaeeeseessaaaeeeeessstasseesesnsaseesesesssssssssannsnnssnnsnnns 105
EXEEINIAL PIOCEAUIES.........veeeeeeeeeeteeeeireeeeeeeeeeteeeeeeeeeeteeeeeteeeeeaeeeeeaeeeeetseeeeseeeessseessseessseeeessseesseseensseseensnnsnnseeeeeeeans 107
MACROS........ eeeeeeeeseeserseeernsesarsasrnssssenseesnriennrsetertetestreeernsetertseestrsesnrseenseeesersesarssenssesrsesnesnsannes 107
General FOrmat Of IMACI0 SEALOITIEIIIS:eiveuveeieieeeeerieeeiteeeeeaeeeeseeeeseeeessseeesssteessseeessseesssssessssseessseeessseeesssssssseees 108
General Rules fOr MaCIO STALEIMEIIES.cccuveiieueeieeeieeeteee ettt eeereeeeeseeeesaeeessseeesssaeesssseeesseeessssesssssessssseesssnsssssseesessns 108
REGISTER LOADING AND STORING ceeeeeernsesernsesernsessanenes ..111
System Equates in Macro STALEIMEIILS. ...c...eivuterueriierteriterteerite et eree ettt estesereesressstesteessaesae s seessesneesemsaeeessnnes 112
General Rules for Loading and StOTINE..........cccueieiririerierienieriesieteteteeeteeeesessestestestesaetessesseseeseeseeseensessesnsesnsenns 113

Table of Contents

Sample Application SUPPOTLEA IMACTOS.........cceeevererrrererrtereereeeesseetesseestessesseessesssessesssessesssesssessesssessseessseessssesnns 113
PROCEDURE STATEMENTS......cccctttiirnnccrssnnaeneeseserteseecccsssssssssssssssssssassssssans 115
(@) a1 1 200 v .1 LTSRS 115
General Rules for PROCEDURE StateImENTS:......ccceeiieerueerieeireeseesiteeseesseesseesssessseessesssessssssssessssssssessssesssssssaessns 116
START STATEMENTS ... ciiiiiiiiiinininncnemssesssssssssesess 116
GENETAL FOIMIAL:......ciiieeiiie ettt eeetee et eeteeee ettt e eeteeeeeteeeeteeeeeaseeeetseeeeaseeeeasseeenssseeesseeeassseeensesaensseesenssnsssssaaaeeaans 117
General Rules for START StateImeNtS:........cceecvierreeeireeieeeiteeseeseseeseesseessesseesseesssesssessssssssessssessesssssssssesssssssssssnns 117
END STATEMEINTS......coeereeeeeeeenereeeeensessssssssscsccssessesssessssssessssssssssns 117
(@2l a1 1 Y00y . LTSS 117
General Rules for EIND STAtEIMEIIS:cc...coveeeeeerreeeeeereeeseeesteeeseeenseeesseenseessseesseessesenseeesssenseessssensesssssessssssessnsssseean 117
CALL STATEMENTS....ccittttttttmmmmisisissscccessssssssssssssesssnsssss 118
GENETAL FOIMIAL:.....cciiieeiie ettt ce e e et e ettt e eeteeeeeteeeebeeeeaeeeeessseeesbeseensssaansssesassseeassseeensesaesseesansssssssaaaasaaans 118
General Rules for CALL StateIMENTS:cceecueerreereeeireeseessreeseesseessaessessssesssesssessssesssessssessssssssessssssssesssssssssssssesns 118
RETURN STATEMENTS......ccccccettetteeeeeeemesessssssecccesssesesssessassssssnss 118
GENETAL FOIMIAL:......cuiieeiiieeeiie ettt et et eete e eeetee e eeteeeeeteeeeeaeeeeetaeeeesseeeeaseeeesseeenssseensseeenssseeenseseensseesenssnsnsssaeeeeenns 119
General Rules for the RETURIN SEALEIMONL:ccuveieeerreeeeeereeereeereeeseeeseeesseeesseensesesseesseessssessseesssensessssssssssssessenns 119
PROGRAM STRUCTURE.......crrennmeeneeeeeetieetecceccssssssssssssessassassssses 119
Rules GOVerning PrOgram STITUCIUIE:c..ceoueierriereeieettesteetterteeutesteetesteetesbeetesbeebesbeeabesseenbesseesbeeneensesatesseenseenases 119
Using Procedures Compiled Within the Program...........ccceeeirieirininincneeeiceeteeeeeeecee et seenne s 120
CHAPTER 6: ALTERNATIVE CODING METHODS.......iiitiennnnensseeecsessssssssssssccssssasssscssnes 123
Efficient Performance..........cocceeecrceienrcnticnssencescnsiesssnsscssssssssnssesssnssssssssssssassssssnssssssnsssssanssssssssssssssssssnnns 123
DATA CONVERSION.....cccurerseicsccceeressssssssssssssssssssssesss 123
Use of Numeric Character-String (¥*INCS) Data.......ccecveeeeieeeererieniesiesiesiesiestetestetestestesessessessessessesseesssesseesssessees 124
USE Of DECIMAL DIALA.....cueeveerieiieieieetereetereete st estesteestesseesesseesesseesseessesesssessesssessesssessesnsesssensesssensesssensesssesnnses 124
USE Of BIT-SHINE DALA.....ceeeuieieeeieieeierieeterieerte st estesttestesteetesseesesstesteestessesssessesnsessesssessessessesnsesseensesseensessssessnses 125
AVOIDING POOR PROGRAMMING TECHNIQUES........cciiiiicccciererssssssssssssssssssssscssssssssssssssnes 125
COMPILET ROSIIICTION. ¢...eutieitetieieeiteteetet ettt ettt sttt s bt et et e et e e st et e satesaesatesaeeaaesaeebesbtenbesstenbesatenseensaesnnnes 125
Other Techniques For Efficient COMING..........cccvreerirrererieririereeieseesteetesiese et eseessessesae s e e sas e e s esssensesssenses 126
INItIAlIZING @ FIELA...c.ueeteeteeieeeeee ettt et e et e et e b e e st e sae e st e sae e e e saeetesae e seeneenseentenseenneeennes 128
Use Of LOGICAl OPEIAtIONS......cccveeeerreeiesieeieseetesteeteseetesseessesseessesseessesseessesssessesssessesssessesssessesssessesssessssessssesansenes 129
Bit MaANIDUIALION. ... ecvveteeiesiieieseete st esteseesteseesteseeteseese e eesesssesseessesseassesseassesseessesseessesssessesssensesssensesssessnssessssees 129
CHAPTER 7: SABRETALK COMPILER OPTIONS....ueeceeereeeeenseesccccssesessssssssssccssssesssscsasee 135
OPTIONS STATEMENTS.....cccocctttiinnnnnnnmenecssssssccccsssssssssssssseses N 135
ALIGIN / INOALIGN. ...t eeteeete et ettt sttt eteeeteeeeveeeteeetveeeseeesesenteeesseesseesssaeessessssesssessssenseesssseseessseessesssseseensesesnsness 136
2N I 20 I OSSPSR 136
ANGB3 /INOANGBS......c ettt ettt te et e st e e be e st e s be e s st e e beessbaeseesseeeseeassesnseasstessseeassassseensseesanssseens 137
BAL / INOBAL. ..ottt ettt ettt e e te e e e s ae e taeseba e saesssa e saeasse e baeassaessaesssaesssessssenseenseeensaeasseenseessseanseesssenseeenn 137
CLEAR / INOCLEAR. ..o ettt ettt eete e vt estteseaeestaeessessseessaessseassaesssassseessssasseesssssnsesassessessssesssssessssssssessssasennn 138
CODE / INOCODE........utiiiieieeeeeecteeeteecteeetteecteesteeeeveesteesebeeessessssesssaesssessseessaeasesssssesssesssseassessssensesessesseesssesssesesans 139
DECK/INODECK.......ccitiiiieieeeteecteeeeeeeteesaeeiseesseessssessessessesssesssesssssssesssssssssssesssssssssessssesssessssessessssssssssssssssssssesnns 139
DOLLAR / INODOLR.......otiotiiitteeee ettt et eeeeeiteeeteeesaeeetesesseeeseeessseesseesssessesesssensessseesseesssseessessssenseesssesseessssenseenn 140
GEIN / INOGEN......ooottieiieeteeeee et eeeeeeteeetveeeseesteeesseeeteseseeesseesssessseesssesteessssenseesssseassessssenssesssseteessseeseesssesssensreeeeens 140
TICAFYES / ICAFNO. ...t iteeteeeteetteete et estteete et esteestee s taessaessseassaassseessaeassaasseesssasseessseassesssesnsaeassesnseesssenssseaennns 140
INCLD / INOINCLD......utttteeeecttteee ettt eeecteee e e eeetrreeeeeeerreeeeeesessaseeeseasssaeessessssasseesassrsasessesssssseeseassnnnnnnnnnnnnnnnnns 140
IMAP / INOMARP ...ttt et eettescteeeteeeteestaestaeesbaesbeesseeebaassaesessesssaesaessssansaessssansaessseessaessseanssansseeaassseseesnssaneenn 141
MLEVELQ / MLEVELL / MLEVELZ.......uviiitiiieettette st etee st esteeecteesveesveesvaesaeesaesaeeseesssssnsaesssssssessssesnssesssesnnn 142
INUMERIC ...ttt eteetteete et eetteeeteeeteeeeveeetteeseeeteeetseestaeeseeeseesesaeessassssessaasssebasasssenseesssaenssessssesseesseesaeessseeenssseeesnes 142
OPT / INOOPT ..ottt ettt et e e teecte e aeeeaeesbeessaeeseesebaeessesassesssesssseseassssenseesaseenssensssessesssseseesssesnseesssennseens 142
PRINT / INOPRINTuotiotteetieeeteeeteeeteeeee ettt eeteeeteesteeeseeeseseseeesseesseeesseesssensesesssensesssseenseessssenssessssenseessseenseessssenseenn 142
System-Equate-Identifiers Options (GTS, ONL, €LC.)...c.cectriruirerririerierierieniesienterteteteterteseeessestessesseseessessessesseenns 143
TERM / INOTERM......oiiiiiiieeieecieeieeete et e steeeteesteesteessaessa e seessaassaesssaassaaasssasssesssassssssssessssessssessssesssssssessssasennn 143
TRACE / NOTRAGE. ...ttt ettt te et e s teesteestte e ste e s st e sbeessaessseassaaesseessseassaassseasseasesasssassseesanssssesessssaeannn 143

Table of Contents

XREF / INOXREF ..ottt sttt s ae st e saa e s ae s sa e s bt s saa e s bt e sanesaneessnaeeessnnnneesaas 143
Compiler Support of Variable BIOCK SIZeS:.........cccveierierirriinierieneere st eseese et ete e see s etesseessesneessesnnesaesseennns 144
Changing the Compiler BIOCK SiZe OPtiOnS:........cceevveriirceereriieseeieseesteseessesseesseseessesssessesssessesssessesssessesssessesssees 145
CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT......cvveeeessssssssssscccnaeens 147
Creating a Program...........cccccceeeueeuecee ceereseresaessssessatesaasns cereesaresatesanesaas 147
SYNTAX CHECKING.......ccccocererrueercrnnees ceseeessnnesssnnnssssnaneanne148
The SYNLAX CRECKETccctectieieiteeiereetereeteseeteseeste st etesseesseeseessesssessesssessesssasseessasseessesseessesssessesssessesssessessnseennns 148
Syntax Checking INEW StateIMEILS.cc.cecuertertertertieterteerterteete st este st e besutesbeestesbeetesbeetesbeesesatenbesstensesasesseeesnseens 149
Syntax Checking Old STateIMeNts.........cc.eeueruertertirieneeteetterteetesteste st ete st etes bt e besbe et esseessesaeessesseesseensessesasesseensens 149
SITUCKEUTE MOttt ettt ettt ettt ettt et e sat et s at e besatesbe st e sb e e be bt enbe st enteeatensesatenseeatasseensesseensesseensenn 149
Initializing StrUCTUIE IMIOME.coueimiiieeiteieet ettt ettt ettt et et e e s bt et e s bt et e saeebeesabaesnnees 149
COMPIEtiNG the SIUCIUTE......cceecteeeeeeeeerteeteseeteseeste st ee e tee e e st eeesseetesseessesseessesssessesnsensesnsensesnsessesnseessssessnses 150

Error Handling in Structure MOGE.........cocueeierieeieniieierieetesteete st et st etesaeestesaeeste st esesstessesntesseensesseenseesnseessnsens 150

RULES fOT STIUCIUTE IMOME.......cueiuiiiiiiieiirtietit ettt ettt ettt be bbb bbb e b et et et et et e st enesaesbeebesbesaeesaee 151
COAING STANAAIAS. ... e.veeeveerereeeiteeeecteseereeteseetesreete st etesseestesseesessesssesseessesssesseeseessesssessesssesseessesseessesseessessssesssees 151

The treatmMent Of SLALEITIEIIES:ceutrtteuirtertirterterteste et et et et et et eseeaeeteebesbesbesbesbesseeensensententententeateseeseeseebeenteeaeeens 151
UNACCEPLable STALEIMEILS.cccviirieriieerieriteenteeiteeste et esteesteesaeeseestesseesssessseesseesseesssessseesssessseesssessssesesnssseesns 152
Programmer Declared FUNCHONS.cooiiiiriiiieieeietete sttt sttt ettt et e bt et et esbaeesabeesanees 152
CHAPTER 9: SABRETALK COMPILER MESSAGES........ccccoovsvvvrsnnrriiissssssssnsssssecsssessssssssssns 153
Severe Programmer EXror IMESSAZES......uiiiiiiiccneriecssccsnserecsssssssrnecsssssssnscssssssssnssssssssssssssssssssssssssssssssss 154
Terminal Error MeSsages.........cceceeeeueessnressarossesssases ceestresestesssnstessnttessanttesastiessnstessssssssnnnssrtttssess 163
Internal Compiler Exrors..........cccoeveeeescneriosnnnes terereesssetessnstesraressansessrnssssanes 164
Warning Messages ceseesenesansesnnesanesannns ceetessttesttesstssstesatsssaessabeessstesasessnnne 164
Information MeSSages.........cceeerseueessnressarossessnnes teseeesenstessnttessastsssnstessastsesssssssrantseneessses 165
Syntax Checker Messages.........cccervereseeresseseaees N 165
APPENDIX A:.uuuuericcsssniccssssssncsssssssess 169
Example Format of an Entry Control Block teetessetesasissnsesasesaasene cestesssesessssanstissssnns 169
APPENDIX Bh....uuuueeiicssssarrcsssssssssssssssssssssssssesssassssssssssssssssssssssse 179
Special SABRETALK considerations for TPEFDF USEIS......cccceveieessessanossarosasssssssssssssassssassssasossasossanses 179
User Macros ceseressnteessnnesssaneresanne ceseeesssttessntnessanesesnseessansareenssessnes 180
GLOSSARYiiiiinvnnnricsissnnricssssssnss 181
INDEX....couueiiesssnrneisssnrnccssnssnecssssssnssssssesss 201
REVISIONS LOG ..202
7.4 CLEAR option added to COMPIlEr OPLIONS........ccoiveierseicsserssssrssressassssssossssossasossassssssssssssssssssasssssssss 202
READER'S COMMENTS....ccccccoottsessssnnriiescsssssssssssssascsssasssssssssssssssansssss 203

- Vii -

Table of Contents

- viii -

‘ Introduction

INTRODUCTION

SABRETALK is a high level or general source language that is easy to learn and use. The SABRETALK
compiler is designed to produce programs that run in the control or executive environment called the
Transaction Processing Facility (TPF).

The compiler produces, as output, IBM System 370 Assembler language programs that are re-entrant, that
is, programs where a single image of the program in main storage can be servicing several requests.

The most economical approach to applications programming is through the use of a high level language. By
using SABRETALK, programmers are able to focus their attention on program logic rather than the individual
machine characteristics, thereby improving programmer productivity.

Another advantage derived by the use of SABRETALK is the ease with which programs may be modified.
This is possible because of the decreased number of coding statements in a given segment and the high
degree of readability of these statements; furthermore, if programmers use descriptive names and
comments SABRETALK can be nearly self-documenting in many cases. Finally, the time necessary for
program debugging can be reduced considerably because of the clarity of the language and the extensive
error flagging routines built into the compiler.

‘ Introduction

PROGRAMMER'S REFERENCE GUIDE ORGANIZATION

The purpose of this guide is to provide programmers with the rules and conventions for coding application
segments and/or programs, for subsequent use in the TPF System. In addition special consideration
information has been provided for TPFDF users (see Appendix B).
This guide contains nine chapters:
CHAPTER 1: PROGRAM COMPONENTS:

This chapter introduces the basic components and terminology used in the language.

CHAPTER 2: DATA DEFINITION RULES:

This chapter introduces the construction rules of the basic value statements and Data type
definitions.

CHAPTER 3: EXECUTABLE STATEMENT RULES:
This chapter introduces the construction of basic statements and production of simple routines.
CHAPTER 4: EXPANDED DATA DEFINITION RULES:

This chapter provides a more in-depth description of the Data Definition rules and coding
conventions.

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES:

This chapter provides an in-depth discussion on executable statements, Built-in functions and
Macros supported by SABRETALK and the TPF system.

CHAPTER 6: ALTERNATIVE CODING METHODS:
This chapter discusses efficient coding techniques for optimizing programs.
CHAPTER 7: COMPILER OPTIONS:

This chapter discusses a list of compiler options that may be temporarily over-ridden by the
programmer.

CHAPTER 8: THE COMPILER IN AN INTERACTIVE ENVIRONMENT:

This chapter discusses interactive programming facilities through the use of an Interactive
Environment Monitor (IEM). It also introduces the Syntax Checker.

CHAPTER 9: COMPILER MESSAGES:

This chapter provides a list of compiler messages.

‘ Introduction

FORMAT OF THIS GUIDE

From this point on, the manual will present examples that will help to clarify the descriptions given and points
made. A uniform system of notation will be used, according to the following rules:

A : Vertical sets of dots enclose an example.

B) |_ |_ Braces (sets of vertical circumflex) enclose alternative items from
[[which selection must be made.

O () Brackets (sets of vertical parentheses) enclose options that may be
() omitted.

D) |_ DEC |_ (ALI GNED) When more than one element is stacked in
| DECI MAL | (PACKED) braces or brackets the programmer may

select the element he desires.

E) - A series of three periods indicates a variable number of items that may be
included in a list.

F) EO7A Underlining — used to identify hexadecimal alphabet numerals.

G Upper-case letters, semicolons, colons, single quotes, parentheses and commas represent
information that must appear exactly as shown.

H) Words written in lower case letters denote programmer-defined code according to the rules of
the specific element. Although the compiler recognizes only upper case, mixed case is used in this Guide so
that capitals may be used to stress keywords in examples of statements.

I) The appearance of one or more items in sequence indicates that the items, or their replacements,
should appear in the specified order.

J) The notation *BIN, *BS, etc. is used to mean BIN type of data, BIT type of data, etc.

Throughout this guide, all references to the Transaction Processing Facility will be in an abbreviated form:
TPF.

ADDITIONAL SABRETALK PUBLICATIONS

. SABRETALK Installation and Maintenance Guide

. SABRETALK Programmer's Reference Card

Introduction

- Xii -

‘ CHAPTER 1: PROGRAM COMPONENTS

CHAPTER 1: PROGRAM COMPONENTS

PROGRAM COMPONENTS
The SABRETALK programs are coded in free form and can consist of:

* Statements
¢ Comments
* Assembler Instructions

Statement Classification

A SABRETALK program is constructed from basic elements called statements. Within a program, control
normally passes sequentially from one executable statement to the next. As shown in figure 1.1 below,
statements may be grouped in categories:

‘ CHAPTER 1: PROGRAM COMPONENTS

Statement Category
Program Structure:

PROC

END

Data:

DCL

INCLUSION

%INCLUDE

%INCLUDEAF

CONST
Executable:

START

Assignment
Control
GOTO
IF
DO
CALL

RETURN

Macros

Statement Function

To begin programs and internal procedures
and programmer-declared functions

To indicate the 1last statement of DO

groups, programs, internal procedures
and programmer-declared functions

To specify identifiers and their
attributes

TO incorporate pre-coded
statements and/or pre-compiled data
record descriptions

TO include pre-coded
statements from a library

To include pre-compiled data record
descriptions from a library

To initialize a CONSTANT value

To indicate the entrance to executable

code when storing of register contents,

passed from a calling program, is

necessary

To transfer data

To affect the order of statement execution
To branch

To branch conditionally

To flow conditionally

To transfer control to internal procedures

To return control from internal procedures
or from programmer-declared functions

To communicate with the TPF System or
with PL/TPF

Figure 1.1 Categories of Statements

General Statement Structure

Statement labels must abide by the rules for identifiers and they must be followed by a colon.

CHAPTER 1: PROGRAM COMPONENTS

General Format:

(Statenment Label and) (ldentifying) (Statenent) St at enment

(col on) (Keyword) (Body) Ter m nat or
()))
| abl 4: Goro | abl 2 ;
DCL net pay Bl NARY(15) ;
Comments

Comments included in the text of the program serve to make it more comprehensible and provide a very
effective means of documenting program logic. In general, a comment may be inserted anywhere a blank is
permitted, except within a character-string.

Comments may precede or follow a statement or they may be placed within the statement itself. The format
for a comment is as follows:

/*text of the comment*/

The beginning and termination of a comment are denoted by the /* and */ composites, respectively.
Comments cannot be terminated with a slash in column 72; column 71 is the last column in a record. Blanks
are permitted within the comment text. Any series of characters may be used in the comment text, with the
exception of */ itself, since this would signify the termination of the comment. There is no length restriction
on a comment.

Keywords

Keywords are reserved words that may only be used as:

« statement identifying keywords(including macro keywords)
e data attribute keywords

« miscellaneous keywords

e built-in function keywords

* register-specification keywords.

CHAPTER 1: PROGRAM COMPONENTS

St at enent Dat a

| denti fying Attribute M sc.
Keywor d Keywor d Keywor d
CALL ALl GNED BY
CONST AUTO (AUTOVATI C) ELSE
DCL (DECLARE) BASED THEN
DO Bl N (Bl NARY) TO
END BIT VWHI LE
GLOBW CHAR (CHARACTER) FILL
GLOBX CONSTANT

GOTO (GO TO DEC (DECI MAL)

I F DEC FLOAT

PROC (PROCEDURE) DEF (DEFI NED)

RETURN ENTRYBLOCK

START FUNCTI ON

Macr os LAB (LABEL)

% NCLUDE PACKED

% NCLUDEAF Pl C (Pl CTURE)

PTR (POl NTER)

Macro keywords

Built-in
Functi on
Keywor d

NSTR
NUMERI C
RCOUND
SHL

SHR

SI GN
VSTR

Macro keywords are names of macro requests. SABRETALK supports:

A) TPF macros (ENTRC, GETCC, etc.)
B) SABRETALK Macros (GLOBX, GLOBW, etc.)
C) User-defined macros (CSERA, INBLK, etc.)

Regi ster

Speci fication

Keywor d

#RO
#R1
#R2
#R3
#R4
#R5
#R6
#R7
#R14
#R15

CHAPTER 1: PROGRAM COMPONENTS

Assembler Language Instructions

Assembler Language instructions may be coded in columns 1 through 72 of card image records, if the BAL
option is in effect. Coding an X in column one identifies an unlabeled Assembler Language instruction.
Assembler Language instructions having labels must be coded with a period in column one. Comments
must be coded with an asterisk in card column one.

Card colum 1----- |

. addt ag VH R15, dat a$(R7)
X A R15, =F' 25'

X ST R15, dat a$(R7)
* coment.

When Assembler Language instructions are inserted between a ‘60OTO’ statement and a SABRETALK
routine, a SABRETALK Label must be inserted immediately after the 'GOTO' statement in order to produce
the correct branch instruction around the BAL code.

GO TO BACK;
MOVE:
Card colum 1----- |

Y
. MOVERTN MH R15, dat a$(R7)
X A R15, =F' 25'
X ST R15, dat a$(R7)

BACK: IF .o

THEN ;

This facility should be used with caution and should not be employed to correct errors. Since register usage
in the BAL code generated is under the control of the compiler, the programmer must be sure that the
registers he uses are properly selected. This requires that the program, to which Assembler Language
instructions are to be added, be compiled and that the programmer use the generated output to guard
against any conflict in the use of registers. Note that compiler modification as well as program modification
may cause a difference in register selection and invalidate the Assembler Language instructions.

If the NOBAL compiler option is in effect, coding assembler statements will result in a return code of 12 and
error SBTO042E being issued. (See Chapter 7, Compiler Options, for more information)

PROGRAM CONSTRUCTION RULES

A) Statements and comments are coded in columns 2 through 71.

* A semicolon denotes the end of a statement.
* A statement may begin in any column.

B) Card sequence numbers, which may be coded in columns 73 through 80, are ignored by the
compiler.

‘ CHAPTER 1: PROGRAM COMPONENTS

C) When it is necessary to continue a statement or a comment on another line and there is a logical
break point, the first part of the statement may begin on one line and continue on the next line,
beginning anywhere on that next line. An unlimited number of continuation lines may be used for a
statement.

Card colum 2------ | Card colum 71------ [

But splitting a name, as in the following example, is not recommended.

Card colum 2------ | Card colum 71------ [

D) When itis necessary to continue an assignment statement with a literal on another line, write the
literal through column 71, and then continue the literals in column 2 of the next line.

Card colum 2------ | Card colum 71------ |

A = ' BBBBBBBBBB' ' BBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBB'

E) Syntax checked macros:

1) The maximum number of characters accepted per line is 56.
2) When itis necessary to continue a literal on another line, end statement before column 72 with a
guote and a comma, then continue on next line beginning with quote in any column.

WIOPC ' DOT=YES' , ' PREFI X=API 2' , ' NUM=61" , ' LET=i ",
" TEXT=""' BUG ENCOUNTERED WHI LE EXECUTI NG TEST PROGRAM A",
"Pl2611212' " "

F) Non-syntax checked macros: When it is necessary to continue a statement on another line, write the
statement through column 71 and continue in column 2 of next line.

Card colum 2 Card colum 71--|
I I

V V
WIOPC DOT=YES, PREFI X=API 2, NUM=61, LET=I , TEXT=BU
GENCOUNTE RED WHI LE EXECUTI NG TEST PROGRAM APl 2611

CHAPTER 1: PROGRAM COMPONENTS

Format of Programs

A typical format for a program might be:
A) Program name (in a PROC statement)

B) DECLARE statements
1) Names of areas
a) to be referenced, or
b) containing parts to be referenced
2) Names and specifications of areas that will become part of the program

C) START statement
D) Processing statements
E) END (of program) statement
A simple example of a SABRETALK program:

abc1d0: PRCC;
DCL factor BIN;
START (factor = #R1);
factor = factor + 1;
BACKC,
END abc1dO;

The layout of a program need only follow a few rules; however, standardized formatting of statements
enhances readability, helping to clarify the logic and data structure of a program. The previous program
example above could be written without a standardized format, as follows:

abc1d0: PROC, DCL factor BIN;
START (factor=#R1l); factor=
factor+1; BACKC, END abc1dO;

Throughout this guide, sample programs and statements have been formatted for readability; it is hoped that
the programmer will adopt a coding style along these lines.

CHAPTER 1: PROGRAM COMPONENTS

Figure 1.2 is the Assembler Language coding produced by compiling the above example. The assembler
language listing has been re-formatted to conform to the print limitations of this Guide.

LCC OBJECT CODE ADDR1 ADDR2 STMI' SOURCE STATEMENT

1 PRI NT NOGEN
2 BEG N NAVE=ABC1
VERSI ON=DO
551 ALASC LO
| 000024 4017 0004 00004 556 STH RL, FACTOR$(R7)
| 000028 41F0 0001 00001 557 LA R15, 0001
| 00002C 4AF7 0004 00004 558 AH R15, FACTOR$(RY7)
| 000030 40F7 0004 00004 559 STH R15, FACTORS(R?)
560 BACKC
000038 564 LTORG

|

| 00004 565 FACTORS EQU 0004
| 00000 566 $TEMPAUT EQU 0000
| 00008 567 $TEMPDBL EQU 0008
| 00010 568 $TEMPFW. EQU 0016
| 00014 569 $TEMPFW2 EQU 0020
| 570 FIN'S

| 778 END

I
|

Figure 1.2 Compiler-generated Assembler Language Coding

CHAPTER 1: PROGRAM COMPONENTS

CHARACTER SETS

The 59 characters used by the compiler consist of:
* Alphabetic characters (including three from the Universal character set)

e numeric characters
e special characters

Alphabetic Characters:

Character Nanme 8-Bit Code Char acter Nane 8-Bit Code
A 1100 0001 (0] 1101 0110
B 1100 0010 P 1101 0111
C 1100 0011 Q 1101 1000
D 1100 0100 R 1101 1001
E 1100 0101 S 1110 0010
F 1100 0110 T 1110 0011
G 1100 0111 U 1110 0100
H 1100 1000 \Y 1110 0101
| 1100 1001 W 1110 0110
J 1101 0001 X 1110 0111
K 1101 0010 Y 1110 1000
L 1101 0011 Z 1110 1001
M 1101 0100 $ dollar sign 0101 1011
N 1101 0101 @ at sign 0111 1100

number sign 0111 1011

Numeric Characters

Character 8-Bit Code Character 8-Bit Code
0 1111 0000 5 1111 0101
1 1111 0001 6 1111 0110
2 1111 0010 7 1111 0111
3 1111 0011 8 1111 1000
4 1111 0100 9 1111 1001

CHAPTER 1: PROGRAM COMPONENTS

Special Characters

Character Nane 8-Bit Code
+ pl us sign 0100 1110
- m nus sign 0110 0000
* asterisk / multiplication code 0101 1100
/ slash / division sign 0110 0001
< 'l ess than' synbol 0100 1100
> ‘greater than' synbol 0110 1110
= equal -to synbol 0111 1110
& "and' synbol 0101 0000
["or' synbol 0100 11112
A "not' synbol 0101 1111
(| eft parenthesis 0100 1101
) ri ght parenthesis 0101 1101
' singl e quote 0111 1101
, comma 0110 1011
: col on 0111 1010

peri od 0100 1011
_ break character 0110 1101

bl ank 0100 0000
; semni col on 0101 1110
% i ncl usi on synbol 0110 1100

Composites

Composites are sets of two or more characters that are reserved. Blanks are not permitted within
composites.

e Composite Operators:

"< not -1 ess-than

N> not - great er-t han

N= not - equal -to

<= | ess-than-or-equal -to

>= greater-than-or-equal -to

[concat enati on
« Pointer Qualification Composite:

-> arrow symnbol
e Comment Composites:

/* start of conment
* [end of comrent

10

CHAPTER 1: PROGRAM COMPONENTS

CHARACTER SET USAGE

Separators

Narme Graphic Use

left and right () sonmetines wused in an expression for

par ent heses encl osi ng sequences of operands and
oper at or s, for specifying i nfor-
mati on associ at ed with vari ous

keywords and for encl osing subscripts
singl e quote a pair of single quotes is wused to
encl ose bi t and character
strings, and is wused in Pl CTURE
specifications

conma , separates elenents of a list

peri od . deci mal poi nt

break character _ used within an identifier or Ilabel to
enhance readability

col on : used to separate the statement | abel
fromthe statenent

sem col on ; i ndicates the end of a statenent

Use of blanks

Blanks are used as characters in character-strings or, with relative freedom, as separators in statements.
Blanks are not permitted within identifiers or composites. lIdentifiers or keywords must be separated
from immediately adjacent identifiers or immediately adjacent keywords by one or more blanks. Individual
parts of a statement that are not separated by parentheses or some other separator must be separated by
blanks.

The Hexadecimal Numerics
When used in hexadecimal notation, the following are recognized as numeric digits:

0123456789 ABCDETF

Miscellaneous Character Sets
The arrow (- >) symbol is used as a pointer qualifier.

The equal-to sign (=) besides being used as a relational operator in an expression is used as an
assignment statement operator.

The number sign (#) is used as a prefix character in System Equates, and also for register specification
in the START statement and in certain macros.

11

CHAPTER 1: PROGRAM COMPONENTS

Certain character sets are used to perform specific functions. The character sets that function as operators
can be categorized into four groups:

. arithmetic

. logical

. relational

. concatenation.

The Arithmetic operators are:

+ Addition or prefix plus

- Subtraction or prefix m nus
* Mul tiplication

/ Di vi si on

The Logical operators are:

& And
[O
A Not

The Relational operators are:

< Less-than

= Equal -to

> Greater-than

n< Not - | ess-t han

N= Not - equal -t o

N> Not - gr eat er -t han

<= Less-t han-or-equal -to

>= (Geater-than-or-equal -to

The Concatenation operator is:

[] Concat enati on

12

CHAPTER 1: PROGRAM COMPONENTS

DATA CLASSIFICATION

Figure 1.3 illustrates the data classification tree and will serve as a general introduction to data
classification.

| - subscri pt ed

(*) (not allowed in structures)

I I
I I
| | -constant - - | |
| | | -unsubscripted |
I | - mjor------- I I
| | structure | | - subscri pted

| | (collection |-element---| |
[| of mnor vari able |-unsubscripted

| | -identifier----- | structures |
[| (naned) | and/or | -subscri pt ed

[| (data item | fields) | -constant - -| [
| | | | | -unsubscripted |
I I | -mnor------- I I
| | | structure | | - subscri pted

| | | (collection |-element---| |
| | | of fields) variable |-unsubscripted
data item				
				- subscri pted
			- constant - -	
[[[[-unsubscripted			
I I	-field------- I I			
[[[-subscri pt ed [
[[-el ement ---	[
	variable	-unsubscripted		
I I I I				
[-literal	- pseudo-			
[(unnaned) variable (*) [
I I
I I
I I

Figure 1.3 Data Classification Tree

Identifiers are names given to data items by the programmer in order that they may be referenced.
Identifiers are composed of Alphabetic, Numeric and optional break characters (_). The first character of
an identifier must be A through Z, $, @, or #. The break character may appear in the identifier to enhance
readability — e.g.:

gross_pay

When coding identifiers, the following rules apply:

A) The first character of an identifier must be alphabetic.
B) All identifiers within a program must be unique.

There is no length restriction on an identifier; however, while the program is being compiled, an
identifier greater than eight characters is reconstructed using only the first four and last four
characters. For example, the identifier fli ght _ordi nal _nunber would be compacted to
flignber during the compilation process. It is possible for two reconstructed identifiers to appear
identical:

flight _ordi nal _nunber

13

CHAPTER 1: PROGRAM COMPONENTS

and
flight_nunber

would both be compacted to become:

flignber

A) Character # may not be imbedded within an identifier.

The programmer is responsible for ensuring that this compacting does not create duplicate identifiers as
illustrated above. The compacted form of the identifier would appear only on the generated assembler output
listing, not on the programmer's source code listing.

Whereas identifiers are data names, the names of executable statements are called labels. All of the rules
above that apply to identifiers also apply to labels. Labels are used for branching, control being given to the
statement whose label is supplied in a GOTO statement. It is often necessary to make use of the symbolic

address of a labelled executable statement, and so the need for the term ‘'label' which will be used to mean
the name/symbolic address of the executable statement.

| bl : b = c;

DATA CONSTRUCTION METHODS

To explain the construction and the use of statements, a number of definitions, confined necessarily to the
context of this guide, are now essential.

The word 'data’ is used to mean information, and we shall refer to data or portions of data as data items
within the constraints of SABRETALK .

The term 'BIT', though specifically meant to represent either the binary digit one (1) or the binary digit zero
(0), will also be used to mean the core area in which such a digit may be stored.

Certain sets of binary digits are known as numerics, alphabetics, alphanumerics, decimals, binary values,
special characters, characters, character-strings; all these terms are self-descriptive.

The usual method of data construction, data reference, data manipulation, etc., is based on the contents of
an area. The area size is determined, the data name (identifier) and the characteristics (attributes) of the
data that will reside in the area are determined, and then a data statement that explicitly defines the area is
prepared as part of the program. If net_pay is a DECIMAL data item up to five decimal digits, then the
programmer may define (i.e., DECLARE) the area in which it will reside as follows:

DECLARE net _pay DEC(5);

14

CHAPTER 1: PROGRAM COMPONENTS

Any data item that is assigned to the area will:

1) conform to the attributes of the area

2) be referenced using the area contents name

3) be assigned an obtainable area address
Variables

The term variable refers to a named area that may be assigned any value that can conform to the attributes.

DCL vrbl e2 BIN ;

Literals

The facility to define specific values without naming them through the use of identifiers creates a class of
values called literals. A literal is a value located within the program and, since it has no name, it is
completely defined when it appears in a program statement.

fld2 = 25; \
fld3 = .4 ; \
fld4d = '101' B; \ :
fld5 = ' E23C X; / Literals:
fldé = 'page'; / :
fld7 = 6.2E23"; /

A literal, then, is a specific, unnamed, unchangeable value which is defined by a portion of a statement and
whose attributes are implicit in the literal. Literal Data is discussed later in Chapter 2.

Constants

The ability to reference, by name, a specific unchangeable value that occupies a specific area is available in
SABRETALK. Two statements are needed:

e adata statement that explicitly declares an area into which a named constant is to be placed, defines
the attributes of the value and specifies the keyword CONSTANT

e asecond statement whose keyword is CONST, where a specific value and the name of the value are
supplied. The value is given in the form of a literal or a SYSEQ (System Equate) tag, and a comma is
placed after the identifier.

DECLARE nmax_pay DECI MAL(5) CONSTANT;
CONST max_pay, 63210. ;

The previous example shows a DECLARE statement explicitly defining an area in which can be stored a
specific five digit DECIMAL value named max_pay and it shows the additional statement necessary to
initialize the area max_pay with a specific value, 63210. decimal. Once initialized, a constant value
cannot be changed.

A constant, then, is a named specific value occupying a specified area. The area is declared by one
statement and the unchangeable value is initialized by a second. The declaration and initialization of
constants is described in detail in Chapter 4.

FIGURE 1.4 is meant to show the statement structure that will be explained in Chapter 2, Data Definition
and in Chapter 3, Executable Statements.

15

‘ CHAPTER 1: PROGRAM COMPONENTS

abclsl: PRCC

| oop:

fin:

wt BIN(31);

msg CHAR(20);

rwfactor BIN,;

clear PIC '999';

cl earance BIN,;

decr BIN;

obst hgt BIN;

i BIN;

r = 100;

DOi =1 TO 10;

cl earance = wt * rwfactor - obsthgt;
| F clearance > 0 THEN GOTO fi n;

w = w - decr;

END;

decr = decr + 500;

GOTO | oop;

cl ear = cl earance;

nsg = 'clearance ="' || clear ||

END abcls1;

S8epB8as

Q.
O

e

feet' ;

Figure 1.4 Example of a SABRETALK program

16

CHAPTER 2: DATA DEFINITION RULES

CHAPTER 2: DATA DEFINITION RULES

DECLARE STATEMENT

DECLARE (non-executable) statements are used to define data areas / data fields. Keywords are used to
define data attributes (properties associated with the data areas.) There are no restrictions as to the number
of DECLARE statements and they may be placed before or after any type of statement within the program,
except that they must follow the PROC statement which names the program. It is good practice to group
DECLARE statements.

General DECLARE Format

T DCL | (level) identifier ((dimension)) data type
| DECLARE | () () attribute
- - (
(storage) (data) (, (level) identifier
(class) (alignment) (()
(attribute) (attribute) (()
(
((dimension)) data type (storage) (data)) ;
) attribute (class) (alignment))
() (attribute) (attribute))
)
(default storage-class attribute = AUTO)
(default data alignment attribute = PACKED)

DECLARE Statement Rules
A) Although labels may be prefixed to DECLARE statements, the compiler discards such labels.

B) 'Level (the numeric degree of data sub-classification) is a decimal integer from 1 through 255. A level
of one (1) is assumed if a level is not provided.

C) Attributes (which specify the form and characteristics of data) must immediately follow the identifier to
which they apply (in one DECLARE statement).

17

‘ CHAPTER 2: DATA DEFINITION RULES

D) Multiple areas may be declared in one DECLARE statement, however, each 'identifier-attribute' set
must be separated from the succeeding set by a comma:

DCL a attribute(s) , b attribute(s) ,
¢ attribute(s) ;

will give the same result as:

DCL a attribute(s) ;
DCL b attribute(s) ;
DCL ¢ attribute(s) ;

E) Allfields must be declared.

F) A field cannot be initialized in the DECLARE statement.

Implicit length

DECLARE function to allows implicit length to be coded by referring to a previously declared item's identifier.

Syntax:
DECLARE tagname type (size);

DECLARE tagname2 type (tagname); <---- size of tagname
Note: tagname must be declared prior to being used as an implicit length.
Valid for BIN, BIT, CHAR, DEC and DEC FLOAT data types:

DCL BLOCK CHAR(1055);
DCL BUFFER CHAR (BLOCK); <---- becomes CHAR(1055)

Examples:
%INCLUDE DTOCA,DTCA28,;
DCL 01 DTOCA BASED (DCTAPTR),
02 DCTAHDR,
03 ADCTA CHAR(22),
03 DDCTA CHAR(ADCTA); <---- becomes CHAR(22)
DCL 01 DC1TA BASED (DCT1PTR),
02 DCT1HDR,
03 ADCT1 CHAR(80),
03 DDCT1 CHAR(ADCT1), <---- becomes CHAR(80)
03 DDCT2 CHAR(DDCTA), <---- becomes CHAR(22)

DCL A_BLOCK CHAR (1055);
DCL BLK_BUFFER CHAR (A_BLOCK) BASED(BLKPTR); <--- CHAR(1055)

DCL I BIN(31);
DCL J BIN(I); <---- becomes BIN(31)

DCL BTST BIT(16);
DCL BBDEF(4) BIT(BTST); <---- becomes BIT(16)

18

CHAPTER 2: DATA DEFINITION RULES

DCL A_LONG_NAME CHAR(80);
DCL NAMETEST CHAR(A_LONG_NAME) DEFINED BLK_BUFFER; <--- CHAR(80)

DCL DEC7V3 DEC(7,3);
DCL DEC9V5 DEC(9,5);

DCL DECTEST DEC(DEC9V5,DEC7V3); <---- becomes DEC(9, 3)
DCL DECTEST DEC(11 , DEC9V5); <---- becomes DEC(11, 5)
DCL DECTEST DEC(DEC7V3, 4); <---- becomes DEC(7, 4)

DCL CALCA DEC FLOAT (16);

DCL CALCB DEC FLOAT (CALCA); <---- becomes DEC FLOAT(16)

DCL CALC1 DEC FLOAT (6);

DCL CALC2 DEC FLOAT (CALC1); <---- becomes DEC FLOAT(6)

DCL INCTEST CHAR(DDCT1); <---- becomes CHAR (22)
DATA TYPES

The discussion of data types attempts to point out why one might select a given data type over another for a
particular data item. The programmer should also reference Chapter 3, Expressions and Data Conversions,
and Chapter 3 Assignment statements, as an aid for determining whether the most efficient data type for a
given situation has been selected by the programmer.

BINARY Data

Data items are declared BINARY by coding the data attribute BIN or BINARY in the DECLARE statement.
BINARY data is either 16 or 32 bits in length. The high order bit is the sign indicator. The number of
numeric BINARY digits may be specified in the DECLARE statement as either (15) or (31) by placing the
desired number in the parentheses following the keyword. If not specified, the default value is 15. The
number of digits may also be specified by referring to a previously declared identifier (see Implicit length
above).

General declare format for BINARY data:

| pcL | identifier | BIN | ((15))
15

| DECLARE | | BINARY | ((31))

| | | (

DCL seat_count BIN (15);
DECLARE rev_miles BIN (31);
DECLARE miles BIN (rev_miles);

In the example:

seat_count s sixteen bits in length

rev_miles is thirty-two bits in length

miles is the same (implicit) length as the data item rev_miles, thirty-two bits in length.
Each data item has a sign indicator as the high order bit and is stored in fixed-point BINARY format. If
BINARY data must reside in a field that is not 16 or 32 bits in length, the field may not be declared as
BINARY. The field should be declared as BIT (bit-string) data of the required size (see below).

An example of the assignment of a value (in this case a BINARY literal) to a BINARY field is as follows:

19

CHAPTER 2: DATA DEFINITION RULES

seat_count = 50;

The internal representation of seat_count in hexadecimal is 0032.

BIT-String Data

BIT-string data items are declared by use of the data attribute BIT. The number of bits is specified by a
decimal integer, enclosed in parentheses, with a value of 1 through 32. The number of bits may be specified
by using the identifier of a BIT field previously declared. BIT-strings are always treated as unsigned.

General DECLARE Format for BIT-string Data:

| pcL

| identifier BIT (n) ;
| DECLARE |
| |

(where n = number of bits: (0 < n <= 32))

DECLARE code_chk BIT(8);
DCL flight_sw BIT(1);
DCL fileaddr BIT(32);
DCL chk2 BIT(code_chk);

In the example above:

code_chk is eight bits (one byte) in length

flight_sw s one bitin length.

fileaddr is thirty-two bits (four bytes) in length

chk is the same implicit length code_chk, eight bits (one byte) in length.

None of the data items is signed; however, in circumstances where positive arithmetic values are required,
BIT may be used. For example, if only one byte is available for a counter, the counter may be declared as
BIT (8). The value is treated as unsigned.

An example of the assignment of a value (in this case a BIT-string literal) to a BIT-string data item is as
follows:

code_chk = '80'x;

The internal representation of code_chk in hexadecimal is 80.

20

CHAPTER 2: DATA DEFINITION RULES

Use of BIT-strings in arithmetic expressions is as efficient as BINARY under any of the following conditions:

A) Length is 8 bits and field is byte aligned.
B) Length is 16 bits and field is half-word aligned.
C) Length is 32 bits and field is full-word aligned.

Considerably more code will be generated when the length of the BIT-string is not a multiple of 8.

DECIMAL Data

When declaring DECIMAL data items, the data attribute DECIMAL or DEC is used. Following this keyword,
the number of digits and the assumed decimal point placement are specified by two decimal integers,
enclosed in parentheses, and separated by a comma. The first integer specifies the total number

of digits and must be a decimal integer 1 through 15.

The second integer specifies the number of digits to the right of the assumed decimal point and must be a
decimal integer from 0 through 15. If the second integer is zero, the integer and preceding comma may be
omitted, in which case the decimal point is assumed to be to the right of the rightmost digit. Either digit or
both digits may be replaced by identifier names of prior-declared DECIMAL items. DECIMAL data will be
stored in the packed decimal format.

Programmers should develop the habit of declaring DECIMAL fields with an odd number of total digits. If an
even number of digits is specified, the number will be rounded upward to the next odd number; e.g. a
DEC(4, 2) is treated as a DEC(5, 2).

General DECLARE Format for DECIMAL Data:

identifier T DEC

1 pcL 1
| DECIMAL |
| |

I (n
| DECLARE |
I I

P P~~~
N N e N

(where n = total number of integer and fractional digits
(0 < n <= 15))

(where m = number of fractional digits

(0 <= m <= 15))

(m <= n)

DECLARE fare DEC(7,2);

DCL average DEC(3);

DCL unround DEC(7,3);

DECLARE cost DEC(fare,unround);
In the example:
fare has 7 digits, the last 2 of which are fractional, or to the right of an assumed decimal point.
average has 3 digits, all of which are to the left of an assumed decimal point.
unround has 7 digits, the last 3 of which are fractional, or to the right of an assumed decimal point.
cost has the same implied length as fare — 7 digits, but the same assumed number of fractional

digits as unround, so the last 3 digits are to the right of an assumed decimal point. (See Implicit length
section above for additional examples of implicit length for DEC type.)

For each of the fields, data would be stored in the packed decimal format.
An example of the assignment of a value (in this case a DECIMAL literal) to a DECIMAL field is as follows:

fare = 468.10;

21

CHAPTER 2: DATA DEFINITION RULES

The internal representation of fare in hexadecimal is 0046810C

The DECIMAL attribute should not be used without specific reason. It should be used whenever fractional
values are involved, or when the field is involved in arithmetic operations and the use of DEC for a particular
field would provide the most efficient code overall. Certain arithmetic operations, using either mixed data
types or DECIMAL data items having different assumed decimal points, can cause expensive conversions.
Refer to Literal Data, this chapter, for additional information.

DECIMAL FLOAT Data

When declaring Floating Decimal data items, the data attribute DEC FLOAT or DECIMAL FLOAT is used.
Following this keyword, the number of digits of precision specified by one decimal integer, enclosed in
parentheses. The precision must be either 6 (short form) or 16 (long form). The identifier of a previously
declared DEC FLOAT item may also be used. The short form is stored as four bytes of storage, and the
long form as eight bytes. Internal representation is always left justified; e.g., DEC FLOAT (6) is short form
and DEC FLOAT (16) islong form. DECIMAL FLOAT data is stored as a signed hexadecimal fraction and
an unsigned seven bit binary integer called the characteristic.

General DECLARE Format for Decimal Floating Data:

identifier | DEC FLOAT |
| DECIMAL FLOAT]|
I I

1 pbcL 1
| DECLARE |
I I

P P~~~
N N N N

(p = precision short (6) or long (16))

DECLARE fare DEC FLOAT(16);
DCL average DEC FLOAT(6);

In the example:

fare has a maximum of sixteen decimal digits of precision.
average has a maximum of six decimal digits of precision.

The data item may represent a decimal number with more than sixteen digits. This is done through the use
of an exponent in scientific notation. The coded format must contain a decimal point and an E for exponent
followed by a one or two digit exponent. Both the number and the exponent may be signed.

An example of the assignment of a value (in this case a DECIMAL FLOAT literal) to a DECIMAL FLOAT field
is as follows:

fare = -425.00E-02;

average = 4.685E45,
The internal representation of fare in hexadecimal is C144000000000000
The DECIMAL FLOAT attribute should not be used without specific reason. It should be used whenever
very large or small fractional values are involved. Certain arithmetic operations using mixed data types can

cause expensive conversions.

Refer to Literal Data, this chapter, for additional information.

22

CHAPTER 2: DATA DEFINITION RULES

CHARACTER String Data

CHARACTER string data items are declared by the use of data attribute CHAR or CHARACTER. Length is
specified by a decimal integer, enclosed in parentheses, with a value of 1 through 4087. The length may be
implicitly specified by using the identifier of a previously declared CHAR item.

General DECLARE Format for CHARACTER String Data:

1 pcL | identifier | CHAR
| DECLARE | | CHARACTER

(n)

|

I

(n = number of characters
(0 < n <= 4087))

DECLARE text CHARACTER(27);
DCL msg CHAR (4);

DCL block CHAR (1055);

DCL buffer CHAR (block);

In the example:

text is 27 bytes in length

msg is 4 bytes in length

block is 1055 bytes in length

buffer is the same implied length as block - 1055 bytes in length

For each of the fields, data would be stored in the EBCDIC format.

An example of the assignment of a value (in this case a CHARACTER string literal) to a CHARACTER field is as
follows:

msg = ' OK ';

The internal representation of msg in hexadecimal is 40D6D240.

Refer to Literal Data, this chapter for a discussion of CHARACTER string literals.

Numeric Character string Data

Numeric Character string data items are declared by use of the PICTURE or PIC data attribute together with
a PICTURE specification.

General DECLARE Format for Numeric Character-string:

1 pcL | identifier | PIC | 'PICTURE ;
| DECLARE | | PICTURE | specification'

Picture Specification for Numeric Character-strings

A PICTURE specification is composed of a series of PICTURE specification characters enclosed in a pair of
single quotes. The PICTURE specification characters, for Numeric Character-strings, are 9 and V. They are
used to specify a digit position and the position of the assumed decimal point, respectively. The V serves as
a separator for the integer and fractional portions if both are present. If a V is not present, the decimal point
is assumed to be to the right of the rightmost digit.

23

CHAPTER 2: DATA DEFINITION RULES

A PICTURE specification for a Numeric Character-string may consist of from 1 to 15 digits (9's) and,
optionally, 1 assumed decimal point (V). Repetitive coding of a PICTURE specification character can be
avoided by preceding it by the number of times, in parentheses, it is to be duplicated. The PICTURE
specification '999999V999' may be coded as '(6)9V(3)9'.

The letter V does not contribute to the length assigned to the Numeric Character-string. An actual decimal
point will not be inserted; rather, alignment of the integer and fractional fields will occur on the position of the
V in the string when data is stored in the field. Numeric Character-strings can only contain values that are
solely numeric in nature. The values are stored internally in the zoned decimal format.

DECLARE flight PICTURE '9999';
DCL wages PIC '9999999Vv99';

In the example:

flight is allocated four integer and zero fractional zoned decimal digit positions.
The length attribute of flight is four.
wages is allocated seven integer and two fractional zoned decimal digit positions.

The length attribute of wages is nine.

An example of the assignment of a value (in this case a DECIMAL literal) to a Numeric Character-string field
is as follows:

wages = 893.29;

There are no Numeric Character string literals.

The major use of Numeric Character-strings is for data that will be used in input/output type operations.
They may be coded in arithmetic expressions, however, most arithmetic operations will be considerably less
efficient than similar operations performed on data with the DECIMAL or BINARY attributes. The following
example serves to illustrate this point:

DCL pass_count PIC '999';
pass_count = 0.,

pass_count = pass_count + 1. ;

The internal storage representation of pass_count is in the zoned decimal format. In the first assignment
statement the packed decimal literal 0. is unpacked and stored into pass_count in the zoned decimal
format. In the second assignment statement, pass_count is packed and the addition is performed. The
result of this addition is unpacked and stored into pass_count. If pass_count had been declared
DECIMAL (3, 0), the packing and unpacking instructions would not have been necessary.

If the assignment had not contained a decimal point:

pass_count = 0;

then a BINARY value would have been specified and a conversion to DECIMAL would have occurred,
making the conversion even more inefficient.

Please note that provision must be made in the PICTURE specification of the receiving field for at least one

of the integer or fraction digits of the sending field. Invalid coding will otherwise be produced. For example:
DCL passcount PIC 'V999'; :
passcount = 333;

24

CHAPTER 2: DATA DEFINITION RULES

Examples of Numeric Character string assignments:

PICTURE
specification Resultant
Source data characters value
123 999 123
1.2 9Vv9 12
.02 9Vv9 00
1.234 V9999 2340
.1234 V9999 1234
12.345 99999 00012

Edited Character-string Data

Edited Character-strings and Numeric Character-strings represent the result of source data being shifted,
truncated and padded to fit the pattern of a PICTURE specification. An Edited character-string is allowed a
variety of additional characters in its PICTURE specification so that the PICTURE specification, as an editing
tool, can be used to insert, append and suppress characters.

Edited character-string variables are declared with the PICTURE or PIC data attribute. They allow the
programmer to exercise greater control over his output data formats. They are coded only as receiving
fields in assignment statements and their primary purpose is to produce printable output fields. It must be
emphasized that any time an edit operation is performed, one more character than specified (disregarding
the V character) is used. For example, the PICTURE specification '2ZZ99' will require five bytes of core,
rather than four as specified.

General DECLARE Format for Edited Character-string Data
| pcL | identifier | PIC | 'PICTURE ;
| DECLARE | | PICTURE | specification'

Packed arithmetic data assigned to Edited character-string variables will be converted to the zoned format.
Editing cannot be specified for character-string data. Data assigned to Edited character-strings must be
arithmetic, containing only digits and, optionally, a sign and an assumed decimal point. (Other characters,
even though they may be coded in the PICTURE specification, are not allowed in the data to be assigned.)
Floating Point data may only be assigned to a floating point Edited character-string.

For both Numeric Character-string and Edited Character-string fields, repetitive coding of a symbol can be
avoided by preceding the symbol by the number of times it is to be duplicated. This number must be
enclosed in parentheses:

'999999' can be coded as '(6)9'
'¥*x%%*v999' can be coded as '(6)*V(3)9'

PICTURE Specification for Edited Character-strings

The characters used in PICTURE specifications for Edited character-strings may be categorized as follows:

A) Digit specifier / decimal point specifier
B) Suppression characters.

C) Insertion characters.

D) Signs and the currency symbol.

CHAPTER 2: DATA DEFINITION RULES

E) Credit and debit characters.
F) Exponent character.

The PICTURE characters that are contained in the preceding groups may be coded in many combinations.
The PICTURE specifications for Edited character-strings may consist of several parts including the sign
specification, integer and fractional sub-fields. Each of these sub-fields must contain a minimum of one
character which specifies a digit, such as a 9, Z, or *.

The maximum length of the PICTURE specification is 32 characters. Due to the fact that the largest
arithmetic field that can be assigned to an Edited character-string consists of 15 digits, a maximum of 15 of
the 32 PICTURE specification characters may specify digit positions. The remaining characters may only be
insertion type characters.

Suppression Characters

To enhance the readability of printed arithmetic values, it is often desirable to replace leading zeros with
blanks. The letter Z and the asterisk (*) represent conditional digit positions and will cause leading zeros to
be replaced by blanks or asterisks.

The letter Z causes leading zeros to be replaced by blanks. When the specified digit position does not
contain a leading zero, the digit will not be replaced. Z cannot be specified in the same sub-field as *, nor
can it appear to the right of the 9 or any drifting character.

The use of the asterisk (*) is the same as that of the Z, except that an asterisk, rather than a blank, will
replace the leading zeros.

Examples of Suppression Characters in Edited Character-strings

PICTURE Resultant

Source data specification value
001000. 277999 bbb1000
12321. 27999 b12321
00001. 227772 bbbbb1
00000. 27277 bbbbbb
19.4 ZV999 b9400
8 ZZ9V99 bbb80oo
00000 22ZV77 bbbbbb
001.00 **9Vv99 ***100
000.01 ***V** *****1

If a Z or * appears to the right of the assumed decimal point V, then all the digit positions in the PICTURE
specification must be Z's or *'s, respectively. Fractional zeros will be suppressed if all fractional digits are

zeros and all integer digits have been suppressed. This will result in the entire data item being replaced by
blanks or asterisks.

Insertion Characters

The comma (,), period (.), slash (/), and blank (B) are insertion characters which cause the specified
character to be placed into the associated position of the data. Although insertion characters do not
specify digit positions, they are placed between digits and therefore occupy a character position in the
Edited character-string. The comma, period, slash, and blank may be suppressed if they are part of a
string of suppression characters. Suppression characters are not used to specify arithmetic characteristics.

The comma (,) specifies that a comma will appear in the position specified when no zero suppression
occurs. When zero suppression does occur, the comma is inserted only when a significant digit is to the left

26

CHAPTER 2: DATA DEFINITION RULES

of it or when the V character is coded immediately to the left of it and a fractional value appears. If zero
suppression does occur, the comma will be replaced according to the following rules:

A) If the first character to the left of the comma is an asterisk, an asterisk replaces the comma.
B) If this same character is a drifting sign or dollar sign, the comma is considered part of the
drifting string.

C) If the first character to the left of the comma is a Z, the comma is replaced by a blank.

The period (.) specifies that a period will appear under the same conditions governing the appearance of
the comma. The period will not cause decimal point alignment of variables assigned to the Edited character-
string. This can be accomplished only by use of the V. Decimal alignment will occur on the V, even if the
period appears elsewhere in the PICTURE specification.

The slash (/) specifies that a slash will appear with all of the governing conditions described above under
insertion characters.

The blank (B) specifies that a blank will be inserted in the corresponding position with all governing
conditions described above under insertion characters.

Unlike the character V, which may be coded only once in the PICTURE specification, the comma, period,
slash, and blank may appear more than once. This allows digits to be separated within the data item
assigned to the Edited character-string.

Drifting Characters

The Drifting Characters include the dollar sign ($), and the sign characters. These are the letter s (S), the
plus sign (+) and the minus sign (-). The dollar sign ($) is used as the currency character. The S, the plus
sign and the minus sign are used to specify arithmetic signs in Edited character-strings.

It is possible to code these characters in a drifting or a static manner; multiple use of the character indicates
that it is to be used in the drifting manner. Characters to be used in the drifting manner must be coded in
strings that specify every digit position through which the character may drift. Strings of drifting characters
will cause zero suppression similar to that caused by use of the Z character; however, the drifting character
will always be inserted at the end of the string or just to the left of the most significant digit in the field.

Strings of drifting characters may contain any one of the insertion characters and the V character. If the
insertion character is coded immediately following the drifting string, it is considered part of the string. Ifa Vv
character is coded immediately following the drifting string, it is not considered part of the string. (As
indicated previously, V serves as a separator for the integer and fractional sub-fields, if both are present.) If
a V is coded with drifting characters on both sides of it, the drifting character is the only character, which may
appear in the sub-field to the right of the V. In this case suppression will occur only if all fractional digits are
zero and all integer digits have been suppressed, giving a resultant field containing only blanks. Drifting
strings cannot be followed by the suppression characters Z or *, and cannot be preceded by a PICTURE
specification character which indicates a digit position.

If an insertion character will appear as part of a drifting character string, the following will apply:
A) The insertion character will appear if a significant digit has appeared to the left of it.

B) The drifting character will appear in its place if the position immediately to the right contains
the most significant digit in the field.

C) A blank will appear if the most significant digit in the field is more than one character
position to the right of the insertion character.

If a string contains the drifting character n number of times, the maximum digits that may appear are n.

If these characters are coded in the static manner, they will always appear in the position specified.

27

CHAPTER 2: DATA DEFINITION RULES

The dollar sign ($) is used to specify the appearance of a currency character. If coded in the static manner,
the character will appear in the position specified. It must be to the left or right of all digits in the field. When
coded in the drifting manner, appearance is governed by the rules specified above for drifting characters.

Examples of insertion characters and dollar sign in Drifting Character-strings.

PICTURE Resultant
Source data specification value
1234.56 $$$9v. 99 $1234.56
25.30 $$$9V.99 bb$25.30
1234.56 $,$%9v.99 $1,234.56
234.56 $,$%$9V.99 bb$234.56

When using the sign characters (S + -), the string should always specify an odd number of digit positions
(excluding the insertion character), in order to insure the desired result.

Only one of the sign characters may be coded in an Edited character-string. When used in the static
manner, the character must be to the left or right of all digits in the field.

« The S may be used in the static or drifting manner. It specifies that a plus sign (+) will appear if the
number is zero or greater, otherwise a minus sign (-) will appear.

e The plus sign (+) specifies a plus will appear if the number is zero or greater, otherwise a blank will
appear.

« The minus sign (-) specifies a minus will appear if the number is less than zero, otherwise a blank will
appear.

Examples of the sign characters in Drifting Character-strings.

PICTURE Resultant
Source data specification value
1234 ----9 bb1234
-1234 --=--9 b-1234
1234 ++++++9 bbb+1234
1234.56 ++,++9V. 99 b+1,234.56
-1234.56 ++,++9V. 99 bb1,234.56

Credit (CR) and Debit (DB) Composites

The credit and debit composites may only appear to the right of all digits in the Edited character-string. The
string should always have an odd number of digit positions when these characters are coded, otherwise they
will appear regardless of the value of the field. They may not be coded if any other sign character is present.
If an even number of decimal digits is desired, the source field must be adjusted so as to align the first digit
of interest on a byte boundary. The 'edit' operation always starts on a byte boundary.

* The credit composite (CR) specifies that the field positions will contain the characters CR if the number
is negative, otherwise two blanks will appear.

« The debit composite (DB) specifies that the field positions will contain the characters DB if the number is
negative, otherwise two blanks will appear.

28

CHAPTER 2: DATA DEFINITION RULES

Floating point Edited character-string.

Floating point data may only be assigned to a special Edited character string. The Edited character string
MUST have a V. or a .V indicating the position of the assumed decimal point and MUST end in E99 or
ES99. Example:

DECLARE FPECS PIC'$$,$$9V.99ES99'

LABEL Data

LABEL data items are declared by use of the data attribute LAB or LABEL. They are variables to which are
assigned statement labels (the program-relative address of the label is actually assigned) or other label
variables.

General DECLARE Format for LABEL Data:

LAB
LABEL

T DCL identifier

]
| DECLARE |

DECLARE branch LABEL;
DCL labvar LAB;

LABEL variables are allocated a half word of AUTOMATIC storage.
DCL labvar LABEL;

label2: a

b;

label3: b

C;

1abvar.;.1abe12;
GOTO labvar;

In this example labvar is declared a label variable and has the program-relative address of 1abel2
assigned to it. Execution of the '60TO labvar' statement will now cause control to be transferred to the
statement whose label is 1abel2. That statement will be executed and control will continue sequentially.
Elsewhere in the program label3 may be assigned to labvar, in which case a 'GOTO labvar* statement
would transfer control to the statement whose label is 1abel3, etc. The value assigned to 1labvar remains
there until another value is assigned to it. Unpredictable results are obtained when a ‘60TO labvar®
statement is executed and labvar has never been set.

Label variables may not have PROCEDURE statement labels assigned to them.

POINTER Data

POINTER data items are explicitly declared by use of the data attribute PTR or POINTER. They are variables
in which addresses, which refer to (point to) data items, can be stored. Pointers may be declared either
explicitly or implicitly.

29

CHAPTER 2: DATA DEFINITION RULES

General DECLARE Format for POINTER Data (Explicitly Declared):

| DECLARE | identifier | POINTER | ;
| pcL | | PTR |

DECLARE rptr POINTER ;
DCL input PTR ;

Implicit declaration involves use of the BASED data attribute, which is discussed in depth later in Chapter 4.

General DECLARE Format for POINTER Data (Implicitly Declared):

T DECLARE T identifier attribute BASED (identifier) ;
| pcL |

DECLARE passdata CHAR(1) BASED (passptr) ;
DCL output BIN(31) BASED (outptr) ;

In this example passptr and outptr are defined as pointers not by the specific use of the POINTER
attribute but by the parenthesized name following the BASED attribute.

Use of either method of declaration will cause one full word of AUTOMATIC storage to be allocated for the
pointer. If a pointer is to be used to address a data block, the allocation of the data block to be used in
conjunction with the pointer is accomplished by use of a macro (e.g., the TPF macro GETCC, etc).

It is the programmer's responsibility to initialize the pointer to contain the address of the data block he
wishes to reference after storage allocation has been accomplished. Pointers may be used to reference
data blocks and other areas of memory. If the pointer is recognized as being based in the ECB then the
compiler will generate the necessary initialization code.

More than one data item may not be BASED on the same pointer:

DCL a PIC '9' BASED (aptr) ;
DCL b CHAR(1) BASED (aptr) ;

In order to bypass this restriction and yet, achieve the same end, do the following:

DCL a PIC '9' BASED (aptr) ;
DCL b CHAR(1) DEFINED a ;

Literal Data

Literals are specific unnamed data values that are defined where they appear in a statement. Literals
sometimes appear as parts of executable statements. Literals may be of the DECIMAL, BINARY, BIT-string
or CHARACTER-string data type. We present them now just before the consideration of executable
statements.

BINARY literals are coded as a maximum of 15 decimal numbers without a decimal point; an optional sign
may be coded: the maximum value being 2% - 1, the minimum value being -2%. Internally, all BINARY
literals are established by the compiler as a positive fullword (BIN(31)) number. If the programmer codes
a negative BINARY literal, the minus is interpreted as a prefix operator and code is generated for the prefix
minus operation.

30

CHAPTER 2: DATA DEFINITION RULES

Note: The method of spacing digits is for the sake of clarity, there are no internal blank spaces in values.

Internal storage
BINARY literal bit representation

12 00000000 00000000 00000000 00001100

BIT-string literals are coded as a maximum of 32 binary or as a maximum of 8 hexadecimal digits, enclosed
in a pair of single quotes, and immediately followed by the letter B or X, respectively. No blanks may appear
between the closing quote and the B or X.

Internal storage

BIT string literal bit representation
'011010'B 00000000 00000000 00000000 00011010
'A3C4'X 00000000 00000000 10100011 11000100

DECIMAL literals are coded as a maximum of 15 signed decimal numbers with a decimal point. A sign may
be specified; if not, plus is assumed. If the programmer codes a negative DECIMAL literal, the minus is
interpreted as a prefix operator and code is generated for the prefix minus operation. The internal
representation of a DECIMAL literal is packed decimal.

Internal storage

DECIMAL literal Hexadecimal representation
28. 02 8f
28.2 28 2f

DECIMAL FLOAT literals are coded as a mantissa followed by an exponent. The mantissa is a decimal fixed
point literal. The exponent is the letter E followed by an optionally signed integer, which specifies a power of
ten. Decimal Floating-point literals have a precision of sixteen (eight bytes of storage).

DECIMAL FLOAT literal Scientific Notation
28.E5 2.8 X 10¢ = 2,800, 000.
2.8E-03 2.8 X 103 = 0.0028

CHARACTER-string literals are coded as a string containing a maximum of 256 EBCDIC characters
enclosed in a pair of single quotes. If blanks are coded as part of the character-string they will become an
integral part of the string. A maximum of 4,028 bytes of literals is allowed within a segment. If single
quotes are to appear within the string, each single quote must be represented by a composite of two single
quotes.

In the following example note that although ‘miami’ and ‘sam's’ are shown as lower case alphabetics, they
represent the upper case alphabetics (‘MIAMI’, ‘SAM'S’).

Internal storage

Character-string literal hexadecimal representation
'miami’' D4 C9 C1 D4 C9
'SAM''S' E2 C1 D4 7D E2

Since there is no method for coding a Numeric Character-string literal or an Edited character-string literal,
DECIMAL literals are used.

31

CHAPTER 2: DATA DEFINITION RULES

Literal Specification Summary

Data format Specification Examples
A) binary 1 through 15 decimal digits 123
without a decimal point. A -53

sign may be specified

B) bit-string

1) bit coding 1 through 32 binary digits '01001600001'B
enclosed in single quotes and '1011'B
immediately followed by the
letter B

2) hexadecimal 1 through 8 hexadecimal digits '1234C'X
enclosed in single quotes and 'F1A3'X
immediately followed by the
letter X

C) decimal 1 through 15 decimal digits 123.
with a decimal point. A sign -52.67
may be specified

D) decimal floating 1 through 16 decimal digits 1.E0
with a decimal point. A sign -5.23E-12

may be specified. An exponent
E must be coded and a 1 or 2
digit exponent optionally signed

E) character-string 1 through 256 EBCDIC characters 'msg #2'
enclosed in single quotes

F) Numeric (none)
Character-string

G) Edited (none)
Character-string

32

‘ CHAPTER 3: EXECUTABLE STATEMENTS - RULES

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

EXPRESSIONS AND DATA CONVERSIONS

An expression is a combination of operator(s) and operands(s) used for computing a value. An operator is a
symbol designating a process to be performed. An operand is a value residing in a data area or the result of
an expression (result/exp). Expression types are determined by the types of operators coded within them.
Operator (and hence expression) types are Arithmetic, Logical, Relational and Concatenation.

Expressions are not statements of themselves; they are used within various statements.

IF count = 0 THEN GOTO error;
DO WHILE invent < maxinvent;
area = length * width;

In the first example, count = 0 is an expression (relational).
In the second example, invent | maxinvent is an expression (relational).
In the third example, 1ength * width is an expression (arithmetic).

More generally, operators can be grouped into two basic categories: prefix and infix. A prefix operator is one
that precedes an operand that is solely involved in that operation. An infix operator is one that is imbedded
between two operands, both of which are involved in that operation. The prefix operators provided are the
logical not (M), the arithmetic plus (+) and the arithmetic minus (-). The plus and minus are also used as
infix operators.

Prefix operators appear in constructions of the form:

concatenation operator

keyword prefix | variable |
logical operator operator | literal |
relational operator | constant |
| result/exp |
I I

|
|
I
| arithmetic operator
I
I

Infix operators appear in constructions of the form:

| variable | infix | variable |

| literal | operator | literal |

| constant | | constant |

| result/exp | | result/exp |

I I I I
aaa - bbb

For expressions involving several operands and/or operators, refer to 'Priority of Operators', this chapter,
which specifies possible requirements for parentheses.

In the following sections that treat expressions, certain symbols are used to indicate the operand data-types
(and to indicate the data-type for the result of an expression since it too is an operand.)

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

Symbol Operand data-type Value in field treated as:
STR structure structure of one or more
levels
BIN binary signed binary value
BS bit-string unsigned binary value
DEC decimal signed packed decimal value
DEC FLOAT decimal floating signed floating decimal value
Ccs character-string string of EBCDIC characters
NCS Numeric Character-string signed zoned decimal value
ECS Edited character-string zoned decimal value
with EBCDIC characters
interspersed
PTR pointer
LAB label

Arithmetic Expressions

An arithmetic expression is composed of one or more of the following operators:

Operator Meaning Syntax

+ prefix or infix plus (operand) + operand
- prefix or infix minus (operand) - operand
* multiplication operand * operand
/ division operand / operand

Prefix plus and minus assign the algebraic signs, positive and negative, respectively, to the numeric
quantity. Positive is attributed by default.

Infix plus (+) and minus (-) specify addition and subtraction operations, respectively.

An operand may be a variable, literal or constant of any type (subject to restrictions within arithmetic
operations. See figure 3.1, 'Results of Arithmetic Operations' for valid data-type combinations).

34

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

Data Conversions

Figure 3.1 shows the resulting data types obtained from combining two operands with an arithmetic
operator. For prefix operators, the result obtained is equivalent to combining two operands of the same data
type in the infix expression. For example, a prefix operator on a DECIMAL operand will not cause a
conversion; the operation will be performed on the DECIMAL operand. A prefix operation performed on a
*NCS operand, however, will result in a conversion of that operand to DECIMAL (See Chapter 5, Precision).

Dash (-) indicates illegal combination of data types.
FLT = DEC FLOAT

NOTE: Conversions to or from floating point must
must not be based or defined storage.

| |
| |
| |
STR	- - - - - - - - - -
¢	- - - - - - - - - -
NCS	- - DEC - DEC DEC - DEC - -
ECS	- - - - - - - - - - I
BS	- - DEC - BIN DEC FLT BIN - -
DEC	- - DEC - DEC DEC FLT DEC - -
FLT	- - - - FLT FLT FLT FLT - -
BIN	- - DEC - BIN DEC FLT BIN BIN -
PTR	- - - - - - - BIN - -
LB	- - - - - - - - - - I
Key:	
F

igure 3.1: Results of Arithmetic Operations: +, -, *, /

Examples of arithmetic expressions and their handling:

DCL score BIN;
DCL weight BIN;
grade = score * weight;

Since both score and weight are BINARY, the result of the multiplication will be BINARY.
DCL totcost DEC(7,2);
DCL unitcost DEC(7,2);

DCL numunits BIN;
totcost = unitcost * numunits;

numunits will be converted to DECIMAL, then multiplied by unitcost, giving a DECIMAL result.

35

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

DCL totcost DEC FLOAT(6);

DCL unitcost DEC FLOAT(6);

DCL unitprice DEC(7,2);

DCL numunits BIN;

totcost = unitcost * unitprice;
totcost = unitcost * numunits;

unitprice will be converted to FLOAT data, then multiplied by unitcost, giving a FLOAT result.
numunits will be converted to FLOAT data, then multiplied by unitcost, giving a FLOAT result.

DCL totcost DEC(7,2);

DCL unitcost DEC FLOAT(6);

DCL unitprice DEC(7,2);

DCL numunits BIN;

totcost = unitcost * unitprice;
totcost = unitcost * numunits;

unitprice will be converted to FLOAT data, then multiplied by unitcost, giving a FLOAT result that will
be converted to DECIMAL

numunits will be converted to FLOAT data, then multiplied by unitcost, giving a FLOAT result that will be
converted to DECIMAL.

Relational Expressions

The following list contains all the relational (comparison) operators that may be used. Several of the
operators are composites.

Operator Meaning Syntax

< less-than operand < operand
> greater-than operand > operand
= equal-to operand = operand
N< not-less-than operand A< operand
N> not-greater-than operand ~> operand
A= not-equal-to operand "= operand
<= less-than-or-equal-to operand <= operand
>= greater-than-or-equal-to operand >= operand

An operand may be a variable, literal or constant of any type except *ECS (and subject to restrictions within
arithmetic operations). See figure 3.2: 'Results of Relational Operations', this chapter, for valid data-type
combinations. (See Priority of Operators, this chapter, for possible requirement of parentheses).

Relational Operations

There are two types of relational operations: Algebraic and Logical.

36

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

. Algebraic relational operations involve the arithmetic comparison of two signed numeric
values.
. Logical relational operations involve the left-to-right character-by-character comparison of

one sequential character set with another. If the operands are of different lengths the shorter one is
extended to the right with blanks.

DCL b CHAR(3);
IF b = 'a' THEN GOTO next;

The above example results in a comparison of the three bytes of variable b with the three-byte character set:
literal 'a’, blank, blank.

I 3332 I STR €S NCS ECS BS DEC FLT BIN PTR LAB
e
cs I - 2 - - - - - - - -
NCS I - - 3 - 3 3 - 3 - -
ECS I - - - - - - - - - -
BS I - - 3 - 1 3 7 4 - -
DEC I - - 3 - 3 6 7 3 - -
FLT I - - - - 7 7 7 7 - -
BIN I - - 3 - a 3 7 5 - -
PTR I - - - - - - - - 1 -
LAB I - - - - - . - . . 1

Key:

Dash (-) indicates illegal operation.
FLT = DEC FLOAT

1: Align on right. Zero fill shorter operand on left. Arith-
metic compare.

2: Align on left. Blank fill shorter operand on right. Log-
ical compare.

3: Convert operand(s) to decimal. Align on assumed decimal
point. Arithmetic compare.

4: Align on right. Zero fill bit operand on left. Arith-
metic compare.

5: Align on right. Arithmetic compare.
6: Align on assumed decimal point. Arithmetic compare.

7: Convert operand(s) to floating point. Floating compare.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
F

igure 3.2 Results of Relational Operations <, >, =, A<, A> A=, >= <=

37

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

The result of a relational operation is a 31-bit BINARY number equal to a positive one (1) if the comparison is
true, or equal to a positive zero (0) if the comparison is false. The result of the expression may itself be
used as an operand, for example, the result of the following expression is two (2):

('abc' A= 'xyz') + ('aaa' = 'aaa')

Such coding can be confusing, and should be avoided.

Logical Expressions

A logical expression is composed of one or more of the following operators:

Operator Meaning Syntax

n not N operand
& and operand & operand
| or operand | operand

An operand may be a variable, literal or constant of any type subject to the restrictions for logical operations.
See figure 3.3 'Results of Logical Operations', for valid data-type combinations.

Use of the 'not' operation specifies that the bits in the operand are to be reversed: the result can be
considered as a bit product with no arithmetic carry. The 'or' operation is an 'inclusive or': the result can be
considered as a bit overlay. (See Priority of Operators, this chapter, for possible requirement of
parentheses).

38

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

NCS
ECS
BS

DEC
FLT
BIN
PTR

LAB

Dash (-) indicates illegal combination of data types.
FLT = DEC FLOAT

1: Align on right. Zero fill on left to 32 bits.
Perform logical operation.

1

1

1

1
=

1

1
=

1

1

T e e e — ———— —————————————————————— —

igure 3.3 Results of Logical Operations: &, |

Padding

When two operands are combined in a logical expression, both operands are converted or extended to 32

bits in length prior to the (infix) 'and’ operation or (infix) 'or' operation. In the case of the (prefix) 'not’

operation, the operation is performed prior to extending the field to 32 bits. When fields of unequal lengths
are combined in a logical operation they are aligned on the rightmost bit and then extended on the left, with

zeros, to 32 bits.

39

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

Boolean Arithmetic of Logical Operations

Initial | Operation
values | result
--------- | eeem et
I I
A B | MA NB A&B AlB |
I I
--------- [ommeem |
| |
0 0 | 1 1 0 0 |
I I
) 1 | 1)) 1 |
| |
1 e | o 1) 1 |
I I
1 1 | o] 1 1 |
N '010111'B yields '101000'B
'111111'B & '101'B yields '000101'B

'e10111'B | A '101'B yields '010111'B

A '101'B | A '111111'B yields '000010'B

Concatenation Expressions
There is only one concatenation operation provided:

Operator Meaning Syntax

I concatenation operand || operand
The concatenation operator is a composite of two logical 'or' characters.

An operand may be a variable, literal or constant of any type, subject to the restrictions for concatenation
operations. See figure 3.4 'Results of Concatenation Operations', this chapter, for valid data-type
combinations. (Refer to, Priority of Operators, this chapter, for possible requirement of parentheses.)

Concatenation specifies that the values of two operands are to be sequentially ordered; that is, the last
character or bit of the first string is followed immediately by the first character or bit of the second string.
Subscripted *NCS data can not be concatenated.

40

‘ CHAPTER3:EXECUTABLESTATEMENTS—RULES‘

OPERAND B

| |
I I
I I
| |
| s®R | - - - - - - - - -
|0 I I
I[P ¢ | - 1 1 1 - - - - - - |
|E I I
IR NCS | - 1 - - - - - - - - |
|A | |
IN ECS | - 1 - - - - - - - - |
|D I I
BS	- - - - 2 - - 2 - -
A	
bEC	- - - - - - - - -
I I I	
RT	- - - - - - - -
I I I	
BIN	- - - - 2 - - 2 - -
PR	- - - - - - - - -
I I I	
w8	- - - - - - - -]
:Key: :	
Dash (-) indicates illegal combination of data types.	
FLT = DEC FLOAT	
I I	
1: Join operand B to operand A. Result is a character-string	
whose length is equal to the sum of the lengths.	
I I	
2: Join operand B to operand A. Result is a bit string whose	
length is equal to the sum of the lengths. Conversion is	
not performed on binary fields therefore the result may	
contain two sign bits.	
I |
Figure 3.4 Results of Concatenation Operations

The results of the concatenation operation will always be the creation of another string. The resulting string
type (BIT or CHARACTER) depends on the data characteristics of the strings being concatenated.

Bit-string Concatenation:

'01001'B || '0110'B yields '010010110'B

Character-string Concatenation:

'chara' || 'cter string' yields 'character string'

Operands in concatenation operations may not be subscripted.

41

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

PRIORITY OF OPERATORS

The evaluation of an expression specifying several operations is performed by establishing operator
priorities, as depicted in the following table:

Priority
level Operator(s)
1 prefix +, prefix -, A
2 */
3 infix +, infix -
4 Il
5 <, N, <=, =, Nz, >=, >, N>
6 &
7 I
General Operator Priority Rules:
A) Highest priority level (level 1) operations are performed first.
B) If two or more prefix operators (includes the not (*) symbol) appear on an operand, they are
applied on a right to left basis.
C) If two or more infix operators of the same priority level appear in the expression, they are
applied on a left to right basis.
D) The priority of operators within an expression can be altered by the use of parentheses; any

operations enclosed in parentheses are performed first. Within parentheses, rules A) through C)
apply. When two or more sets of parentheses appear in an expression, treatment is as follows:
nested sets are evaluated beginning with the innermost and working outward; non-nested sets are
evaluated on a left to right basis.

E) Relational operations may be enclosed in parentheses when used in an IF statement (See
Chapter 3: IF Statements).

Example:

total = price * (quant + spares) / share;

The expression quant + spares will be evaluated first, then the result will be multiplied by price. The
result of that multiplication will then be divided by share.

42

‘ CHAPTER 3: EXECUTABLE STATEMENTS - RULES

ASSIGNMENT STATEMENTS

Unlike other types of statements, the Assignment statement does not have a keyword. Instead, the equal
sign (=), as an assignment operator, denotes assignment. The Assignment statement serves to store
(assign) the value of a variable, literal, constant or expression into the storage location of the specified
variable.

Simple Assignment

variable
pseudo-variable
subscripted
variable
array element
expression
constant
subscripted-
constant
literal
programmer -
declared-
function-call

variable T =
pseudo-variable |
subscripted |

I

I

~s

variable
array element

fare
fare

149.95;
149.95 + tax;

Multiple Assignment

= Tvariable
| pseudo-variable
| subscripted-

|variable ;
)
) | variable
)
)

| pseudo-variable
| subscripted-

| variable
|array element

,variable
,pseudo-variable
,subscripted-
variable
,array element

~=

PN PN P P~
N N N N N

|array element
|expression

| constant

| subscripted-

| constant
|literal
|programmer -

| declared-

| function-call
I

1 —— e e |
PN AN AN AN N~

a, b, ¢c = 3;

This is equivalent to:

c =3,
b = 3;
a= 3;

Data Conversion, Truncation and Padding

There are two basic types of assignment statements: Arithmetic and Character.

43

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

Arithmetic assignment implies a conversion, if necessary, to the data type of the receiving field and then an
alignment on the decimal point of the receiving field. Arithmetic operations, using either mixed data types or
DECIMAL data having different assumed decimal points, cause expensive conversions. The following
example illustrates this point:

DCL a BIN;

DCL b BIN;

DCL c¢ DEC(5);

a = ¢ * b + 5;

In the example above, b will be converted to DECI MAL and multiplied by ¢. The BINARY literal 5 will then be
converted to DECIMAL and added to the result of the preceding multiplication. This final result will then be
converted to BINARY and stored in a.

Since ¢ had no fractions, perhaps it could have been declared as BIN (31) instead of DEC (5). This
would have made the expression much more efficient.

The correct sign bit is always stored. If, as a result of the alignment of the decimal point, the integer portion
is too large, the most significant bits are stripped away. If the fractional portion is too large, the least
significant bits are discarded. If the receiving field is larger, there is an extension of the sending field with
digits that will not alter its algebraic value. In the chart below, the term 'arithmetic move' means assigning a
value after any necessary truncation, extension or alignment to a decimal point. The same arithmetic value
is always retained.

The programmer should exercise care when moving BIT-string data to BINARY fields to ensure that the
data does not overflow the number portion of the field and set the sign bit. For example, a BIT(16) field
being moved to a BIN(15) field: the high order bit of the BINARY field could be set to 1, thereby making the
value a negative number. Unless the input data is controlled, it is safer to use BIN(31) than BIN(15) in
such situations.

Character assignment results in alignment of the left end of the sending and receiving fields and a byte by
byte assignment. If the sending field is longer, it is truncated; if it is shorter, it is extended with blanks.

Structure Assignment

General Format:

structure (,structure (,...)) = structure ;
(())
()

The only valid use of structure in assignment statements is structure-to-structure assignment. The
"receiving" and/or "sending" structure may be a minor or a major structure. Structures cannot be compared,
concatenated, added, etc. A structure may only appear in an assignment statement by itself. The address of
a structure may be obtained, or a structure may be scanned, through the use of the built-in functions ALPHA,
NUMERIC, ADDR, and INDEX. There is no such thing as a literal structure. A structure assignment is not
performed on an element-by-element basis, but as a single move over the length of the whole structure
without conversion. If the length of the structure on the left of the assignment statement is less than the
length of the structure on the right, movement of data stops when the smaller is full. Conversely, when the
leftmost structure is larger, the remainder of the leftmost structure is blank-filled. The result of the following
assignment would be to move 22 bytes from input into output.

DCL 1 output BASED (outptr),
2 num BIN(15),
2 task CHAR(20);

DCL 1 input BASED (inptr),
2 calc BIN(15),

44

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

2 inname CHAR(25);

output = input;

General Rule For Structure Assignments: In structure assignments, each variable in the receiving field
must represent a structure of arithmetic or string data types.

45

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

Figure 3.5 is a table summary of data type usage in assignment statements. Data types for receiving fields
are listed vertically; types for sending fields, horizontally. Actions for each combination are performed in the
sequence indicated.

RIGHT OF EQUAL SIGN

data	
type	STR Cs NCS ECS BS DEC FLT BIN PTR LAB
=== e e T e P e P L L e P PP OE LT P LEE PR PLEEP P |

STR| 1,2 - - - - - - - - -

|

cs | - 1,2 - - - - - - - -
L |
E NCS | - - 13,3 - 4,5,13, 13,6,3 - 5,13, - -
F | 6,3 6,3
T |

ECS | - - 10,13, - 4,5, 13,7 - 5,13, - -
0 | 7 13,7 7
F |

BS | - - 10,8,9, - 4,12,3 8,9,11, - 8,12, - -
E | 11,3 12,3 3
Q |
U DEC | - - 10,13,3 - 4,5,13 13,3 @ 5,13, - -
A | 3 3
L |

FLT | - - - - @ @ 14,1 @ - -

|

BIN | - - 10,9, - 4,3 9,11,3 @ 3 1 -
S | 11,3
I |
G PTR| - - - - - - - 1 1 -
N |

LAB | - - - - - - - - -1
Key: Dash (-) indicates illegal assignment.

At sign (@) indicates Literal or Constant ONLY.

FLT = DEC FLOAT
1: Character move.
2: Blank fill receiving field on right or truncate

sending field on right, if necessary.

3 Arithmetic move.

4 Extend on left with zeros to full word, if necessary.
5: Convert to decimal.

6 Unpack.

7: Edit in accordance with PICTURE specification.
8: Take absolute value.

9: Truncate to integer.

10 Pack.

11 Convert to binary.

12: Align on right.

13: Align assumed decimal points.

14: Clear receiving field to hex zero if necessary.

FIGURE 3.5 RESULTS OF ASSIGNMENTS.

Structures can only be assigned to structures. Assignment is by character move, blank fill on right.

46

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

When an assignment statement contains non-subscripted references to an array, only the first element is
involved.

DCL ar(3) CHAR(2) ;

DCL arr(4) CHAR(3) ;
arr = ar ;

The above example is the equivalent of:

arr(1) = ar(1) ;

In multiple assignments involving subscripted variables, subscripts are frozen prior to the assignment. This
means that in the sequence

i=2;

array(i) = i = 3;

the value 3 would be assigned to array(2) and not to array(3). The final value of i, however, will be 3.

Character-string to character-string assignment

When a character-string of a shorter length is assigned to another character-string of a greater length, the
character move and blank fill operation is performed. This operation assigns the smaller string to the larger
string (character by character, and proceeding from left to right) until the smaller string has been assigned.
The remaining unused bytes are filled with blanks.

DCL emblem CHAR (12);
Emblem = 'EAGLES';

The character-string emblem would appear in storage as a twelve-character field; six characters of assigned
data suffixed with six blanks:

(EAGLES).

Arithmetic to arithmetic (*DEC, *NCS, *ECS, *BIN, *DEC FLOAT)

Assignment of arithmetic types involves an arithmetic move. If data types differ, the data on the right of the
assignment symbol is converted to the attributes declared for the variable on the left. Alignment is on the
decimal point. The exception to this rule is floating data, which uses a character move.

pcL fare DEC (5,2);
fare = 5000.206;

In the example, fare would appear in storage as 80020 (with an assumed decimal point fixing the value at .
20). Note that the high order digit and the low order digit were truncated to agree with the size and decimal
point placement that was declared with fare.

If fare had been declared as *NCS, conversion would have been necessary in addition to the truncation
illustrated above.

DCL fare DEC FLOAT(16);
fare = 5.000206E3;

a7

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

In the above example, fare would appear in storage as 44138834BC6A7EF9 with no truncation and the
characteristic maintaining the decimal point.

DCL fare DEC FLOAT(16);
fare = 5000;

In this example, fare would appear in storage as 4413880000000000 with no truncation. The literal
would first be represented as a full word 80001388 and then converted to floating point. This is a highly
efficient method of assigning integers to floating data.

DCL fare DEC FLOAT(16);
fare = 5000.206;

In this example, fare would appear in storage as 44138834BC6A7EF9 (with no assumed decimal point).
Note that unlike DEC no truncation would occur. Conversion would be necessary.

DCL fare DEC (5,2);
fare = 5.000206E3;

In this example, the literal would first be converted to floating point format as in the above example. Then it
would be converted to the DECIMAL equivalent of 5000.20600000000. Finally, fare would appear in
storage as 00020 (with an assumed decimal point fixing the value at .20). Note that the high order digit and
the low order digit were truncated to agree with the size and decimal point placement that was declared with
fare. Because floating point numbers have a much larger range, they cause drastic truncation and
conversions when assigned to DECIMAL. This should be avoided whenever possible.

DCL fare PIC '999V99’';
fare = 5000.206;

The literal 5000.206 would first be converted (via unpack) to Zoned arithmetic data and then aligned on the
decimal point specified in the declaration of fare. Again, fare would appear in storage as 00020 but it
would be in Zoned format instead of Packed Decimal.

When a decimal point is not specified in the declaration, it is assumed to be to the right of the rightmost digit.
: DCL ¢ DEC (7);
DCL b PIC '999';

In the case of ¢, the decimal point is assumed to be to the right of a seven-digit, signed DECIMAL number.
In the case of b, it is assumed to be to the right of a three-digit Zoned Decimal humber. Truncation required
for assignment, then, would always be of the high order digits.

The following assignment also involves truncation:
: DCL e BIN (15);
e = 131071;

The binary representation of the literal would be 00000000 00000001 11111111 11111111, or 17
binary ones. In this case, the two high order binary 'ones' of the value that is extracted from the 32-bit literal
would be truncated and the value assigned to e would be equal to 32,767 DECIMAL, or

01111111 11111111 binary (the maximum value for a positive half-word number).

The programmer is responsible for insuring that assignment statements and data declarations are properly
matched to produce correct results. Whenever possible, it is a good idea to always DECLARE an area with
no fewer significant digits than any data to be assigned to it (See Chapter 5, Precision).

48

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

BIT-string to BIT-string

If a BIT-string is assigned to another BIT-string, alignment is on the right and the move is a bit-for-bit
assignment, right to left. Padding or truncation is performed on the left.

DCL g BIT (7);
DCL e BIT (6);

g = '1100'B;

e = '111111100'B;

In this example, g would appear in storage as 0001100 and e would appear as 111100.

Arithmetic to BIT-string

This move results in the absolute value of the arithmetic data to the right of the assignment symbol being
converted to a BIT-string. For Numeric character-string values or for DECIMAL values, the number is
truncated to yield integer values only. Truncation or padding takes place on the left.

DCL f BIT (12);
f = -15.2;

The literal -15.2 would yield the absolute value of 15.2. It would then be truncated to an integer 15, and f
would appear in storage as 000000001111.

An example of the need for and the use of absolute values follows:

celfm5 = pdifch;

celfm5 is declared as BIT(32). If pd1fch (assume that it's a forward chain field containing a file
address) has been declared as BIT(32), then the assignment will achieve the intended result. If
pdifch has been declared BIN(31), however, the result in ce1fm5 will not necessarily be the intended
one, and therefore the programmer should declare all fields which might contain file addresses as BIT(32).

49

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

BIT-string to arithmetic

In this assignment the BIT-string is expanded to a full word, if necessary, by padding on the left with zeros
before performing the arithmetic move.

DCL h BIN;
h = '1010'B;
The BINARY literal 1010 will be expanded to:
00000000 00000000 00000000 00001010
or in hexadecimal:

'00000009 ' x

The arithmetic move will align the data on the right (the decimal point is assumed to be at the right of the
rightmost bit), and h will appear in storage as 00000000 00001010.

Assignment of Labels and Pointers

A straight character move is used for assignments involving pointers or labels. All pointers are four bytes in
length; all labels are two bytes in length. Since the moves would always involve areas of the same size, no
operation other than an assignment is required. Replacement would be on a byte-by-byte basis, from left to
right.

GOTO STATEMENTS

The GOTO statement provides unconditional transfer of control to any labelled statement within the program,
with the following exceptions: an internal procedure, an external procedure, or a programmer-declared
function.

Statement Syntax:

| | label constant |
0o | | label variable |
I |

14

| GoTo
| 60 T
|

If a label constant is specified, control is transferred to the statement prefixed by the label.

If a label variable is used, control is transferred to the statement prefixed by the label assigned to the label
variable. A label variable will retain a value (label address) until another assignment is made into it. Since
different assignments may occur throughout the program, a '60TO label_ variable;' might not always
transfer control to the same statement.

DCL switch BIN;
DCL labvar LABEL;

testswitch: IF switch = 1 THEN labvar
ELSE labvar
GOTO labvar;

1b13;
1bl4;

50

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

1b13: a

1
o
~=

1b14: c

1
o
~.

Notes:

A GOTO statement should not transfer control from outside an iterative DO group to a statement within the
loop.

Care should be taken to insure that a GOTO invocation does not result in a looping condition that would not
terminate, the simplest example of which would be:

badloop: GOTO badloop;

DO STATEMENTS

The DO statement heads a series of statements called a DO group. A DO group consists of a DO statement
followed by one or more statements then a terminating END statement. The format of the DO statement
indicates whether the DO group is non-iterative or iterative. NOTE: The maximum number of any
combination of DO statements in one program is 193.

Format of Non-iterative DO Statement

DO ;

Format of Iterative DO Statement

DO variable = specification ;
element

Where specification is:

Tarithmetic T (TO arithmetic (BY arithmetic)) (WHILE arithmetic) ;

| expression| (expression (expression)) (expression)
|logical | (()) (logical)
| expression| () (expression)
|relational | (relational)
| expression| (expression)
|defined | (defined)
| function | (function)

Non-iterative DO Group

Invocation of a non-iterative DO results in a single execution of the DO group. Non iterative DO groups are
typically used in IF statements.

IF - THEN
DO;
a=(b+¢c)/d;
f=b-c;

END;

51

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

Iterative DO Group using WHILE Clause

In this type of iterative DO, the repetitive execution of the DO group (or DO loop) is controlled by the
evaluation of the operand in the WHILE clause. The execution will be repeated as long as the clause is true,
i.e., the END statement effects a branch to the top of the loop whenever the WHILE clause is true. Once the
WHILE clause is false, control is passed to the statement after the END statement of the loop. It should be
understood that the statements within the DO group must alter some value in such a way that the loop will
eventually terminate.

loop:

Upon normal loop termination, program execution will continue with the next executable statement following
the END statement.

Note: In the statement' DO WHILE x(i); ', the usage of a programmer-defined function x (1) implies the
relational expression (test) 'x(1) = 1'. Hence, the statement is interpreted as

DO WHILE x(i) is true

and a branch out of loop will occur when x (1) is false (or 0).

DCL x Function;

DCL i BIN;
DO WHILE x(i);
END;

x: PROC(1);
RETURN(i&1);
END;

52

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

Iterative DO Group using a control variable

In this type of iterative DO, the loop is controlled by the control variables. The execution of the loop will be
repeated until successive incrementing of the initial value results in a value equal to the final value. In the
statement:

DO i = wvalue_l1 TO value_2 BY value_3;

The control variable 1 may not be subscripted. value_1 and value_2 represent the initial value and final
limit, respectively, for the control variable, and value_3 represents the increment or decrement for each
iteration.

All values may be positive or negative. If the BY clause is omitted, it defaults to BY +1. If the BY clause is
present then the TO clause must be present. If the value in the BY clause is preceded by a prefix minus
operator, it implies a 'backward running' loop. The initial value would be larger than the limit value, however,
the value of the BY clause must be positive before negation by the prefix minus, in order for meaningful code
to be generated. This restriction is required in order to avoid an execution-time conflict between the
generated loop control logic and a varying sign for the BY clause, on different invocations of the DO group.

Hence the sequences:
one = 1;
DO i = 1 TO 10 BY one;

and
one = 1;
DO i = 10 TO 1 BY -one;

will generate logical code, whereas the sequences:
one = -1;
DO i =1 TO 106 BY -one;

and
one = -1;
DO i1 = 10 TO 1 BY one;

will not.

incr: DO i =1TO 10 BY 1 :: decr: DO i = 10 TO 1 BY -1

WHILE a < b; - WHILE a > b;
a=-a+1; - a=-a+1;
c(i) =a+ 3 * b; M- c(i) =a+ 3 * b;
END incr; HH END decr;

In the above examples, the DO group will be executed up to 10 times, or until the condition a < b becomes
false. Upon normal loop termination, program execution will continue with the next executable statement
following the END statement. In the DO loop named incr, the value of i after exiting the loop will be 11.
Flowcharts for the above two examples follow in figure 3.6.

n T n n T n

| 53

‘ CHAPTER 3: EXECUTABLE STATEMENTS - RULES

| |
| |
I | I=1 | | I=10 | I
B ! |
| < > YES < > YES |
| < I>0 ? >-------- < I<17? Se-maana- |
| < > | < > | |
IEELEEEED [| |
S | ! .
< > NO	< > NO	
< A<B ? Seemmenaa-	< A<B ? - -	
< >	< >	
I ----i---- IRIRININININININ]] ----i---- IRIRININININININ]] I		
I ______________ n END L n END n I		
I I a=a+1 I n n I a=a+1 I n n I		
I I c(i)=a+3*b I n n I c(i)=a+3*b I n n I		
I ______________ L, n I		
S !		
I	I=I+1	
I Trrrrrroran Trrrrrroran I		
I 1 T 1 1 T 1 I		
F

igure 3.6 Do Loop Flow Chart

Notes:
Specifications are truncated to integer values and the sign is maintained.

In an iterative DO, control should not be transferred to any statement within the DO group from outside the DO
group; transfer control only to the DO statement itself, otherwise, loop control values may not be properly set
and the results will be unpredictable. Control may be transferred from within a DO loop to its END statement

in order to continue the loop.

A GOTO statement within an iterative DO group can serve to abnormally terminate the DO loop, by specifying
a label outside the DO group. It can also serve to prematurely advance to the next iteration of the loop by
specifying a label on the corresponding END statement.

Any DO without a specific END statement will be ‘closed’ by the END (of the program) statement.

With regard to nested DO statements, the following hints are useful in improving program documentation and
legibility:

A) Give labels to the DO statements
B) Use the labels as operands on corresponding END statements to clearly specify the range of each DO

| 54

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

C) Indent each DO group and use comments to explain logic.

ki:
k2:

k3:

r = mspcnr2;

C = mspnps2;

DOm=1TO0 r; /* repeat loop thru # of rows */
DO p=1T0c; /* repeat loop thru # of columns */
f=f+ 1;

DOt =1 TO g; /* repeat loop to # of legs */
e=e+ 1;
pchsas(e) = mspseal(f);
END k3;
END k2;

e=-e+ 1;

f=f+ 1;

pchsas(e) = mspseal(f);

/* row ind 1-seal(f) = ril1i(f) */

e =-e+ 1;

f=f+1;

pchsas(e) = mspseal(f); /* move row ind #2 */
END k1;

NOTE: It is worth restating that there is a limit of 193 DO statements of all types allowed in a

program.

55

‘CHAPTERS:EXECUTABLESTATEMENTS-RULES

IF STATEMENTS

The IF statement provides conditional transfer of control based on the result of relational evaluation(s). The
THEN logic path is taken if the comparison yields true; the ELSE logic path is taken if the comparison yields
false.

Statement Syntax:

IF | logical | THEN executable ; (ELSE executable ;)
| expression | statement(s) (statement(s))
| relational | ()
| expression |
I I

‘test' has the form:

| arithmetic variable

| arithmetic literal

| arithmetic constant

| arithmetic expression
| logical expression

| relational expression
I

The ‘executable statement' that follows the THEN may be any executable statement, with the exclusion of
IF, PROC and Macros with parameters.

The 'executable statement' that follows the ELSE may be any executable statement, with the exclusion of
PROC and Macros with parameters.

prtctl: Ilnctr =lnctr + 1;
IF 1Inctr > 60 THEN

page: DO;
Inctr = 0;
space = 7;
END page;
ELSE

line: space = 1;
CALL print;

The print control coding above will test a line counter 1nctr for end-of-page condition of 60 lines. If 60 lines
have been printed, seven lines are spaced and lnctr is cleared, otherwise, 1 line is spaced.

The operators | (or) and & (and) can be used in two modes: either to separate different tests to be
performed, or as normal logical operators. When used as separators, a statement consisting of all & or |
operators will generate more efficient code than a statement with both. When used as logical operators, the
expression(s) involved must be enclosed in parentheses. This forces the logical operation(s) to be
performed before any relational test(s).

56

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

labl2: IF (a & b) > (c + 2 | d) THEN a = 10;

implies only one test (greater than) to be performed.
The order of evaluation (and consequently, the result) of an expression can be changed through the use of
parenthesis. The expressions enclosed in parenthesis are evaluated first to a single value before they are
considered in relation to surrounding operations.
Example:

IFA+C=0&B>C | D=B - 4 then A = 10;
May be coded:

IF (A + C

0) & (B>cC) | (D=B - 4)

then A

10;
The example immediately above will yield same result as first example but increases program clarity.

The most number of logical operators allowed in an IF statement is sixteen.

IF ABC = 'X' | -]
ABC = 'Y' | |
ABC = 'Z' | | max of
| 16
I
ABC = '1' -1
THEN

The following 'nested-IF-statements' construction is allowed.

SYNTAX: IF <expression> THEN <expression>;
ELSE IF <expression> THEN <expression>;
ELSE IF <expression> THEN DO;
END;
ELSE IF etc. .
ELSE <expression>; <--- REQUIRED]]]

57

CHAPTER 3: EXECUTABLE STATEMENTS - RULES

Additional notes on nested IF constructs:

1) ELSE IF. . .THEN DO's may not contain IF or ELSE statements. The DO's may be indexed.

2) The ELSE <expression>; is required.

3) Final ELSE must close the block of nested ELSE IF's.

4) If the final ELSE is an ELSE DO then it may not contain IF or ELSE statements and may not be indexed.

Example:

DECLARE 1 AREC BASED(CE1CR1),

2 CODE BIN(31),
2 ACTION CHAR(12),
2 AREA CHAR(5),
2 ERR BIN(31);

DECLARE A BIN(31);
DECLARE I BIN(31);

IF CODE = 1 THEN ACTION = 'ABC';

ELSE IF CODE = 2
THEN ACTION = 'RETURN';

ELSE IF CODE = 3 THEN DO;
ACTION = AREA;
ENTRC INDY(ERR=#RAC);
END;
ELSE IF CODE = 4
THEN ACTION = 'RESERVATION';
ELSE GOTO ERROR1;
A = A+CODE;
BACKC;
ERROR1:
ERR = 0;
BACKC;

Although the programmer cannot code IF THEN IF, nested IF's can be accomplished by
coding the nested IF within a non-iterative DO.

58

‘ CHAPTER 4: EXPANDED DATA DEFINITION RULES

CHAPTER 4: EXPANDED DATA DEFINITION RULES

DATA ORGANIZATION

Data items may be coded individually, as single data elements, or they may be grouped to form arrays or
structures.

Arrays

Logically related data items that have identical data attributes may be grouped to form an array. Only the
array itself is given an identifier. An array is a collection of a maximum of 255 data elements. Each
individual element is identified by its relative position within the array.

An array, by definition, always contains a dimension attribute and is declared by coding the attribute
(enclosed in parentheses) immediately following the data identifier in the DECLARE statement. The
dimension attribute specifies the maximum number of items in the array.

General Format:

T DCL T (level) identifier (dimension) data ;
| DECLARE | ()

(0 < dimension <= 255))

DECLARE citycode (100) CHAR(3);
DCL labvar (10) LABEL;
DCL x (15) BIN;

In the example, the first statement declares citycode to be an array of 100 elements, with each element a
character-string 3 characters in length. The second statement declares an array of 10 elements which are
label variables, each one half word in length. The third statement declares an array of 15 elements, each of
which is a BINARY data item one half word in length.

Subscripts

Within an array, data items are accessed by the use of subscripts which specify, (within parentheses), the
data item's relative position in the array. This subscript may be a literal, a variable or an expression.
Subscripts must have one of the following general formats where n is a literal, v is a variable (constant), and
where v must be of type *BIN, *BIT, *DEC or *NCS.

(n)

(v)

(v + n)
(v * n)

(v * n + n)

note: Variations are permissible, such as:

vV - n, n+v?=*n, n+n*vy, V + n n,
n+ v, n-v=*n, n-nt®*vy, V - n n,
n -v, n*v+n, n*n+yv, \Y n - n,
n * v, n*v -n, n*n-yv,

59

CHAPTER 4: EXPANDED DATA DEFINITION RULES

When an array begins at a displacement of zero in storage or at a displacement less than one array entry
length, and subscripts is a variable, then the subscript should be declared as *BIN.

Example:
DR95LT: PROC;

DCL 01 hmircd(6),
02 namein CHAR(20),
02 addrin CHAR(20),

DCL j BIT(8);

DCL i BIN;

DO j=1 to 5;

hmircd(i) = hmircd(i+1);

The data type of the literal must be BINARY. The data type of the subscript-variable may be DECIMAL
(which will be truncated to integer), Numeric character-string (also truncated to integer), BINARY, or BIT-
string. Examples of subscripted variables for each of the arrays previously declared are given:

varbl(5)

varbl(kounter)
varbl(indx + 3)
varbl(indx - 2)
varbl(errornum * 2)
varbl(errornum * 3 + 5)
varbl(errornum * 4 - 6)

In the preceding example, kounter, indx, and errornum were coded as variables within the subscript
expressions. Each of these data items must have been declared with one of the data attributes acceptable
for subscript variables

DCL kounter BIN;
DCL indx PIC '99';
DCL errornum DEC (2);

An array-to-array assignment without any element subscripts causes only the first element to be moved.
References in a statement to an array without a subscript default to the first element.

It is possible to construct an array of label variables by including a dimension attribute in the DECLARE
statement. The GOTO statement would then contain a subscript, specifying which element in the array of
label variables is requested:

60

CHAPTER 4: EXPANDED DATA DEFINITION RULES

DECLARE labvar(3) LABEL;

DCL i BIN;

labvar (1) = label1l;
labvar(2) = label2;
labvar(3) = label3;
labeli: a = b;
label2: c.;.d;
label3: e.;.f;

GOTO labvar(i);

In this example, the '60TO labvar' statement transfers control to the statement whose label is 1abel1 or
label2 or 1abel3 depending on the contents of i. i should be set to 1, 2 or 3 prior to the execution of the
GOTO statement.

Structures

Structures are logical collections of named data items that need not be of the same data type or possess
identical attributes, except that they must be of the same storage class. The hierarchical relationship of the
elements comprising the structure is specified by the use of level numbers that are coded immediately
preceding the identifier. The entire collection of data elements, called the major structure, must be coded
with a level number of one. Minor structures (collections of elements contained within the major structure)
are coded with level numbers greater than one. A structure, by definition, must contain a major structure.
There is no such thing as a literal structure.

General Format of a Structure:

T DCL T level identifier ((dimension)) attributes ;
| DECLARE |
I

(0 < level <= 255)

DCL 1 myaddr,

street CHAR(20),
city CHAR(20),
state CHAR(10),
zip PIC '99999';

NDNDNDN

In the above example the major structure myaddr is made up of four data elements, each of which may be
referenced by use of its identifier. Use of the major structure identifier in a statement would cause reference
to all the elements contained within it. Structures may be assigned (only to other structures), and can be
compared. In the assignment of one whole structure to another whole structure, the assignment is to the
whole length of the receiving field; padding with blanks will be performed if necessary (Refer to Chapter 3,
Multiple Assignment for a review of padding if necessary)

It may be to the programmer's advantage to specify smaller logical collections of data elements that are
contained within the major structure. These collections, called minor structures, are given a minor structure
identifier, with a level number greater than the level number of the structure in which they are contained.
The elements contained within the minor structure must have level numbers greater than the minor
structures.

61

CHAPTER 4: EXPANDED DATA DEFINITION RULES

DCL 1 employment_info,
2 personal,
3 employee CHAR(30),
3 mapcode,
4 street CHAR(20),
4 city CHAR(20),
4 state CHAR(10),
4 zip PIC'99999"',
3 title CHAR(30),
2 salary,
3 rate DEC(7,2),
3 pay_to_date DEC(7,2),
3 fica_to_date DEC(7,2),
3 deductions,
4 charity DEC(5,2),
4 other DEC(5,2);

In the above example the major and minor structures may be identified by the data identifiers which do not
have data attributes coded in conjunction with them: (employment_info, mapcode, salary and
deductions in the example above). Items on each level of a structure may be elementary data items
(data items that are coded with attributes other than 'level' and 'identifier') and/or structures. The maximum
number of levels is 255.

To DECLARE a structure and reference only a few elements in the structure, only those few elements need
be detailed. This would be accomplished by using the pseudo-identifier FILL. FILL may be any data type
and may have a dimension. To illustrate this technique, assume that you are receiving the following record
as input:

DCL 1 aaa BASED(aaptr),
2 booking,
3 first CHAR(10),
3 middle CHAR(10),
3 last CHAR(10),
2 flight,
3 number PIC'9999',
3 class CHAR(2),
2 date,
3 month CHAR(10),
3 day PIC'99',
3 year PIC'9999';

Suppose that in the above example only the elements last and class were to be referenced. Rather than
code the DECLARE statement for the entire structure, as shown, the pseudo-element FILL could be used to
DECLARE the non-referenced areas:

DCL 1 aaa BASED(aaptr),
2 FILL CHAR(20),
2 last CHAR(10),
2 FILL CHAR(4),
2 class CHAR(2);

No FILL is needed after the last essential element (class).

62

CHAPTER 4: EXPANDED DATA DEFINITION RULES

Arrays Containing Structures

An array of structures is formed by coding a dimension attribute immediately following the structure identifier:

DCL 1 input(3),
2 team CHAR(30),
2 wages,
3 normal DEC(5,2),
3 overtime DEC(5,2);

Because the major structure input has a dimension attribute coded, the elements and minor structures
contained within it are arrays and must be referenced by using subscripts. This is a general rule which
applies anytime a structure is arrayed. In the example above, the array 'input' and the minor structure ‘team'
will have the same displacement.

An in-core representation of the above example:

team normal overtime team normal overtime team normal overtime

(1) (1) (1) (2) (2) (2) (3) (3) (3)

If the programmer wished to access the field normal he would code a subscript following it. For example:
normal(1), normal(2), or normal(3), depending upon which element he desired. All rules for
subscripts, as outlined in arrays and subscripts, apply (See Subscripts, this chapter.)

Structures Containing Arrays

If an element of a structure has a dimension attribute coded in conjunction with it, the element is an array
and should be referenced by the use of a subscript. A non-subscripted reference will default to a subscript of
one (1).

DCL 1 personnel,
2 sites(3) CHAR(30),
2 totemp PIC'9999';

63

CHAPTER 4: EXPANDED DATA DEFINITION RULES

An in-core representation of the preceding example:

personnel

sites(1) sites(2) sites(3) totemp

The nesting of arrays within structures is invalid, that is, only one level of each major or minor structure may
have dimension attributes coded in conjunction with it.

DCL 1 personnel,
2 sites(3) CHAR(30),
2 empinfo(100),
3 rate CHAR(20),
3 empno PIC'99999';

The above is a valid example of a structure containing arrays because both of the arrays are on the second
level. Itis not possible to code a dimension attribute in conjunction with one of the level three elements and
still have a valid condition:

DCL 1 personnel,
2 sites(3) CHAR(30),
2 empinfo(100),
3 rate(7) CHAR(20),

The above example is invalid because empinfo and rate both have dimension attributes.

Factoring of Attributes

If several data items have identical attributes, these attributes may be factored to eliminate unnecessary
coding. Factoring is specified by enclosing the identifiers of the identical data items within parentheses,
separating the identifiers with commas and following this with the common data attribute(s). Given:

DCL ctrl BIN;
DCL ctr2 BIN;

these declarations could be factored as follows:

DCL (ctri, ctr2) BIN;

When factoring is performed on elements of a structure, only one level of the structure may be factored:

DCL 1 ebGeb ENTRYBLOCK,
2 celbad PTR,
2 celwka,
3 ebwoooOf,
4 (ebw000, ebw001,ebw002, ebw003) CHAR(1);

64

CHAPTER 4: EXPANDED DATA DEFINITION RULES

Only one level in the above example contains factoring. The following example illustrates an invalid factoring
of attributes because of an attempt to factor more than one level:

DCL 1 notes,
2 (high, low),
3 (ones, fives, tens) BIN,
3 denominations DEC(2),
2 portraits CHAR(20);

Factoring of attributes is invalid for arrays, as in the example:

DCL (a,b,c) (10) BIN;

Another method of coding DECLARE statements and eliminating unnecessary code is illustrated in the
following examples:

DCL a BIN ALIGNED;
DCL b DEC(5,2);
DCL ¢ CHAR(16);

With a single DCL keyword, these unrelated data items could be coded more conveniently:

DCL a BIN ALIGNED,
b DEC(5,2),
c CHAR(16);

Any number of unrelated data items might be coded in the preceding manner. Each item and its
corresponding attributes is separated from the other items by the use of commas. The entire DECLARE
statement is terminated by a semicolon.

ALIGNED and PACKED Attributes

The attributes ALIGNED and PACKED are used to align or position data. The ALIGNED attribute can result in
more efficient code but less efficient use of space, while the PACKED attribute can result in more compact
data allocation but less efficient code. The ALIGNED and PACKED attributes may be declared at any
structure level and apply to all subdivisions (lower levels) of that structure level except where a given data
element in the structure has an overriding attribute. Data items declared without the PACKED or ALIGNED
attribute default to the attribute of the next higher structure level in which they appear, as just mentioned, or
if they are not part of a structure they default to PACKED.

65

CHAPTER 4: EXPANDED DATA DEFINITION RULES

General Format of ALIGNED and PACKED Data:

T DCL T identifier data type (PACKED) ;
| DECLARE | attribute (ALIGNED)
DCL 1 major ALIGNED,

2 maj_a CHAR(1),

2 maj_b CHAR(2),

2 min_c, :
3 min_d BIN ALIGNED ; ;

14

In the above example min_c and min_d are both aligned. Rules for alignment of PACKED data and
ALIGNED data are illustrated in figure 4.1

Alignment is precedental with the following highest to lowest order:

I I
|Class of Data: | PACKED data is | ALIGNED data is |
|

| | aligned at next: | aligned at next:

Major Structures:
CONSTANT Storage
Other

Byte
Double Word

Byte
Double Word

Minor Structures:

I I I I
| | | |
I I I I
I I I I
| | | |
I I I I
Bit	Bit	Byte
Other	Byte	(If it contains
		BIN(31) or PTR data):
		Full word
		(If it contains
		BIN or LAB data):
		Half Word
		Else:
I I I Byte i		
I I I I		
Array Elements:		
BIT	Byte	Byte
	(Overrides treatment	
	of BIT, Elementary,)	
I I I I		
Elementary Data:		
BIT	Bit	Byte
BIN(15) or LAB	Byte	Half Word
BIN(31) or PTR	Byte	Full Word
Other	Byte	Byte
I I		
** If the first element of a minor structure requires alignment on a		
half or a full word boundary then the minor structure itself is		
aligned on a half or full word boundary.		
I I
I I
Figure 4.1 Packed and Aligned Data

In a structured array, bytes of padding may be added so that the size of each element will be a multiple of
four if the structure contains ALIGNED BINARY(31) or POINTER data; a multiple of two if the structure
contains ALIGNED BINARY(15) or LABEL data.

66

CHAPTER 4: EXPANDED DATA DEFINITION RULES

DCL 1 aaa (3) ALIGNED,
2 b BIN (15),
2 ¢ CHAR (1);

location array
assigned member

- padding

aaa(2)

b(2)

c(2)

- padding
aaa(3)
b(3)
c(3)

- padding

RoOoWoKO~NORAPWNOO

[

The padding is necessary to make each entry of array aaa an even number of bytes. This causes each
ALIGNED item to be properly aligned in each element of the array.

In the following example min_g will be byte aligned:
2 minor ALIGNED,
3 min_e BIN, ;
3 min_f BIT(4), :
3 min_g BIT(4);

If it is to be in the same byte as min_f, min_g must be PACKED.

3 min_g BIT(4) PACKED ;

STORAGE ALLOCATION

Data items are allocated storage within the system so that they may be referenced during program
execution. This storage allocation may be static, before the execution of the program, or dynamic, during
execution of the program. Some allocated storage can be freed upon the explicit request of the
programmer, and some upon encountering a macro containing an implicit release, e.g., ENTNC, EXITC,
BACKC or ENTDC.

67

CHAPTER 4: EXPANDED DATA DEFINITION RULES

There are four storage classes, each of which has a corresponding keyword:

Storage class Keyword Allocation
AUTOMATIC AUTO / AUTOMATIC dynamic

BASED BASED static/dynamic
ENTRYBLOCK ENTRYBLOCK static
CONSTANT CONSTANT static

Data items, arrays and major structures may all have storage class attributes specified in their DECLARE
statements, in which case the elements of all will be of the specified storage class. If a storage class is not
coded in the DECLARE statement for a data item, array or major structure, then the storage class defaults to
AUTOMATIC.

AUTOMATIC Storage

When a SABRETALK program is activated, a block of storage will be allocated automatically. It is this
block, called the Automatic Storage Block, which provides the program with its re-entrant capability because
it becomes "attached to" the ECB. All data items, arrays or major structures declared with the AUTOMATIC
storage class attribute will reside in this core block. The core block will remain allocated as long as the
program remains active. The AUTOMATIC storage block will be freed upon execution of a BACKC, EXITC,
ENTNC or ENTDC macro. It will not be released for macros that do not cause the program block to be
released, e.g., DLAYC, ENTRC or WAITC macros.

The size of the AUTOMATIC core block allocated will vary depending upon the requirements of the particular
program segment. The Compiler will determine the program's requirements based on data items declared
AUTOMATIC by the programmer as well as areas required by the Compiler for data conversions, etc. The
Compiler will then obtain the appropriate sized block which will be 128, 381, 1055 or 4095 bytes.

General Format:

| DECLARE attribute (AUTOMATIC)

| bCcL | identifier data type (AUTO)
I

DCL inptr PTR AUTO;

DCL farebase DEC(5,2); /* this data item defaults
to AUTOMATIC because no
storage class attribute
is coded. */

DECLARE labvar LABEL AUTOMATIC;

ENTRYBLOCK Storage

An Entry Control Block (ECB) is allocated to each active entry in the TPF system. In order to reference data
which resides in this block, the programmer must include the ENTRYBLOCK storage class attribute in the
data item's DECLARE statement. Normally the programmer does not have the need to code the
ENTRYBLOCK.

General Format:

T DCL T identifier data type ENTRYBLOCK ;
| DECLARE | attribute

68

CHAPTER 4: EXPANDED DATA DEFINITION RULES

DCL 1 eboeb ENTRYBLOCK,
2 celchw PTR,
2 celbad PTR,
2 celwka,
3 ebw0OOf,
4 (ebw000O, ebw001, ebw002, ebw603) CHAR(1),
3 ebwoo4f,
4 (ebw004,ebw005,ebw006, ebw007) CHAR(1),
3 ebw0o0S8T,
4 (ebw008,ebw009, ebw010,ebw011) CHAR(1),
3 ebwoO12f,
4 (ebw012, ebw013, ebw014, ebw015) CHAR(1),

CONSTANT Storage

Use of the CONSTANT storage class attribute specifies that the data item will be allocated storage statically,
prior to execution of the program, and that this storage will remain allocated within the program for the
duration of program execution.

The programmer gives an identifier the CONSTANT storage class when the value in the field will not change.
The CONST statement is used to specify the constant value in the field.

CONST Statements

CONSTANT storage is initialized by the use of the CONST statement. It is good programming practice to code
the CONST statement immediately following the DECLARE statement for the data item. Each data item
declared with the CONSTANT storage class attribute may have only one associated CONST statement.

Data items declared as CONSTANTS will reside (as will literals), in the same core block as the program.

General Format:

T DCL T identifier data type CONSTANT ;
| DECLARE | attribute
CONST identifier , literal ;

DCL error_message_1 CHAR(21) CONSTANT;

CONST error_message_1, 'invalid input message';
DCL farebase DEC(5,2) CONSTANT;

CONST farebase, 189.95;

69

CHAPTER 4: EXPANDED DATA DEFINITION RULES

Literals coded in conjunction with the CONST statement may be of the following data types:

A) DECIMAL

B) BINARY

C) BIT-string

D) hexadecimal string

E) character-string
F) DECI MAL FLOAT

The literal need not be of the same data type as the data type attribute specified in the DECLARE statement.
Always initialize the entire field specified in the DECLARE CONSTANT statement. With DEC data items use
the correct number of digits in the literal of the CONST statement, with placement of the decimal point exactly
as specified by the DEC in the DECLARE statement.

Storage for a BIN(15) CONSTANT statement will be changed internally to BIN(31) if the literal in the
CONST statement is BINARY. If the programmer wishes to ensure that only two bytes are used, he should
initialize the BIN(15) constant with a two-byte hex literal.

If a structure is declared CONSTANT and is initialized by several CONST statements at a level greater than 1,
they must be initialized in logical ascending sequence or the results will be unpredictable. Structures
declared as CONSTANT will be aligned on a full word. This is done to conserve program storage.

DCL 1 record CONSTANT,
2 team CHAR(9),
2 stamp,
3 num PIC'9999',
3 str CHAR(9);
CONST team, 'favorites';
CONST num, '1234';
CONST str, 'sedgewick';

Storage for BIT CONSTANT statement will be changed internally to a byte. If BIT fields are declared within
a structure then the entire structure must be initialized with one CONST statement.

The following is incorrect:

DCL 1 K1 PACKED CONSTANT,

2 Wi BIT(1),
2 X1 BIT(1),
2 Y1 BIT(6),
2 71 BIN;

CONST W1, '1'B,CONST X1, '0'B;
CONST Y1, '111111'B;

The following is correct:

DCL 1 K1 PACKED CONSTANT,
2 wo,
3wl BIT(1),
3 X1 BIT(1),
3 v1 BIT(6),
2 21 BIN;
CONST WO, '10111111'b;

A system-equate cannot be used to initialize a field that is defined CONSTANT, for example, the following is
illegal:
CONSTANT num, #pndri;

70

CHAPTER 4: EXPANDED DATA DEFINITION RULES

Constants can be arrayed, however, the entire array must be initialized in a single CONSTANT statement.

DCL arr(2) BIN(31) CONSTANT;
CONST arr, '0000000100000002'X ;

The following are all incorrect:

CONST arr, 1,2 ;
CONST arr(1), 1 ;
CONST arr(2), 2 ;

Constants may be referenced as individual elements of an array of constants.

DCL months(12) CHAR(3) CONSTANT;
CONST months, 'janfebmaraprmayjunjulaugsepoctnovdec';

IF months(i) = inmonth THEN GOTO match;

The literal field may be no greater in size than the limit for the type of literal and only one literal per CONST
statement is allowed.

BASED Storage

BASED storage is used primarily, but not exclusively, for data blocks that are attached to the ECB. The
allocation and manipulation of TPF core blocks is controlled by the programmer through the use of the get-
core, find, file, release-core, etc. type macros. It is the responsibility of the programmer to initialize the
pointer for BASED storage so that it contains the address of the data block he wishes to reference after
storage allocation has been accomplished. One method of initializing the pointer with the address of the
storage area is to obtain it from the core block reference word of the Entry Control Block (ECB) by use of an
Assignment statement. Note that the pointer name in the BASED attribute is implicitly declared, i.e., the
programmer should not code a separate declare for the pointer.

General Format:

T DCL T identifier data type BASED (pointer) ;
| DECLARE | attribute

DECLARE 1 input (5) BASED (pointer1l),
2 shop CHAR(30),
2 roster CHAR(50),
2 phone CHAR(8),
2 data CHAR(123);
GETCC d1,12;
pointerl = celcril;

After initializing the pointer, as illustrated, all references to data items based on this pointer will be qualified
by the address the pointer contains. In other words, the compiler will generate instructions with the pointer
address as base, and use the relative location of the data item in the structure as displacement. After pointer
initialization, the data items in the structure input may be referenced.

shop = stringl;

RELCC di;

71

CHAPTER 4: EXPANDED DATA DEFINITION RULES

Once the block of storage has been released, for example, by the use of a release-core type macro, data
items in the released block must not be referenced. The programmer may request a new core block, not
necessarily on the same data level, and again initialize the pointer. After this has been accomplished, the
BASED data items, now residing in the new core block, may be referenced. Another method is to declare the
core address reference word as the pointer to the structure. The compiler recognizes this pointer as ECB
based and will produce the necessary code to initialize the pointer.

Explicit Pointer Usage

Pointers are variables containing addresses that refer to data items. The data attribute POINTER or PTR is
used to DECLARE a pointer explicitly as follows:

General Format:

1 pcL | identifier | PTR 1
| DECLARE | | POINTER |

14

DECLARE recptr POINTER;
DCL input PTR;

One full word of storage is allocated in AUTOMATIC storage for the pointer.

When pointers are declared in this manner, data items will not be automatically based upon them. The
programmer must use the pointer qualification composite (->) to specify which data item should be based
on the pointer. The Compiler will then generate the instructions to complete the required operation, using the
pointer specified as the base for the data item and the relative location of the data item as the displacement.
A pointer used to qualify a reference to a data item must reside in AUTOMATIC storage.

DCL outptr PTR;
DCL 1 input BASED(inptr),
2 cost CHAR(30),
2 home CHAR(30),
2 file CHAR(68);
GETCC d6,10;
outptr = celcr6,
outptr -> home = home;

In the preceding example, the last statement illustrates both explicit and implicit pointer qualification. On the
right hand side of the Assignment statement the data item home is referenced in the implicit manner. The
Compiler will generate instructions using the address contained in inptr as the base for this reference and
the displacement will be determined by the location of home in the structure, (base + 30). The receiving
field of the assignment specifies explicit pointer qualification, causing the Compiler to override the normal
base of home and use the address contained in outptr as the base for this reference. Displacement from
this base is again determined by the location of home in the structure.

72

CHAPTER 4: EXPANDED DATA DEFINITION RULES

General Rules for the Use of Pointers:

1) A pointer can be initialized to contain an address in the following ways:

a) By use of a pointer-to-pointer Assignment statement. (e.g., outptr = celcrs3;)
b) By use of a START statement or macro in which is specified that the contents of a

register be stored into the pointer.
c) By use of the ADDR built-in function, which can be used to obtain the address of a

data item, array, structure, or an element within an array or structure (e.g., aptr =
ADDR(data);)

d)The pointer being an input parameterin a programmer-declared function or an internal
procedure.

2) Pointer qualifiers may not be subscripted, as in:
X = rptr(i) -> z;

3) Pointers may not be further qualified by other pointers, as in:
a = rptr -> aptr -> b;

4) Pointers may be considered as address constants and may have BINARY literals or
variables added to or subtracted from them. The result of such an addition or subtraction may be

assigned to a pointer, as in:
strptr = strptr + #itemln;

5) Data based on a pointer must not be referenced until the pointer is properly initialized,
except in the case of ECB based pointers.

6) Once the storage allocated to a BASED data item has been released, that data item must not
be referenced.

7) Whenever a pointer is received as a parameter in a macro, or in a procedure, it should be
tested to insure that it is not zero.

8) A maximum of 92 pointers, implicitly or explicitly declared, may be used in the program.

DEFINED ATTRIBUTE AND DEFINED STORAGE

The DEFINED attribute allows the programmer to DECLARE a data item that will occupy all or part of the
storage allocated to another data item called the base-identifier. The declaration is not a method of
allocating storage, rather it is a way of re-defining existing storage so that the storage class remains the
same but the attributes and/or identifiers may change. The specification of a base-identifier in the DEFINED
attribute is mandatory. The starting address of the DEFINED data item will be the same as the starting
address of any other data item whose name is used as the DEFINED base-identifier.

General Format:

T DCL T identifier data type T DEF T base- ;
| DECLARE | attribute | DEFINED | identifier

DCL flightcs CHAR(4);
DCL fltncs PIC'9999' DEFINED flightcs;

73

CHAPTER 4: EXPANDED DATA DEFINITION RULES

The programmer can use this attribute to treat a given quantity as two different data types (in the example,
as character-string and Numeric character-string), or to reuse an area of storage in a different manner at
some later time. In the above example, the actual data in the field would remain the same, while the
Assembler Language instructions generated would be for a character-string field or a Numeric character-
string field, depending upon the identifier used. The DEFINED data item fltncs will have the same starting
address and will occupy the same area as the base-identifier, flightcs. When these four bytes are
referred to by the identifier f1ltncs, they will be treated as a Numeric character-string field. If the identifier
flightcs is used, the field will be treated as if it contained character-string data.

The practicality of defining a field in this manner becomes evident when the programmer compares or
assigns zoned numeric literals to the field. Character-string literals, such as '1234' (which contain numbers),
may only be compared or assigned to fields declared as character-strings, but character-string fields may
not be coded in arithmetic expressions. Using the preceding DECLARE statements the programmer could
compare or assign a character-string literal to flightcs and then use the identifier f1tncs in an arithmetic
expression.

IF flightcs = '1234' THEN fltncs = fltncs + 1.;
ELSE flightcs = '0000';

Note: The preceding situation also could be handled through the use of the NSTR built-in function which is
covered in Chapter 5, NSTR

The following example illustrates use of an area of storage in a different manner at a later time.

DCL 1 input BASED(inptr),
2 cheese CHAR(25),
2 age PIC'999';
DCL rate DEC(5,2) DEF age;
rate = 100.25;

Originally, input contains whatever values were assigned to cheese and age. Later, as a result of the
assignment of a value to rate (which occupies the same area of storage as age), input contains the
values in cheese and rate, with rate occupying (and therefore destroying the previous contents of) the
same storage area that age occupied.

General Rules for DEFINED Storage:

1) The attributes of the DEFINED data item may not be inconsistent with the attributes allowable to the
storage class of the data item whose name is used as the base-identifier. For example, if the base
identifier belongs to the CONSTANT class of storage, then a data item that is a DEFINED variable
would represent an inconsistency.

2) The length of the data item should not exceed the length of the base-identifier unless the storage
class of the fields is ENTRYBLOCK or BASED. When the length is greater than the base-identifier, the

field immediately following the base-identifier will be overlaid if an assignment is made to the data
item.

DCL 1 input BASED(a1l1),

2 empnum PIC'99999',

2 rate DEC(5,2);
DCL part CHAR(7) DEF empnum;
part = 'ABCDEF' ;

74

CHAPTER 4: EXPANDED DATA DEFINITION RULES

In the above example, part will be allocated the same five bytes allocated empnum plus the first
two bytes allocated to rate. The assignment of a value to part will alter all of empnum and the first
two bytes of rate.

3) If the DEFINED is included in the original DECLARE statement for a structure, the DEFINED
items/structure must be at the bottom of the structure. This is because the compiler cannot
specifically recognize the end of a DEFINED structure and therefore continues to treat any
declarative statements that follow the DEFINED, as part of the DEFINED.

DCL 1 rec, :
2 post CHAR(12),
2 box,
3 addrs CHAR(20),
3 phone PIC'9999999',
2 misc DEFINED addrs ,
3 subl CHAR(10) ,
3 sub2 CHAR(10) ;

Any number of DEFINED statements can be coded in sequence, at the end of the structure.

4) (See restrictions of DEFINED items in %INCLUDEAF files, this chapter)

INCLUSION STATEMENTS

%INCLUDEAF Statement

The %INCLUDEAF statement is a statement which gives the programmer the ability to retrieve (non-
executable) DECLARE statements in pre-compiled form from the $INCLUDEAF library and have them
inserted into his program.

When the %INCLUDEAF statement is encountered during compilation, the precompiled declares are
retrieved from the %INCLUDEAF library and only those declares referenced by the program are made known
to the program. This has the effect of decreasing compile time and saving core requirements. (See Chapter
7 ICAFNO/YES OPTIONS for further information)

General Format:

%INCLUDEAF membername (,membername (,.--))

%INCLUDEAF MIOMI,;
%INCLUDEAF EBOEB, WAOAA;

MIOMI, EBOEB and WAGAA would reflect the identifiers of particular sets of declarations on file.
General Rules for $INCLUDEAF Statements:

1) Details for loading members to the ¥INCLUDEAF library are found in the SABRETALK
Installation and Maintenance Guide.

2) Only (non-executable) DECLARE statements may be inserted in one's program by use of
%INCLUDEAF.

75

CHAPTER 4: EXPANDED DATA DEFINITION RULES

3) DECLARE statements in a %INCLUDEAF member may not have a storage class attribute of
AUTOMATIC or CONSTANT.

4) If more than one set of %INCLUDEAF library members is requested, the member identifiers
can be coded in one $INCLUDEAF statement, separated by commas. The maximum number of
%INCLUDEAF members that can be requested by a given program is 24.

5) %INCLUDEAF members may contain more than one structure if the structure does not
contain DEFINED items. Any structure containing DEFINED items must be placed in a separate
%INCLUDEAF member.

6) If a specified %INCLUDEAF member is not in the %INCLUDEAF library, the compiler will not
search the %INCLUDE library.

Since the Entry Control Block (ECB) is the primary control medium in a TPF environment, its description is

usually found catalogued in the ¥INCLUDE and/or %INCLUDEAF libraries. In addition, the primary application
data records in a given TPF system are usually found in the %INCLUDEAF and/or the %INCLUDE libraries.

%INCLUDE Statement

The %INCLUDE statement is a statement which gives the programmer the ability to retrieve source
statements from the %INCLUDE library and have them inserted into his program at the point where the
statement is coded. These source statements may be executable statements or (non-executable)
DECLARE statements. (See Chapter 7 ICAFNO/YES OPTIONS for further information)

General Format:

%INCLUDE membername (,membername (,--.))
(())
()

%INCLUDE error;
%INCLUDE ebOeb, waOaa;

General Rules for %INCLUDE Statements:
1) %INCLUDE members may not contain %INCLUDEAF statements or %INCLUDE statements.

2) Details for loading members to the %INCLUDE library are found in the SABRETALK
Installation and Maintenance Guide.

3) If an internal PROCEDURE is to be inserted by use of the %INCLUDE statement, the
%INCLUDE statement should be coded outside the logical flow of the program.

4) If more than one set of %INCLUDE library members is requested, the member names,
separated by commas, can be coded in one %¥INCLUDE statement.

NOTE: If member names are coded as part of one statement, be aware that if a member is not found on file,
then subsequent member(s) will not be searched for on file.

76

CHAPTER 4: EXPANDED DATA DEFINITION RULES

DATA STATEMENT STRUCTURE SUMMARY

Figure 4.2 illustrates a summary of Explicit Data Statement Structure by Data Type

I _______________________________
Statement Type

I

I |

| | variable(V), Literal(L), Constant(C)

I B G GREEEEEEPLEEETD

| | | Keywords (Statement)

1 R LR L LR LI EEECLEEELLE

| | | | Level Number (Attribute)

1 I R L LD LS LRI TELELELEEED

| | | | | Identifier (Attribute)

1 I I R Rt GOLELLLEELELEELE

| | | | | | Dimension (Attribute)

1 I N B R G

| | | | | | | Keyword (Data Attribute) / Separator

1 I ==emerecmnncneeeneaaa

| | | | | | | | Size/Content(Attributes)

I [[O I [=---mmmmmmmiee e

| | | | | | | | | Alignmnt(Attrib)

I [[O I I [--------

I [T | | a | STORAGE

L LR R R R) Fe--e---- L + .CLASS:

|DEC |V/L|(DCL)1 | | | (PEC) |(c(,d))|(PACKED)|

| | | (DECLARE) | | | | (DECIMAL) | | (ALIGNED) |

|BIN |V/L]|(DCL) | | | | (BIN) | (e) |(PACKED)|

| | | (DECLARE) | | | | (BINARY) | | (ALIGNED) |

|BIT |V/L]|(DCL) | | | | BIT | (f) |(PACKED)|

I | |(DECLARE) | | | | I | (ALIGNED) |

lcs v/L(pcL) | | | |(CHAR)| (9) |(PACKED)|

| | | (DECLARE) | | | | (CHARACTER) | | (ALIGNED) |

INCS | V |(DCL) | | | | (PIC) | 9V | (PACKED)|

| | | (DECLARE) | | | | (PICTURE) | | (ALIGNED) |

|ECS | V |(DCL) | | | | (PIC) | 9 VZ |(PACKED)|

| | | (DECLARE) | | | | (PICTURE) | * $ S |(ALIGNED) |

I I [I | + - | I

I [[O | CR DB | I

|LAB |V/L]|(DCL) | | | | (LAB) | | (PACKED) |

| | | (DECLARE) | | | | (LABEL) | | (ALIGNED) |

|PTR | V |(DCL) | | | | (PTR) | | (PACKED) |

| | | (DECLARE) | | | | (POINTER) | | (ALIGNED) | .

|FUNC| L |(DCL) | | | | FUNCTION | | / .

I | |(DECLARE) | | | | I I /.

|CONS| C | CONST | | | | | h | / .

|INCL| |%INCLUDE | | | | | | /. .

|INCA| |%INCLUDEAF| | | | | i | / .

| /..

| |--=-mmmmmm - /... .

I . ((AUTO) b)

I |. ((AUTOMATIC))

I [()

I |. (ENTRYBLOCK)

I [()

| |. (CONSTANT j) .

I [() -

| |. (BASED pointer) .

| |- (identifier)

| I ()

| |. ((DEF) previously)

| |. ((DEFINED) declared)

| |- (identifier)

| l.
Key:

a) PACKED is an alignment default.
b) AUTOMATIC is a storage default.

a4

CHAPTER 4: EXPANDED DATA DEFINITION RULES

c)

>oQ =h O
— N N

i)

J)

The parentheses around 'c' are necessary,
Number of decimal digits: Max = 15

Min

The parentheses around 'd' (and 'd') are optional,

Position of decimal point from low order digit:

Default = 0 Max = 15
15 or 31 : Default = 15
Number of bits: Max = 32
Number of characters: Max = 4087
Literal of type:
Decimal 9.3
Binary 189
Bit-string '010'B
Character-string 'M N'
Hexadecimal-String 'A3F'X
%INCLUDEAF may only be used with:
ENTRYBLOCK
BASED

Number of constant characters: Max = 256

Figure 4.2 Explicit Data Statement Structure By Data Type.

Min

78

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

PRECISION

The following rules specify the expected precision (p) and scale (q) that will result from arithmetic operations.
The notations are uniquely defined for use in the arithmetic algorithms that follow:

p represents the total number of digits in the result.

q represents the number of fractional digits in the result.

pl represents the total number of digits in the first operand.

ql represents the number of fractional digits in the first operand.

p2 represents the total number of digits in the second operand.

g2 represents the number of fractional digits in the second operand.

The ‘result' of an arithmetic operation refers to the value obtained after an operation has been completed. If
this value is to be further operated on in the same statement, it is termed an ‘intermediate result'.

g=>b+c;

The result of b+c is a final result that will be assigned to g.
g=b +c + d;
The result of b+c is now an intermediate result that will be added to d, giving a final result that will be
assigned to g.
Decimal Arithmetic

The following rules pertain to DECIMAL arithmetic operations on operands, which have been declared or
converted to DEC(p, q). If one of the operands is BINARY, conversion is as follows: BIN(15) to
DEC(5,0), BIN(31) to DEC(11, 0). The largest allowable DECIMAL precision is fifteen (15) digits.

Arithmetic Operations

The following formulas are used to determine the precision and scale of the intermediate result of arithmetic
operations:

Addition and Subtraction

1+ max (p1 - q1, p2 - q2) + max (q1, q2)
max (q1, q2)

o
nn

DCL p5v4 DEC(5,4);
p7v3 DEC(7,3);
In the expression p5v4 + p7v3 the intermediate result will have a precision (p,q) of (9,4):

1+4+4=029
4

°
nn

79

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

Multiplication
p=pl+p2+1
q=04ql1l + q2

In the expression p5v4 * p7v3 the intermediate result will have a precision (p,q) of (13,7):

p=5+7+1=13
q=4+3=7
Division
p =15
q=15 - ((p1 - q1) + q2)

In the expression p5v4 / p7v3 the intermediate result will have a precision (p,q) of (15,11):

15
15 - ((5 - 4) + 3) = 11

p
q

Precision of MOD Operations on Decimal Data

The MOD function, frequently termed a 'remainder after division' has its own formula for computing
precision. After a MOD operation the precision (p,q) is:

MIN (15, p2 - q2 + MAX (g1, q2))
MAX (q1, q2)

P
q

In the expression MOD (p5v4, p7v3, the intermediate result will have a precision (p,q) of (8,4):

MIN (15, (7 - 3 + MAX (4, 3)) = 8
MAX (4, 3) = 4

p
q

Results of Arithmetic Operations on BINARY Numbers

All BINARY arithmetic operations involve the use of a full word, 32 bits, regardless of the declared size
of the operands - BIN(15) - such that all intermediate results are BIN(31).

Truncation

Arithmetic operations take place only after all necessary conversions have been performed. Since the
maximum size of a DECIMAL field is fifteen digits, truncation is necessary if this limit is exceeded. Digits
truncated may or may not be significant digits. The method of truncation employed is based upon whether
the result is intermediate or final. When truncation is associated with a final result, the result is aligned on
the decimal point of the receiving field and excess high order and low order digits are lost. With regard to
intermediate results, truncation may occur after an intermediate result has been obtained and before the
next operation takes place. Truncation of low order fractional digits occurs first. While truncation usually
affects low order fractional digits, high order digits may be truncated if the size of the intermediate result
exceeds the largest allowable precision for the data type.

Consider the following multiplication of four numbers, three of which are DEC(5, 2) and a fourth which is
DEC(7,2). The receiving field is DEC(15,0):

80

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

(5,2) * (5,2) * (5,2) * (7,2)
The rules for determining the size of each intermediate result are those for DECIMAL multiplication.
Stage 1: (5,2) * (5,2) yields (11,4)
The intermediate result obtained at this stage falls within the limit of the 15 DECIMAL digits.
Stage 2: (11,4) * (5,2) yields (17,6)

In order to decrease the size of this intermediate result to within the maximum allowable, two of the low
order fractional digits are truncated to yield a result whose specification is (15,4).

Stage 3: (15,4) * (7,2) yields (23,6)

Truncation of the final result is achieved by aligning the decimal point of the final result (23,6) with that of the
receiving field (15,0). Therefore, the 2 high order digits and the six low order fractional digits are truncated.
This could mean a loss of significance, depending upon the actual values originally in the fields.

FUNCTIONS

There are two types of functions: Built-in functions and Programmer-declared functions. Built-in functions
are a part of the compiler; the programmer writes programmer-declared functions. Both types are invoked
with statements of similar format. The parameters being passed are coded immediately following the
function label, separated by commas and enclosed in parentheses. No function invocations, other than the
pseudo-variable built-in functions (BSTR, CSTR and NSTR) are allowed as parameter assignments in TPF
macro statements.

Built-in functions are a set of pre-defined functions that are an intrinsic part of SABRETALK. These include:

(1) Arithmetic functions which return characteristics about arithmetic data,

(2 string functions which return characteristics about a string or some shifted version of a string
or which allow some attributes of the string to be temporarily over-ridden,

3) an address function which returns an address,

4) a case function which produces conditional branches.

Built-in functions are not to be declared. The built-in function names are SABRETALK keywords, and may
not be used by programmers as identifiers or labels.

Programmer-declared functions are sets of statements, invoked by the use of the function label, the label

usually used as part of a sending field or receiving field in an assignment statement. Programmer-declared
functions operate on the data passed to them and return a value to the invoking statement.

Built-in Functions

The pseudo-variable built-in functions BSTR, CSTR, and NSTR are the only functions that may be coded as
the receiving field of an assignment statement or in the register loading/storing portions of a macro or START
statement.

81

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

A list of the built-in functions, by categories, follows:

Arithmetic

Label Function

ABS absolute value

MAX maximum

MIN minimum

MOD modulo

SIGN algebraic sign

ROUND rounds decimal data
String

Label Function

ALPHA alphabetic scan

NUMERIC non-alphabetic scan

INDEX indexed scan

SHL shift left

SHR shift right

BSTR bit-string

CSTR character-string

NSTR numeric character-string

VSTR variable-length string

LSTR find length of a data field
Address

Name Function

ADDR address
Case

Name Function

CASE case

Arithmetic functions return results that depend upon the precision of the parameters. If a parameter is an
expression, the precision of the result of the expression is used.

ABS Built-in Function

ABS (x)
The above returns the absolute value of x.
General Rules for ABS Built-in Functions:
1) xis arequired parameter, which must be an arithmetic, logical or relational expression.

2) x may be subscripted and/or pointer qualified:

DCL num BIN(31),

val BIN;
num = -13;
val = ABS (num);

Result of the above: val = +13.

82

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

MAX Built-in Function

MAX (x,y (P (--0))
(())
()

The above returns the value of whichever parameter contains the greatest value.

General Rules for MAX Built-in Functions:

1) The data types may be dissimilar in which case conversions will be performed.

2) x and y are required parameters which must be arithmetic, logical or relational expressions.
3) x and y may be subscripted and/or pointer qualified.

4) p is an optional parameter or optional parameters (there may be any number of parameters)

which must be arithmetic, logical or relational expression.
5) p may be subscripted and/or pointer qualified.

6) Precision of result returned will be (n,m), where m is obtained from the parameter with the
most fractional digits. n is equal to k+m where k is obtained from the parameter with the most
integer digits. The precision (n,m) would be large enough to contain all possible significant digits in
the result.

DCL day_rate DEC(7,5),
month_rate DEC(3,1),
trial_rate DEC(9,4),
val DEC(11,5);

day_rate 99.9;

month_rate .3;

trial_rate 98.;

val = MAX (day_rate,month_rate,trial_rate);

val, above, will become 99.9, precision returned is (10,5).

MIN Built-in Function

MIN (x,y

—~~ —~
—_
N N

The above returns the value of whichever parameter contains the least value.
General Rules for the MIN Built-in Function:
1) The data types may be dissimilar in which case conversions will be performed.

2) x and y are required parameters which must be arithmetic, logical or relational expressions.

| 83

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

3) x and y may be subscripted and/or pointer qualified.

4) p is an optional parameter or optional parameters (there may be any number of parameters)
which must be arithmetic, logical or relational expression.

5) p may be subscripted and/or pointer qualified.

6) Precision of result returned will be (n,m), where m is obtained from the parameter with the
most fractional digits. n is equal to k+m where k is obtained from the parameter with the most
integer digits. The precision (n,m) would be large enough to contain all possible significant digits in
the result.

DCL new_price DEC(11,1),
old_price DEC(5,5),
quote_price DEC(1),
val DEC(15,5);
new_price = 1.3;
old_price = .99;
quote_price= 9.;
val = MIN (new_price, old_price, quote_price);

val, above, will become .99, precision returned is (15,5).

MOD Built-in Function

MOD (x,Yy)
The above returns the remainder from the division of x by y.
General Rules for the MOD Built-in Function:
1) x andy are required parameters which must be arithmetic, logical or relational expressions.
2) x andy may be subscripted and/or pointer qualified.
3) Fractional digits of the remainder will be truncated.

4) If the data types of the parameters are dissimilar, a conversion will be performed according to the
rules for conversions in arithmetic expressions.

DCL (bundle, newspaper) BIN(31);
DCL extra BIN;

bundle = 47;

newspaper = 5;

extra = MOD (bundle, newspaper);

The above will return, in extra, the value 2 as a remainder.

84

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

ROUND Built-in Function

ROUND(X,Y);

This function rounds the DECIMAL value X to the Yth decimal place by adding 5 to the Y+1 decimal place
and truncating the result to Y decimal places.

General Rules for the ROUND Built-in Function:
1) The ROUND function may be used anywhere a DECIMAL data type may be used.

2) X may be a DECIMAL variable, literal, constant, or any arithmetic expression whose final result is
DECIMAL.

3) Y isthe place value to round to. It must be a BINARY literal or constant.
4) Y must be 0 or greater. A value of 0 causes the DECIMAL to be rounded to an Integer.

5) If X does not contain Y+1 decimal places a warning will be issued, since no actual rounding can
occur.

DCL VARIABLE DEC(7,5);

DCL ANSWER DEC(5,2);
VARIABLE = 23.56789;

ANSWER = ROUND(VARIABLE * 0.0625,2)

In the above, ANSWER will have the result of the product of VARIABLE * 0.625 rounded to two (2)
decimal places.

Examples:
DECLARE A DEC(11,5);
DECLARE B DEC(11,4);
DECLARE C BIN(31) CONSTANT;
CONST c, 3;
1) A = ROUND(B,2);

MVO S$TEMPDBL(6,R7),B$(5,R7)

MVN STEMPDBL+5(1,R7),B$+5(R7)

AP $TEMPDBL (6, R7),=XL001'5C"

ZAP $TEMP0O1(16,R7),$STEMPDBL(6,R7)
MP $TEMP0O1(16,R7),=XL002"'100C"
ZAP A$(6,R7),$TEMPOO1+10(6,R7)

85

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

2) B = ROUND((A*0.625+B)/2,C);
ZAP $TEMP0O1(9,R7),=XL00O3'00625F'
MP $TEMP001(9,R7),A$(6,R7)
MVC $TEMPDBL(8,R7),$TEMPOO1(R7)
MVN S$TEMPDBL+7(1,R7), $TEMP001+8(R7)
ZAP $TEMP002(9,R7),B$(6,R7)
MP $TEMP002(9,R7),=XL002"'100C"
AP $TEMP002(9,R7), $STEMPDBL (8,R7)
MVC S$TEMPOO3(8,R7),$TEMPO02(R7)
MVN $TEMPOO3+7(1,R7), $TEMP002+8(R7)
LA R1,0002
CVD R1,$TEMP004(R7)
ZAP $TEMP0O5(16,R7), $TEMP0O3(8,R7)
DP $TEMP0OO5 (16, R7), STEMPO04+2(6,R7)
MVC $TEMPOO6(8,R7),$TEMPOO5+2(R7)
MVC $TEMP0O7(8,R7),$TEMPOO6 (R7)
AP $TEMP0O7(8,R7),=XL001'5C"
MVC B$(6,R7),$TEMPOO7+2(R7)

SIGN Built-in Function

SIGN (x)

This function analyzes x and determines its algebraic sign. If x is greater than zero, the value returned is a
positive binary one. If x is zero, zero is returned and if x is less than zero, a negative binary one is returned.

General Rules for the SIGN Built-in Function:
1) xis arequired parameter that must be an arithmetic, logical or relational expression.
2) x may be subscripted and/or pointer qualified.
3) x may be of any arithmetic data type (NCS, DEC, BIN) except BIT.
DCL trial balance DEC(3,2),
audit BIN;
trial_balance = -7.43;

audit = SIGN (trial balance);
In the above, audit becomes a minus one (-1).

ALPHA Built-in Function

ALPHA (a)

The ALPHA built-in function is defined by the installation, usually to mean 'find the location of the first
alphabetic character'. The definition of the function is predicated upon the characteristics of the table
accessed by the function. The name of the table accessed by the compiler is a compiler option (See
Chapter 7, for additional compiler options information.)

The function scans left to right the string of characters provided as the parameter. It returns a binary value
equal to the position of the first character encountered (for which the accessed table indicated "stop scan”).
If the first character in the string meets the criteria, a binary one (1) is returned. If the scan finds no
character meeting the criteria, a zero (0) is returned.

86

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

General Rules for the ALPHA Built-in Function:
1) ais arequired parameter which may not be an expression, meaning it can not contain an operator.
2) a may be subscripted and/or pointer qualified.
3) aistreated as a "string" of characters, i.e., a single character or a series of consecutive characters.

In the following example, assume that the table associated with the ALPHA function is set up to 'stop scan'
on alphabetic characters (A through Z).

DCL list CHAR(30),

val BIN;
list = '9300 nw 36 st';
val = ALPHA (1list);

In the above, val becomes a BINARY 6.

NUMERIC Built-in Function

NUMERIC (a)

The NUMERIC built-in function is defined by the installation, usually to mean 'find the location of the first non-
alphabetic character'. The definition of the function is predicated upon the characteristics of the table
accessed by the function. The name of the table accessed by the compiler is a compiler option (See
Chapter 7, for additional compiler options information.)

The function scans left to right the string of characters provided as the parameter. It returns a binary value
equal to the position of the first character encountered (for which the accessed table indicated "stop scan").
If the first character in the string meets the criteria, a binary one (1) is returned. If the scan finds no
character meeting the criteria, a zero (0) is returned.
General Rules for the NUMERIC Built-in Function:

1) ais arequired parameter which may not be an expression.

2) a may be subscripted and/or pointer qualified.

3) aistreated as a "string" of characters.

In the following example assume that the table associated with the NUMERIC function is set up to 'stop scan'
on non-alphabetic characters (not A through Z).

DCL cost CHAR(12),

val BIN;
cost = 'pending test';
val = NUMERIC (cost);

In the above, val becomes a BINARY 8.

87

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

INDEX Built-in function

INDEX (a,b (,0))
()

The INDEX function causes a search of a specified "string" (a) for a specified "string" (b). b is compared to
the first n characters of a, where n is the length of b. The comparison is repeated every o characters until a
match is found or the end of string a is encountered. If the b configuration is found in a, the starting location
of string b within string a is returned. If b is not contained within a, then the value returned is a binary zero
(0). 0 has a maximum of 69.

General Rules for the INDEX Built-in Function:

1)

2)
3)
4)

5)

6)

7)

a and b are required parameters which must be one of the following: a variable, a BSTR, a CSTR, an
NSTR, a subscripted variable, a structure, a character-string literal or a BIT-string. If BSTR, CSTR or
NSTR built-in functions are used, the 3rd parameter of the BSTR, CSTR or NSTR must be a literal. (See
number 5.)

If a or b is a BIT-string, it must be byte aligned and a byte multiple in length.

a and b may be pointer qualified.

a and b are treated as "strings" of characters.

b must be of shorter length (not equal or greater) than a. In order to be sure that the lengths are
correct, if BSTR, CSTR or NSTR are used, the length parameter (3rd parameter) of the BSTR, CSTR or
NSTR must be a literal,

0 is an optional parameter which, if coded, must be a BINARY literal.

If 0 is not coded, it defaults to one (1).

DCL text CHAR(10),
key CHAR(2),

val BIN;
text = 'abcgopmlzd';
key = 'pm';
val = INDEX (text,key);

val INDEX (text,key,2);

The above statement: val = INDEX (text, key); would result in val becoming 6.

The above statement: val = INDEX (text, key,2); would resultin val becoming O.
DCL 1 rcd,
2 odd (2) CHAR (200),
2 even (2) CHAR(200);
DCL match (3) CHAR(200);
pcL flg BIN (31);
flg = INDEX (rcd,match(2),60) ;

88

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

In the above example a structure is searched to find a match with a subscripted variable. Any
comparison of the second element of match would be to the first element of odd or to the first
element of even.

SHL Built-in Function

SHL (X, y)

The x parameter is converted to a 32 bit BIT-string, if necessary, and is logically shifted y bits to the left.
There is no arithmetic evaluation of logically shifted x. Zeroes are introduced in the vacated bit positions on
the right.

General Rules for the SHL Built-in Function:
1) xandy are required parameters which must be arithmetic, logical or relational expressions.
2) x and y may be subscripted and/or pointer qualified.

3) If, when converted to BIT-string, X is less than 32 bits in length, zero bits are added on the left. x
may be a character, a character-string, an arithmetic or logical expression or a built-in function.

4) If x is a character-string, it must not be greater than 4 bytes in length.
5) y should have a value of 0 through 32.
6) If yis 32, the result will be all zeroes regardless of the value of x.

7) If parameters are of *DEC or *NCS data types, fractional digits will be truncated when the conversion
to BIT-string takes place.

8) All data types are treated as unsigned BIT-string values.

DCL daw BIN,
val BIN;
6-

daw ;
SHL (daw, 3);

val

In the above, val becomes a BIT-string 00110000, (value 48.)

SHR Built-in Function

SHR (X, y)

The x parameter is converted to a 32 bit BIT-string, if necessary, and is logically shifted y bits to the right.
Zeroes are introduced in the vacated logically bit positions on the left.

General Rules for the SHR Built-in Function:
1) xandy are required parameters which must be arithmetic, logical or relational expressions.
2) xandy may be subscripted and/or pointer qualified.

3) If, when converted to BIT-string, X is less than 32 bits in length, zero bits are added on the left. x
may be a character, a character-string, an arithmetic or logical expression or a built-in function.

89

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

4) If x is a character-string, it must not be greater than 4 bytes in length.
5) vy should have a value of 0 through 32.
6) Ifyis 32, the result will be all zeroes regardless of the value of x.

7) If parameters are of *DEC or *NCS data types, fractional digits will be truncated when the conversion
to BIT-string takes place.

8) All data types are treated as unsigned BIT-string values.

DCL doe BIN,

val BIN;
doe = 48;
val = SHR (doe, 3);

In the above, val becomes a BIT-string 00000110, (value 6.)

BSTR (pseudo-variable) Built-in Function

The BSTR, CSTR and NSTR functions can be used to request explicitly that a field is used in a manner that
may differ from the data declaration.

BSTR (a (,01 (,02)

L)
L)
N

N N Nt

The use of BSTR causes a to be treated as a BIT-string, regardless of how it was declared. o1 specifies the
first bit position, from the left, to be considered. If not included, it defaults to one (1). 02 specifies the
length of the field, in bits. If not included, it is assumed to define the rest of field a (from the first bit
considered to the rightmost bit, inclusive, in the field).
General Rules for the BSTR Built-in Function:

1) ais arequired parameter which must be a constant, a variable or a structure.

2) a cannot be subscripted but may be pointer qualified.

3) o1 and o2 are optional parameters that must be BINARY literals.

4) If o1 is greater than the declared size of a, then 02 must be included.

5) If ol is included and 02 is omitted, then o1 must be less than or equal to the declared (default) size of
a.

6) If o1 is omitted, 02 must also be omitted.
7) 02, if included, must have a value of 1 through 32.
DCL cub CHAR(2),

num BIT(4),
val BIT(2);

cub = 'sa';
num = BSTR (cub,4,4);
val = BSTR (num,2,2);

90

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

The above statement: num = BSTR (cub,4,4); would result in num becoming a BIT-string 0001.

The above statement: val = BSTR (num,2,2); would resultin val becoming a BIT-string 00.

In the above example, the use of BSTR to isolate bits of a field is demonstrated. The following example
demonstrates the use of BSTR to treat a field as if it had the BIT attribute.

BSTR (EBW000,1,8) = '80'x;

In this example the declared data-type of EBWO00O, which is CHAR(1), is being temporarily overridden.
Since a hex 80 is to be moved into EBW000, EBWO000 must be given a data-type compatible with the
assignment.

CSTR (pseudo-variable) Built-in Function

CSTR (a (,e (,0)))
(,vi (,v2))

The use of CSTR causes a to be treated as a character-string, regardless of how it was declared. e or v1
specifies the first byte position from the left to be considered. If not included, it defaults to one (1), (the first
byte of a). o or v2 specifies the length of the field, in bytes. If not included, it is assumed to define the rest
of field a (from the first byte considered, to the rightmost byte, inclusive, in the field).

General Rules for the CSTR Built-in Function:
1) ais arequired parameter which must be a constant, a variable or a structure.
2) a cannot be subscripted but may be pointer qualified.
3) e must be a literal if o is not included. If o is included, e may not be subscripted or may not be a
Ezﬁudo—variable. It may be a literal, a constant, a variable, a structure, an expression or a function

4) o is an optional parameter that must be a BINARY literal.

5) If e is specified and o is omitted, e must be less than or equal to the declared (default) size of a. (If o
is not omitted, there is no restriction on the size of e.)

6) If e is omitted, o must also be omitted.
7) o, if included, must have a value of 1 through 4087.

DCL suffix BIT(16),

val CHAR(2);
suffix = '01100101111060010'B;
val = CSTR (suffix, 2);
CSTR(val,2) = CSTR (val,1,1);

The above statement: val = CSTR (suffix, 2); would result in val becoming the character-
string 'S ' ('S' and a blank).

The above statement: CSTR(val,2) = CSTR(val,1,1); would resultin val becoming the
character-string 'SS'.

91

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

8) vi1is a variable starting point that must be declared as BINARY.
9) v2is avariable length that must be declared as BINARY.

10) vi and v2 can only be used in assignment statements.

11) v2 can only be used on the right side of assignment statements.

12) EXCEPTION: Within an IF statement V1 and V2 may be used only on the left side of the equal sign.
Nesting with other built-in functions is not allowed.

EXAMPLES:
INIT = CSTR(NAME, STPNT, VARLTH) ;
CSTR(name,10) = CSTR(INIT,STPNT,VARLTH);
CSTR(name,10) = CSTR(INIT,4,VARLTH);

NSTR (pseudo-variable) Built-in Function

NSTR (a (,e (,0))
(())
()
The use of NSTR causes a to be treated as a Numeric character-string with an implied decimal point to the
right of the field, regardless of how it was declared. The function disregards the sign. e specifies the first
byte position, from the left, to be considered: if not included, it defaults to one (1). o specifies the length of

the field, in bytes. If o is not included, a default value is assumed that defines the rest of field (from the first
byte considered, to the rightmost byte, inclusive, in the field).

General Rules for the NSTR Built-in Function:
1) ais arequired parameter which must be a constant, a variable or a structure.
2) a cannot be subscripted but may be pointer qualified.

3) e s an optional parameter and represents the most general of operands which can be a literal, a
constant, a variable, a structure, an array element, an expression or a function call. EXCEPTION: if o
is omitted, e must be a literal. The format of the expression e must conform to the rules governing
subscripts (See Chapter 4, Subscripts), with the exception that variables may not be pseudo-
variables.

4) o is an optional parameter that must be a BINARY literal.

5) If e is specified and o is omitted, e must be less than or equal to the declared (default) size of a. (If o
is not omitted, there is no restriction on the size of e.)

6) If e is omitted, o must also be omitted.

7) o, if included, must have a value of 1 through 256.

92

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

Example:

DCL cur CHAR (6),
val PIC '999';

cur = '123456';

val = NSTR(cur, 3,3);

As a result, val would become 345. The internal representation of val (in hexadecimal notation) would be
F3FA4F5.

DCL amt CHAR(5);
DCL decamt DEC(5,2);
decamt = NSTR (amt);

In the above example, unless amt contains data in zoned DECIMAL format, the statement
decamt = NSTR (amt);

will not be meaningful at execution time. The execution of the statement will be as in *DEC = *NCS
assignment statements, i.e., the data in amt will be packed first, then the decimal points will be aligned, and
the data moved. If amt contained the hex value FOFOF2F4F1, then the result of the assignment would be
that decamt contains 00241F. The following is probably not meaningful:

DCL bitamt BIT(16);
DCL decamt DEC(5,2);
bitamt = '4e60'Xx;

decamt = NSTR (amt);

VSTR Built-in Function

VSTR (a, e1, e2)

The VSTR function differs from the pseudo-variables BSTR, CSTR and NSTR in that the size of the field to be
considered may be variable. In other words, parameter e2 need not be a literal. Additionally, all the
parameters of the VSTR function are required. There are no defaults, as in the pseudo-variable functions.

A VSTR function specification must appear, by itself, as the sending field (right hand side) of an Assignment
statement.

The field a will be treated as the data type it was originally declared when the rules of assignment are
applied. However, all calculations are performed on a byte basis, and the assignment is performed as a
straight byte for byte move without data conversions of any kind. el specifies the first position, from the left,
to be considered. e2 specifies the length of the field, in bytes.

The VSTR function should only be used when the size of the move is variable and no data conversion is
required. Use of the pseudo-variable functions results in the generation of more efficient BAL code when the
size of the move is not variable.

element variable |
pseudo-variable |
structure |
array element |

= VSTR function ;

93

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

DCL msg CHAR(150),

pge BIN,

val CHAR(200);
125;
VSTR(msg, 1, pge);

pge
val

In the above example, the leftmost 125 characters of msg are moved into the leftmost 125 bytes of val.
The rest of val is not affected.

General Rules for the VSTR Built-in Function:

1) ais arequired parameter that may be any data type: a literal, a constant, a variable, a structure, an
expression or a function call.

2) a cannot be subscripted, but may be pointer qualified.

3) elis arequired parameter that must be an expression and may be subscripted. It should yield a
result whose value is 0 through 256. The expression must conform to the rules governing subscripts
(See Chapter 4, Subscripts), with the exception that a variable may not be a pseudo-variable.

4) e2is arequired parameter and must be a literal, a variable that may be subscripted or an expression.

5) e2 should yield a value of 0 through 256.

6) If the value of e2 is negative, the result is unpredictable.

7) If the value of e2 is zero, no data will be moved.

8) Overflow will result if the receiving field is shorter than the length of the move specified by e2.

9) The receiving field will not be filled with blanks if it is larger than the sending (VSTR) field.

DCL header CHAR(10),
length BIN,
slot2 CHAR(10),

slot3 CHAR(10);
slot2 = VSTR(header,1, length);

In the above example, if the value of 1ength is greater than 10, then field slot3 will be overlaid during
execution. There are two ways to avoid this:
A) An additional field may be declared following slot2 so that any overflow will not overlay slot3.

B) Rewrite the assignment as follows:

slot2 = VSTR(header,1,MIN(length,10));

This way, if length is greater than 10 it will not be used and field s1ot3 will not be overlaid.

Other tests may be necessary such as preventing a zero or negative value from being used in VSTR as the
e2 parameter. If such a number is used, it could result in a very long move that would overlay areas
following the receiving field.

94

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

ADDR Built-in Function

ADDR (a)
This function returns a pointer to the data item a. (Refer to Chapter 4 for a description of pointers).
General Rules for the ADDR Built-in Function:

1) amust be an identifier, either an element variable or a constant. It may be subscripted and/or pointer
qualified.

2) a may not be an expression.

%INCLUDEAF eboeb;

DCL 1 input BASED (inptr),
2 task CHAR(30),
2 charter CHAR(30),
2 flds (20) BIN(15);

DCL aptr POINTER;

GETCC d2,11;

inptr = celcri;

aptr = ADDR (flds(1));

The above will result in the address of flds being stored into the POINTER called aptr.

Notes:

1) If the address of a field is to be obtained using relative addressing, the following method is
satisfactory:

fldptr = ADDR (flds) + displacement;

2) This function may not be used to obtain the address of a statement label, as in:
mylab: sal = wge + bon;
val = ADDR (mylab);
3) It (and all other non-pseudo variable built-in functions) also cannot be used for register value storing
in a TPF macro statement or a user macro statement. The following is not allowed:

ENTRC Z009(#RG1=ADDR(fld));

An alternative coding method is as follows:

otherfld = ADDR(f1ld);
ENTRC Z009(#RGl=otherfld);

CASE Built-in Function

CASE (Xx,Yy)

The above causes a branch based on the value of x.

95

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

General Rules for the CASE Built-in Function:
1) CASE may only be used inan IF - THEN DO statement.
2) x must be a BINARY variable.
3) y must be an BINARY literal.

4) The IF - THEN DO statement must be followed by at least a number of either GOTO statements; or
CALL and/or ENTER statements indicated by parametery.

5) If xislessthen 1 or x is greater than parameter y, a branch to the last GOTO, CALL or ENTER routine
will occur.

6) GOTO statements and CALL statements may NOT be mixed in a single CASE expression.
7) GOTO statements and ENTER statements may NOT be mixed in a single CASE expression.
8) CALL and ENTER may be freely mixed within a single CASE expression.

9) ENTRC is ONLY valid as the last statement in CASE as indicated by y. ENTNC and ENTDC may be
used anywhere within CASE.

10) Parameters may NOT be passed in the called procedures or in ENTER(S) within a CASE expression.
CALL PROCEDURE1(B); or ENTNC (#rgl=var); will generate an error message.

DCL (CHOICE) BIN(31);
CHOICE = 3;
IF CASE(CHOICE,5) THEN DO;
GOTO ROUTINE1;
GOTO ROUTINEZ2;
GOTO ROUTINES3;
GOTO ROUTINE4;
GOTO ROUTINES;
END;

The above will cause a branch to ROUTINES.

DCL (CHOICE) BIN(31);
CHOICE = 3;
IF CASE(CHOICE,5) THEN DO;
CALL ROUTINE1;
CALL ROUTINEZ2;
CALL ROUTINE3;
CALL ROUTINE4;
CALL ROUTINES;
END;

The above will cause a branch to the CALL to ROUTINE3 and on returning from ROUTINE3 will branch to the
END of the CASE statement.

96

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

DCL (CHOICE) BIN(31);
CHOICE = 3;
IF CASE(CHOICE,5) THEN DO;
ENTDC PROG1;
CALL ROUTINEZ2;
ENTNC PROG3;
CALL ROUTINE4;
ENTRC PROGS5;
END;

The above will cause a branch to the ENTNC to PROG3. Since this is a no return enter, no branch to the
END of the CASE statement is necessary.

Examples:

1)

2)

DECLARE (A,B
DECLARE CHOICE BIN(31);
IF CASE(A,6) THEN DO;

GOTO
GOTO
GOTO
GOTO
GOTO
GOTO

END;

L
LT
BN
cL
BN
LA
BC
SL
B
ROUTINEZL;
B
ROUTINEZ2;
B
ROUTINE3;
B
ROUTINE4;
B
ROUTINES;
B
ERROR_RT;
B

) BIN(31);

R15,A$(R7)
R R15,R15
H *+12
R15,=XL004'00000006"
H *+8
R15,0006
TR R15,R0
L R15,2
*+4(R15)

ROUTINE1
ROUTINE2
ROUTINE3
ROUTINE4
ROUTINES

ERRORS$RT

IF CASE(A,5) THEN DO;

CALL

CALL

CALL

L

LT
BN
CL
BN

R15,A$(R7)
R R15,R15
H *+12
R15,=XL004'00000005"
H *+8

LA R15,0005
BCTR R15,R0

SLL R15,3

B *+4(R15)
ROUTINE1;

BAS R15,ROUTINE1

B $GEN0G0OO1
ROUTINEZ2;

BAS R15,ROUTINE2

B $GEN0G001
ROUTINE3;

97

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

BAS R15,ROUTINE3
B $GEN00O1
CALL ROUTINE4;
BAS R15,ROUTINE4
B $GEN00O1
CALL ROUTINES5;
BAS R15,ROUTINE5S
END;
$GENGOO1 DS OH

3) IF CASE(CHOICE,5) THEN DO;

L R15, CHOICES$ (R7)

LTR R15,R15

BNH *+12

cL R15,=XL004'00000005"
BNH *+8

LA R15, 0005
BCTR R15,R0
SLL R15,3
B *+4(R15)
ENTDC PROG1;
ENTDC PROG1
CALL ROUTINE2;
BAS R15,ROUTINE2
B $GEN0001
ENTNC PROG3;
ENTNC PROG3
CALL ROUTINE4;
BAS R15,ROUTINE4
B $GEN0001
ENTRC PROG5;
ENTRC PROG5
END;
$GENGOO1 DS OH

EXITC;
EXITC

ROUTINE2: PROC;
ROUTINE2 DS OH
ST R15, $SAV0001 (R7)
ENTRC PROG2 (#R1=A,B=#R2);
L R1,A$(R7)
ENTRC PROG2
ST R2,B$(R7)
RETURN;
L R14, $SAV0001 (R7)
BR R14
END ROUTINEZ2;

The table in figure 5.1 depicts the relationships between the (previously discussed) built-in functions if
nesting them is under consideration. Nesting, here, refers to the use of a function specification in its entirety,
as a parameter of another function. Outer functions are read by row, inner functions are read by column.

98

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

LSTR Built-in Function

a =

LSTR

(b (,c))

This function returns the length of a data field.

General Rules for the LSTR Built-in Function:

1) ais areceiving field which must be declared as either BINARY or BIT.

2) bis adata field, a required parameter that must be a variable or an array. b may NOT be declared
as BIT.

3) cis an optional parameter which can be a variable or a constant, and is used as follows:

Example:

/*

/*

/*

/*

/*

« Starting point, which may be either a variable or a constant, if b is a structure. If the variable
is an identifier in the structure of the data field then it represents the displacement from where
the calculation of the length is made. If the variable is not in the structure of the data field then
its content will used to calculate the length.

 Index, which must be a constant. If b is an array and:

array.

at level 01 then the default is the size of the entire array.
at a sub-structure then the default is the size of an entry of the

e If bis afield of a sub-structure in an array then the optional parameter must be omitted.

DECLARE
DECLARE

DECLARE

DECLARE

data field
K =

data field
K =

and c is

Q

variable c
K

variable c

(3,K) BIN;

01 GAME (4),

02 NAME CHARACTER (10),

02 ADDRESS CHARACTER (10);

01 ONPUT,

02 ON1,

03 ON2 (3),

04 ONE CHARACTER (4),

04 TWO CHARACTER (8),

03 ON3 CHARACTER (9);

01 KAME,

02 KAM CHARACTER (4),

02 LAM CHARACTER (6),

02 ADDR CHARACTER (10);

is a structure */
LSTR (KAME);

LA R15, 0020

STH R15,K$(R7)

is a substructure */
LSTR (ON1);

LA R15, 0045

STH R15,K$(R7)

constant */
LSTR (KAME,2);

LA R15, 0018

STH R15,K$(R7)

is in a structure of data field */

LSTR (KAME, LAM);

LA R15, 0016

STH R15,K$(R7)

is not in a structure of data field*/

99

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

K = LSTR (KAME,J);
LA R15,0020
LH R14,$J(R7)
CR R15,R14
BL $GEN00O1
SR R15,R14
STH R15,$K(R7)
$GENGGO1 DS OH

/* Default is a size of an entire array */
/* because GAME is a level 01 */
K = LSTR (GAME);

LA R15, 0080
STH R15,$K(R7)

/* 1level is not 01 then the default is the */
/* length of an entry */
K = LSTR (ON2);

LA R15, 0012
STH R15,$K(R7)
/* 1length of an entry in an array. */
K = LSTR (GAME,1);
LA R15, 0020
STH R15,$K(R7)
/* length of an entry in an array, same as above*/
/* a field of a sub-structure in an array */
K = LSTR (NAME)
LA R15, 0010
STH R15, $K(R7)
K = LSTR (ONE);
LA R15, 0004
STH R15,$K(R7)

BSTM Built-in Function

a = BSTM (b, c)
This function returns a condition code.

General Rules for the BSTM Built-in Function:

1) ais the result field, which must be declared as BIN or BIT, and will receive a condition code

setting as follows:

0 if all the tested bits are off (or zero).
1 if some of the tested bits are on, some off (or mixed).
3 if all the tested bits are on (or one).

2) b, the tested identifier, is a required parameter that must be a variable. If the length of the
tested identifier is more than a byte, then the first byte is compared as the default. The
Programmer may use the ADDR built-in function to allocate a particular byte as shown in

example 3 below.

3) c, the immediate byte, is used as a mask for selecting the bits to be tested.

100

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

Example:
DECLARE B DEC(7,2),
c CHAR(4),
J BIN(31);

1) FLAG = BSTM((ADDR(B)+2), '10010111'B);
LA R15,B$(R7)
A R15,=XL004'00000002'
SR R14,R14
™ 0(R15),X'97'
BZ $GEN0011

LA R14,1
BM $GEN0O11
LA R14,3

$GENOOGO11 DS OH
STH R14,FLAGS$(R7)

2) FLAG = BSTM(C, '100101'B);
SR R15,R15
™ C$(R7),X'25"
BZ $GEN0OO7

LA R15,1
BM $GEN0OO7
LA R15, 3

$GEN@OO7 DS OH
STH R14,FLAG$(R7)

3) FLAG = BSTM((ADDR(C)+3), '00001101'B);
LA R15,C$(R7)
A R15,=XL004'00000003"
SR R14,R14
™ 0(R15),X'0D’
BZ $GEN0012

LA R14,1
BM $GEN0O12
LA R14, 3

$GENOO12 DS OH
STH R14,FLAGS$(R7)

4) TIF BSTM(J,'100101'B) = 1 THEN GO TO NEXT0001;
SR R15,R15
™ J$(R7),X'25'
BZ $GEN0O13

LA R15,1
BM $GEN0O13

LA R15, 3
$GENOO13 DS OH

c R15,=XL004'00000001"

BE NEXT0001

NOTE: If the BSTM is used in an assignment statement, the result field may be tested in a separate IF
statement. If the BSTM is used in an IF statement, and the result will be used in a test evaluation, see
example 4.

101

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

xoozZno - - - - - 1 1 1 1 1 1 1 1 1 1 1 LI T R | -
1
1
OV LW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1
1
nNnnNkE== 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~—
1 .
1 [
1 <
<oQX o " +H +H o ! ! ' o ! ! ' < ! 1 I\ ' !)
1
1 <
1 (1]
>Nk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 =
1 +J
1
1 - Q
2V d = H ®H +d +H +H N H o ! ! ' <t 1 ! ' ! % w
1
1 o £
' >
Ok 1 1 1 1 1 - - N M N N 1 1 1 1 - 1 1 1 1 - [7)]
1 +J
1 (1] o
1 +J)]
NV T - T R | ! o = NMm H o ! ! ' <t 1 ! ' ! .% m
1
1 (1]
1 Y
N IT X — i - i - 1 1 1 i - 1 1 1 < 1 1 1 1 1 (o] m r.
1 . .
1 < [T I S« I
7 3 o =€ = = oo ! ! ' o ! ! ' < ! 1 ! ' ! O +HO&LO
1 ol O+ O+
1 - COEQL
' @ S EGE
HZ20ouwWX i ™ i i i 1 1 1 i L] 1 1 1 < 1 1 1 ' 1 c Y= @© &~ @©
1) @ =
1 e - © Q @©
1 £ - o o
Z2D0o=ZUWXHO i ™ i i i 1 1 1 i i 1 1 1 < 1 1 1 ' 1 o T
1 o & ST
1 “ O O W
' - o+o-H
L dA T i i Lo i i 1 1 1 i - 1 1 1 < 1 1 1 1 1 (1] - 0 C
1 (=] QY% 0
' [F} £
1 | TN 0n®n
NHOZ o =€ = = oo ' 1 ! o ! ! ' < ! 1 ! ' ! ﬂ Maaa
1 . .
1 T oTTT
1 n o Q0D
=oaQa o =€ = = oo ! ! ' o ! ! ' < ! 1 ! ' - L It Rt
1 o O W
1 (3= I e e I |
' o E E EE
=HZ i - i i Lo 1 1 1 Lo - 1 1 1 < 1 1 1 1] - o L OO
1 TOLOOOD
1 mP(PPP
1 .
=X i - i i i 1 1 1 i i 1 1 1 < 1 1 1 1 ™
1 S [B |
1 (2]
' [1:]
<0 i Lo i i i 1 1 1 i i 1 1 1 < 1 1 1 1 ™ [~ | N M
1 .
~ >
o f—_—_—
c [$) X
= - ' [%)] x = [=] = <<) x -l 24 [+ 4 [+ 4 [+ 4 24 a4 24 = L [=]
L [o < () o (L) = 4 L X = = = = = = (=] = = (2] =
[} ! < = = = = o L a (72] 0 n n 0 n (=] (72] (2] << >
- + ' 0 - = = 1] o = > < -l o (S] o
.Ou ' < W H 4

Figure 5.1 Nesting of Built-in Functions.

102

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

PROGRAMMER-DECLARED FUNCTIONS

A programmer may specify that an identifier denote a programmer-declared function by coding the
identifier in a DECLARE statement with the attribute FUNCTION.

General Format:

1 pcL

| identifier FUNCTION ;
| DECLARE |

DCL sqroot FUNCTION,
The programmer may then code, elsewhere in his program, a PROCEDURE statement using this identifier as
the PROCEDURE label:

sqroot: PROC (a);
The PROCEDURE statement contains a list for all parameters that may be passed to the programmer-
declared function by the invocation.

The programmer terminates the declared function logically with a parameterized RETURN statement and
then physically with an END statement.

An example of the use of a programmer-declared function:
DCL sqroot FUNCTION;
;ééult = sqroot(item);
sqroot: éébc(invalue);
§é+URN(outvalue);
END;
In this example the function sqroot is invoked to compute the square root of item.

General Rules for Programmer-declared Functions

1) There is no restriction on the number of parameters that may be passed to a programmer-declared
function. However, at least one parameter must be specified when the function is invoked.

2) A parameter may be one of the following:

. variable
. structure

3) A parameter may not be subscripted nor pointer qualified.

4) Normal exit is through one RETURN statement with one mandatory parameter, enclosed in
parentheses, coded after it. It is possible to exit by use of a GOTO statement, but the value computed
in the function will be lost, and the execution of the statement that contained the corresponding
function invocation reference is discontinued.

103

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

5) Programmer-declared functions may be invoked by stand-alone sending fields in assignment
statements, or by operands in expressions of any type.

6) Programmer-declared functions are invoked by coding the function name with the parameters to be
passed, enclosed in parentheses, immediately following.

7) A maximum of 32 programmer-declared functions are permitted in a program.

8) A programmer-declared function may refer to all data names in the program without giving separate
data declarations.

9) Entryto a programmer-declared function does not cause allocation of another block of
AUTOMATIC storage.

10) The (mandatory) value returned is in a register. If the RETURN statement parameter is an arithmetic
data type other than BINARY, a conversion to BINARY will take place and data may be lost.

11) The END statement terminating the function may not have an operand following it.

PROCEDURES

A PROCEDURE is a group of statements headed by a PROCEDURE statement and terminated by an end
statement. There are two types of procedures: Internal and External. (Programmer-declared functions are
headed by a PROCEDURE statement and terminated by an END statement, however, programmer-declared
functions are classified as functions rather than procedures).

General Format of PROCEDURE statements:

For Internal Procedures:

label: T PROC T ((parameter list)) ;
| PROCEDURE | ()
- -)
For External Procedures:
label: | PROC 1 ;
| PROCEDURE |

NOTE: Each parameter may be an unsubscripted variable or a structure name, but may not be a pseudo-
variable.

104

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

Internal Procedures

Optional internal procedures may be coded within the external procedure. Each one must have a
PROCEDURE and END statement, just as external procedures. A list of parameters may be coded in the
PROCEDURE statement heading the internal PROCEDURE.

General Format of the PROC statement:
intrnl_proc_lbl: T PROC T ((argl (,arg2,...argn))) ;
| PROCEDURE | (

- ()

The logical end of an internal PROCEDURE is denoted by a RETURN statement.

General Format of the RETURN statement:
RETURN ;

The physical end is denoted by an END statement.

General Format of the END statement:

END (internal_proc_label) ;
()

Example of an internal procedure:
intprocl: PROC(pay,rate,date) ;
RETURN ;
END ;

Upon execution of a RETURN statement, control will be transferred to the statement following the CALL
statement that invoked the internal PROCEDURE.

An internal PROCEDURE is invoked by coding the label prefixing its PROCEDURE statement in a CALL
statement. If a list of corresponding parameters is to be passed, it must be enclosed in parentheses
immediately following the coded label. The CALL and PROCEDURE parameters must have similar or identical
data types, thatis:

CALL PARAMETER | PROCEDURE PARAMETER
.................. I-----------------------
CHAR I CHAR

BIN/DEC/BIT I BIN/DEC/BIT

LAB I LAB

Format of the CALL statement:

CALL internal_proc_label ((argl (,arg2,...argm))) ;
(

Example of a CALL statement:
CALL intproci(pay2,rate,date2) ;
General Rules for Internal Procedures:

1) An internal PROCEDURE may invoke another internal PROCEDURE.

| 105

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

2) An internal PROCEDURE may not be recursive, i.e., should not invoke itself, directly or indirectly.

3) The compiler does not generate a branch around an internal PROCEDURE; it has to be placed outside
the logic flow of the main program.

4) There may be more than one RETURN statement per internal PROCEDURE.
5) Exit from an internal PROCEDURE should be through the use of a RETURN statement.

6) The RETURN statement logically ending an internal PROCEDURE may hot have a parameter coded
with it.

7) An internal PROCEDURE can only be referenced through a CALL statement.
8) Entry to an internal PROCEDURE does not cause allocation of another AUTOMATIC storage block.

9) An internal PROCEDURE may refer to all data names in the program without giving separate data
declarations.

10) A maximum of 50 internal procedures may be coded in a program.

11) Aninternal PROCEDURE may not be physically nested within another in the source program,
although an internal PROCEDURE may contain CALL’s to other internal procedures in the program.

12) Each internal PROCEDURE must have a corresponding END statement.

13) Parameters in the internal PROCEDURE should be short to conserve storage and increase program
efficiency.

14) The parameter for a CALL of an internal PROCEDURE statement can be used to develop values,
unlike the parameter of the PROCEDURE statement that merely specifies a field into which the value is
placed.

The parameters of the PROCEDURE are limited to structured variables that may not be signed, subscripted or
pointer-qualified. The parameters of the PROCEDURE CALL have a less limited format and may be

. structured, arrayed, signed, subscripted, concatenated, or pointer-qualified

. variables, constants, literals, built-in functions, pseudo-variables, or programmer-declared
functions

. arithmetic, relational, or logical expressions

They may NOT be system-equate names.

It is a good idea to use pointers when passing large fields, rather than the fields themselves. This can be
illustrated by the following:

/* poor method */
DCL xstring CHAR(150);
DCL ystring CHAR(150);
CALL subr (xstring);

subr: PROC (ystring);

RETURN;
END subr;

106

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

This requires 150 characters for ystring and will result in a long move for each execution of the CALL. An
alternate method would be:

/* better method */

DCL xstring CHAR(150);

DCL ystring CHAR(150) BASED (p);
CALL subr (ADDR(xstring));

subr: PROC (p);

RETURN;
END subr;

This results in the address of xstring being stored in p. subr may now reference ystring. Itwill, in
fact, be referencing xstring through the pointer p.

External Procedures

The PROCEDURE statement must be the first physical statement in the program. The entire program
constitutes an external procedure. The program name serves as the label on the PROCEDURE statement for
the external procedure. This label should conform to local programming standards for program names.
External procedures are activated in the same manner as any other program segment in TPF, that is,
through the use of an enter-type macro.

The external PROCEDURE is physically terminated by an END statement (See End Statement, this chapter)
Parameters can be passed to the external PROCEDURE by the use of register-loading statements coded in
conjunction with the invoking ENTER-type macro. The START statement must be used in the external
PROCEDURE receiving the parameters to share the values passed in the registers. The optional parameter
list following the PROCEDURE statement, as illustrated at the beginning of this section, is to be used only with
internal procedures. If parameters are being passed via registers to the external PROCEDURE, the START
statement (See START Statement, this chapter) should be the first executable statement in the program,
following the PROCEDURE statement. DECLARE statements are non-executable and may, therefore,
precede the START statement, if desired. External procedures may invoke other external procedures or
Assembler Language programs in the system by the use of an ENTER-type macro. There is no restriction
placed upon activating an Assembler Language program from a SABRETALK program or vice versa.

MACROS
Macros (names of macro requests) can be classified as:

A) TPF macros (supplied by IBM).

B) SABRETALK Macros (START, GLOBX, etc.).
C) Application macros (CSERA, TDLYC, etc.).
D) Special macros (TPFDF, ETC.)

E) User macros.

The TPF system contains a set of macros that, at execution, handle work such as:

. Main storage management.
. Input / output functions.
. Queuing of work to be done.

107

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

Most of these macros are coded in the same way under SABRETALK and under TPF. However, macros
which presume that parameters are set up in registers, or will return control with information in registers,
must be coded as part of a macro statement that will indicate the corresponding identifiers in the
SABRETALK program. Parameters may be passed in any register allocated for applications under TPF.
They may be referred to by number (0, 1, 2, RO, R1, R2, etc) or by the TPF system equates (RAC, RG1,
RGA, etc.). Parameters to be passed to registers are coded first, followed by parameters received from
registers.

It should be noted that the contents of the macro table and the status of every macro, is determined by each
installation. The table is established by the user when the Compiler system is installed. Thereafter, it is
maintained via the SABRETALK utility UPDATMAC. Programmers should be provided with a list of macros
that are supported by the Compiler at their work site.

General Format of Macro Statements:

To Load Registers:

macro (argl,arg2,...,arg20) (optional register loading,) ;
) (storing: see Section 12.5.1)

() ()

(where arg = macro argument)

Each argument will be an identifier. One argument may specify a statement label to be used as an error-out
address.

ENTRC program_name(#RO=parm_1, #R3=parm_2,
#R4=parm_3,
parm_4=#R2, parm_5=#5) ;

This example shows how a macro statement is used to enter a TPF program segment that expects
parameters in #R0, #R3 and #R4, and that returns parameters in #R2 and #R5. Although SABRETALK
provides the facility, parameters need not be passed in registers; they may also be passed in the ECB or in
blocks attached to the ECB.

General Rules for Macro Statements

1) Any macro statement that passes parameters through the ECB (Entry Control Block) can have these
parameters set up by the program before the execution of the macro statement. (The ADDR built-in
function is unacceptable as a macro parameter).

An example:

level = ADDR(celfa2);

ENTRC FACE(#R0O=ordno,
#R6=#ss1ri,
#R7=1evel,
rtncod=#R0);

2) All parameters passed via register loading on the macro statement are coded first, followed by all
parameters being stored on the macro statement.

3) A maximum of twenty (20) macro arguments is allowed.

108

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES ‘

4) There is no limit to the number of parameters passed (or loaded into registers) and/or returned (or
stored from registers). Non-pseudo variable built-in functions cannot be used for obtaining register
values within a TPF macro statement or a user macro statement. The following is not allowed:

ENTRC Z009(#R1=ADDR(f1d));

An alternative coding method is as follows:

otherfld = ADDR(f1ld);
ENTRC Z009(#R1=otherfld);

5) SABRETALK does not support the GLOBZ macro. When referencing global fields it is necessary to
code the GLOBX macro or GLOBW macro as shown in the following macro statement:

DCL @fncO® BIN(31) BASED(fonptr);
GLOBX @fnc00(fonptr=#R15);

This macro statement will conditionally generate a set of Assembler Language instructions (including
the GLOBZ macro) in its expansion. The following is the expansion of the GLOBX statement:

GLOBZ REGR=#R15(FLD=@fnc00)

()
LA R15, @fncoo

DROP R15
ST R15, fonptr$(R7)

As shown in the above examples, the register specified in the GLOBX statement must be RDB (R15).
The identifier (in this case, called fonptr) must be defined by the programmer in a DECLARE
statement as shown by the following:

DCL 1 fonitms(8) BASED(fonptr),
2 foncor POINTER,
2 fonfil BIT(32);

NOTES:

A) If the GLOBAL identifier is 8 characters including the @ sign there will be a conflict of identifiers
at assemble time. To circumvent this situation the following coding technique is recommended:

DCL @GLOBLSW BIT(8) BASED(GLBPTR);
DCL SW BIT(8) DEF @GLOBLSW;

GLOBX @GLOBLSW (GLBPTR = #R15);
IF X > SW THEN....... ;

As shown above SW will have the same base address as @GLOBLSW.

B) Values outside the global area can no longer be referenced after using the GLMOD macro
(where the protection key is altered).

6) Generally, register contents passed as parameters contain BINARY data or address data. If the data
type of the field being loaded is arithmetic then the data will be converted to BINARY. If the data type

is character-string of four characters or less then the character move and blank-fill operations are
performed.

109

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

7

8)

9)

If a macro requires processing by the compiler but has keyword parameters, enclose each keyword
parameter in single quotes:

ROUTC 'list=R2','lev=d2'(#R2=listptr);

SERRC 'R, 009600, ,cp,, ' (#R2=myptr);
GFSCC DB',, 'CR;

The compiler eliminates the single quotes from the unformatted output statement that is passed to
the assembler:

1 R2, listptr$(R7)
ROUTC list=#R2,LEV=d2
GFSCC DB, ,CR;

It should be noted that although the macro is syntax-checked, the items within the single quotes are
passed unchecked.

All TPF macros are reserved words. They may not be used for any purpose except to perform the
intended operation associated with that word.

Macro arguments are passed through the syntax checker; therefore, arguments that do not conform
to grammar rules will produce syntax errors:

SERRC R, '12ABCD'

In the above macro (SERRC) statement, the second positional argument must specify an error
message number, consisting only of the hexadecimal numerics 0 through 9 and A through E

10) SABRETALK has a facility to allow macro arguments to bypass syntax checking. This facility should

only be used for macro statements that do not require any processing by the compiler (such as those
that do not manipulate registers or check for error exits). When an installation's macro table is set up,
macros are pre-defined as syntax-checked or not. The programmer has no control over this through a
compile.

In effect, the macro statement will be sent through the compiler and the arguments added only when
the Assembler Language instructions are generated. Programmers must note that when using non-
syntax checked macros that everything will be taken as a parameter until the semicolon delimiter is
found. This facility can be used when an installation writes new system macros that do not conform to
the TPF positional standard. This should not be interpreted as support for application macros.

To use this facility with a macro, the macro must be added to a special macro table by executing the
utility UPDATMAC.

11) The TPF macro GLMOD may be used by applications programs that need to modify data in a

protected global area. The storage protection key in the current PSW for the application program
concerned will be changed to match that of the global area. The storage protection key must be
restored after core modification, generally through the use of the FILKW macro. Between issuing
GLMOD and FILKW, the applications program must not issue any ENTER / WAIT type macros, nor
should it store data in working storage (AUTOMATIC, BASED or ENTRYBLOCK (ECB)).

In order to avert a program interrupt (protection exception), care must be exercised that the
statement(s) used to modify the protected area do not reference data that requires either alignment or
conversion. Both instances necessitate the use of AUTOMATIC storage.

110

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

An Example of the Use of the GLMOD Macro:

Statement # Statement

1 DCL dec5v0 DEC(5) ;

2 DCL templ BIN(31) ALIGNED ;

3 DCL globall BIN(31) BASED (gbliptr) ;
4 GLOBX globali(gbliptr=#R15);

11 GLMOD ;

12 globall = dec5v0 ; /* pgm protection exception */
/* occurs here */
13 FILKW R ;

An alternate coding technique:

20 templ = dec5voO ;
21 GLMOD ;

22 globall = templ ;
23 FILKW R ;

The Assembler language coding produced for the statements above would be:

Statement # BAL coding

12 ZAP $TEMPDBL(8,R7),DEC5V0$(3,R7)
CVB R14,$TEMPDBL(R7)
ST R14, GLOBAL1(R6)

20 ZAP S$TEMPDBL(8,R7),DEC5V0$(3,R7)
CVB R14,$TEMPDBL(R7)
ST R14, TEMP1$(R7)

22 MVC GLOBAL1$(4,R6),TEMP1$(R7)

REGISTER LOADING AND STORING

In order to interface with TPF segments and other program segments in the system, it is sometimes
necessary to pass data via registers. The loading and storing of registers using values declared in
SABRETALK programs is accomplished in conjunction with the START statement or with a TPF macro
statement.

A) To load registers:

TPF macro name argument(s) ((#reg = | variable |)) ;
(| constant |))
(| literal |)
(- -)
()
B) To store registers:
TPF macro name argument(s) ((variable = #reg)) ;

Edited character-strings cannot be referenced in register loading and unloading. The only built-in
functions that may be used are the pseudo-variable built-in functions BSTR, CSTR, and NSTR.

111

‘CHAPTERS:EXPANDEDEXECUTABLESTATEMENTRULES

C) To load and store registers:

TPF argument(s) ((#reg= | variable | , variable =#reg)) ;
macro (| constant |)
name (| literal |)

(- -)

reg specifies the register to be loaded or stored and may be either the physical register number or its
corresponding system-equate.

The following registers are available for use:

Physical System
number equate
0 RAC / RGO / RO
1 RG1 / R1
2 RGA / RG2 / R2
3 RGB / RG3 / R3
4 RGC / RG4 / R3
5 RGD / RG5 / R5
6 RGE / RG6 / R6
7 RGF / RG7 / R7
14 RDA / R14
15 RDB / R15

Examples:

START (fare=#RO,cptr=#R7);

VAL = BSTR(CMSN,9,8);

ENTRC ssb2(#R7=BSTR(VAL));

ENTRC ssb4(#Ri1=aptr, #R2=cmsw, #R0=k,
#R3=htod, #R4=cptr, #R5=mtod) ;

ENTRC ssh3(#R1l=answ,cmsw=#R0O, sw=#R5);

BACKC (#R5=cmsw, #R0=Kk) ;

System Equates in Macro Statements
The number, or hash, sign (#) is also used as the first character of all system-equates:

Vv = #PNDRI;

The above will cause the value equated to #PNDRI to be stored inv. A # as part of a system-equate and
as part of a register parameter may be used in the same statement:

ENTRC face (#RO = ordno, #R6 = #SSIREC,
#R7 = address, error = #RO);

The compiler resolves system-equates and treats them as fullword BINARY literals.

112

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

General Rules for Loading and Storing

1) In a START statement registers only may be stored.

2) Registers 14 and 15, per TPF standards, may not be used to pass data between programs. They are
used only with certain macros (such as CREDC, GLOBX, etc.) where they are expected to contain
loaded parameters or return values.

3) Subscripting and pointer qualification is allowed for variables to be loaded or stored.

4) Variables may be of the following data types: *NCS, *DEC, *BIN, *BIT and *PTR. If the data type is
*NCS or *DEC, the value in the variable will be converted to BINARY: data may be lost either because
the entire value will not fit in a register, or because fractional data will be lost on conversion of *NCS
or *DEC data to BINARY. In such cases, the data should be passed via the ECB.

5) Character-string variables may be loaded into registers if they are not more than four characters in
length.

Sample Application Supported Macros

Each Installation, according to its needs, will support certain macros. The following are sample Application
supported macros.

Name | Function

BACKC Return control to the previous program block that last issued an ENTR in association with this
ECB. Release the automatic storage block associated with the program issuing the BACKC.

CINFC Allow the application program to read from or write to low, protected core storage and update
Control Program Keypoint records. The use of the CINFC macro in SABRETALK is limited to
requesting an update of the file copy of Control Program keypoint records, or to obtaining the
address of an interface point that contains data.

CONKC Provide access to a table of system configuration-dependent constants thereby allowing the
program'’s logic to vary, depending on the configuration. The CONKC macro requires a register
as its third parameter. The code required by TPF must be followed by the register assignment
for SABRETALK For example:

CONKC argl,arg2, #RO(myarg=#R0);

CRASC Send a message to the 1052.

CREDC Create an independent ECB for deferred processing.

CREIC Create, for processing, an independent Entry Control Block with the same priority as a new
input message.

CREMC Create an independent ECB for immediate processing.

CRETC Create an independent ECB and activate a program at a specified later interval of time.

CREXC Create an independent ECB for low priority deferred processing.

*CRUSA | Release core block level(s) if attached, or test core block level(s) for states. Address(es) for
return of control may be specified.

CSERA Direct the System Error Routine to take a selective core dump. (CIT and CAC systems).

DEFRC Defer processing of an ECB until the systems' activity is sufficiently low to allow for the
completion of this low priority task.

DLAYC Delay the processing of the current ECB.

ENTDC Enter a program and release all program blocks and AUTOMATIC storage blocks currently held
by the ECB.

ENTNC Enter a program and release the current active program block and the associated AUTOMATIC

113

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

Name | Function
storage block.

ENTRC Enter a program with expected return.

EXITC Release the ECB, all associated working storage, AUTOMATIC storage blocks, and program
blocks, thus terminating the life of the entry in the system.

FILEC Write a record to file from core storage.

FILKW Write a keypoint record to file from core storage and retain the core block containing the
records' image.

FILNC Write a record to file from core storage and retain the core block containing the records' image.

FILSC Write a record, from core storage, to either the prime or duplicate file record.

FILUC Write a record to file from core storage and 'unhold' the record address.

FINDC Read a record from file into core storage.

FINHC Read a record from file into core storage and 'hold' the record address.

FINSC Read either the prime or duplicate record from file into core storage.

FINWC Read a record from file into core storage and return control to the operational program when all
operations which cause CE1IOC to be incremented, are complete for the ECB.

FIWHC Read a record from file into core storage, 'hold' the record address and return control to the
operational program when CE110C is zero.

FLGFC Write a record from core storage to the next available record in the appropriate data set of the
Users' Real-time Disk General File.

FLIPC Interchange the control information (FARW and CBRW) of two levels.

GDSNC Initialize a user's File Address Reference Word with the data necessary to access a general
data set or a Volume of a general data set.

GDSRC Convert a relative record number into a File Address (CCHR format) to access a general data
set record.

GETCC Obtain a block of core storage.

GETFC Obtain an available file storage record address from the specified short or long term pool.

GFSCC Initiate the Get File Storage (GFS) function which is used to start and stop GFS activity logging,
to update the core and file images of all File Pool Keypoint Records, and to start and stop the
tagging of long term pool addresses returned to the GFS program via the RELFC macro.

GIVLC 1. Detach a message from a specified level and activate a new ECB with the specified

message block attached to level zero of the new ECB.

2. Or send a message via a link with a response expected.

GLMOD Change the storage protection key in the current PSW, for the application program, to match
that of the Global Area, or core resident data records or core resident tables.

GLOBW Define global fields in global areas 1 and 3.

GLOBX Define global fields in global area 1.

GLOBY Define global fields in global area 4.

GLOUC Prepare the keypoint records for update of the file- resident copy.

KEYCC Allow for modification of a protected core storage area by an application program by changing
the storage protection key in the current PSW.

KEYRC Restore the current PSW protection key to its normal value.

KEYUC Prepare the keypoint records for update of the file resident copy.

LMONC Allow an application program to change the operating state of the CPU from supervisor to
problem state.

MONTC Allow an application program to change the operating state of the CPU from problem to
supervisor state.

RCRFC Release a block of core storage and return a file address to the appropriate pool.

RCUNC Release a block of core storage and ‘unhold' a file record address.

RELCC Release a block of core storage.

RELFC Return a file address to the appropriate pool.

114

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

Name Function

ROUTC Route a data message to a terminal or to an application.
SENDC Send a message to a terminal.
SERRC Direct the System Error Routine to take a selective core dump and send a message to CRAS.

TASNC Assign the previously reserved general tape (TRSV) to the ECB issuing the macro.

TBSPC Backspace a general tape a specified number of physical records and 'wait' until all operations
that cause CE110C to be incremented are complete for this ECB.

TCLSC Close a general tape.

TDFRC Suspend processing of this ECB for a specified time.

TDLYC Suspend processing of this ECB for a specified time.

TDTAC Address a general tape and write from or read into a core storage area.

TOPNC Open a general tape.

TOURC Write a record from a core storage block to a real-time tape.

TOUTC Write a record from core storage to a real-time tape.

TPRDC Read the next record from a general tape, into core storage.

TREWC Rewind a general tape and ‘wait' until all input operations, including this request, are complete
for this ECB.

TRSVC Reserve a general tape and retain its current positioning until some future ECB takes control
with an assign (TASN).

TWRTC Write a record from core storage to a general tape.

UNFRC '‘Unhold' a file storage record address.

WAITC Defer processing of this entry until CE1IOC is zero.

WRTDC Write a Critical Data Record from a core block to a user's primary real-time output tape and to
the next available record in the appropriate data set of the user's General File.

* Macro parameters are not syntax checked by the compiler.
* For information on Special and User macros see Appendix B

PROCEDURE STATEMENTS

The PROCEDURE statement designates the beginning of an external PROCEDURE, internal PROCEDURE, or
programmer-declared function. When coded at the beginning of an internal PROCEDURE or programmer-
declared function, an optional parameter list may be coded specifying the data being received. External
procedures are invoked by coding the PROCEDURE label in an enter-type macro, while internal procedures
and programmer-declared functions are invoked by coding their labels within the external PROCEDURE.

General Format:
A) For external procedures:

label: | PROC 1
| PROCEDURE |

14

115

‘ CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

B) For internal procedures or programmer declared functions:

label: T PROC T ((parmi (,parm2,...,parmn))) ;
| PROCEDURE | (())
A)

(where each parm (parameter) is a variable or a structure)

extproc: PROCEDURE;
intproc: PROC (paraml, param2) ;

General Rules for PROCEDURE Statements:
1) Identifiers used as parameters must be declared.
2) A parameter may be one of the following:
a) variable
b) structure
c) array
3) A parameter may not be subscripted nor pointer qualified.
4) When a PROCEDURE (or declared function) is invoked, the number of parameters passed to it must be
equal to or less than the number of parameters it is to receive. A one-to-one correspondence is

established, on a left-to-right basis, between the parameters passed and those received.

5) The PROCEDURE statement that begins the program (external PROCEDURE) has no parameters. The
START statement is used to specify parameters the external PROCEDURE is to receive via registers.

6) The label on the external PROCEDURE statement should follow TPF programming standards.

START STATEMENTS

The START statement is used to store parameters passed in registers between programs (See Register
Loading and Storing, this chapter).

If an external procedure is receiving parameters from the program invoking it (the invoking program may be
a SABRETALK program or an Assembler Language program), the START statement should be coded as the
first executable statement in the program. (DECLARE statements and the PROCEDURE statement heading the
external PROCEDURE are non-executable statements.) All parameters should be stored in a single START
statement. If the external PROCEDURE is not receiving parameters from the invoking program, the START
statement is not necessary.

116

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

General Format:

START (element variable=#reg (,element variable=#reg) ...) ;

(reg may be: RO,R1,R2,R3,R4,R5,R6,R7)

START (inptr=#R0O, kount=#R4, max=#R5) ;

General Rules for START Statements:

1) The START statement cannot be used for loading registers.

2) The START statement may be used for storing the contents of a register into a variable or
pseudo-variable.

3) The registers that may be used for storing are #R0, #R1 #R2, #R3, #R4, #R5, #R6 and #R7.

END STATEMENTS

An END statement is used to physically terminate an internal procedure, an external procedure, a
programmer-declared function, a DO group, and, at times, two or more of the above.

General Format:

END (label) ;
()

END cvbado;
END error;
END;

General Rules for END Statements:

1)

2)

3)

4)

If a label operand follows the END, it cannot be an element of an array of label variables; that is, it
cannot be subscripted.

If a label operand does not follow the END, the statement terminates the last previous unterminated
internal PROCEDURE, programmer-declared FUNCTION or DO group. If the unlabeled END statement is
located as the last source statement of the program then it terminates the external PROCEDURE.

If the END statement terminates a programmer-declared FUNCTION, it must not be followed by a label
operand.

If a label operand follows the END, the statement terminates the internal PROCEDURE or DO group
specified; it also terminates all unterminated DO groups physically within that DO group or
PROCEDURE. If a label operand follows the END and it is located as the last source statement of the
program, then it terminates the external PROCEDURE. The END statement label of an internal or of an
external PROCEDURE must be the same as the label of its corresponding PROCEDURE statement.

117

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

saglsl: PROC;
exitc;
int1: PROC (a,b);
RETURN;
END saglsil;

The END statement above serves to terminate the internal PROCEDURE labelled int1 and the
external PROCEDURE labelled sag1s1. For the sake of program clarity each PROCEDURE,
programmer-declared function or DO group should have its own END statement.

CALL STATEMENTS

The CALL statement is used to invoke internal procedures and causes a transfer of control to the specified
procedure. An optional parameter list may be coded in conjunction with the CALL statement making it
possible to pass parameters to the internal procedure.

General Format:

CALL internal_proc_label ((argl (,arg2,...,argn))) ;
(())
()

(where each arg (argument) is an expression or a structure)

CALL wrapup;
CALL error (a);
CALL calc (a+1, CSTR(x,i-5,3));

General Rules for CALL Statements:

1) The internal PROCEDURE label represents the name of the PROCEDURE that is being invoked.

2) A CALL parameter may be one of the following:

a)
b)
c)
d)
e)
f)
9)

literal

constant

variable

structure

array name (Note: first element only)
any type expression

any type function invocation

3) A parameter may be subscripted and/or pointer qualified.

4) The attributes of a parameter in a CALL statement should be compatible with that of its corresponding
parameter in the PROCEDURE statement, i.e., they must obey the rules for legal assignments.

RETURN STATEMENTS

The RETURN statement is used to RETURN control from the logical end of internal procedures and
programmer-declared functions.

118

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

General Format:
A) From an internal procedure:

RETURN;

B) From a programmer-declared function:
RETURN (parameter);

RETURN;
RETURN (a(i));
RETURN (ADDR(X));

General Rules for the RETURN Statement:

1) If a parameter is not specified, the RETURN statement must terminate an internal procedure. When
such a statement is executed, control is returned to the next sequential statement following the point
of invocation.

2) If a parameter is specified, the RETURN statement must terminate a programmer-declared function.
When such a statement is executed, control is returned to the function invoking statement; the value
returned is the value of the parameter, which is used in the completion of the invoking statement.

3) A RETURN-statement parameter may be one of the following:

a) literal

b) constant

c) variable

d) structure

e) array name (Note: first element only)
f) any type expression

g) any type function invocation

4) A parameter may be subscripted and/or pointer qualified.

PROGRAM STRUCTURE

The TPF system is composed of many individual programs, some written in SABRETALK and some written
in Assembler Language. This section will describe the program-relative relationship of a SABRETALK
program to various other programs or parts of programs.

Rules Governing Program Structure:

A) A SABRETALK program consists of a main body (The MAIN procedure) and optional
internal procedures.

B) The names of programmer-declared functions must be declared with the FUNCTION
attribute.
C) A START statement must precede the executable statements if the program is receiving

parameters via registers. A START statement is the only statement that can be used to receive
parameters via registers from other program segments.

119

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

D) The first statement in a program is a PROC (PROCEDURE) statement with no parameters. Its
label defines the name of the program. The last statement in a program must be an END statement.
These two statements serve to mark the beginning and end of a program.

E) Control can be given to another program through the use of a TPF macro such as ENTRC.

Whenever control is received from another program via ENTRC, it can be given back through the
use of the TPF macro, BACKC.

Using Procedures Compiled Within the Program
Corresponding to the ENTRC and BACKC macros, which provide communication between programs, two

statements are provided which allow the use of internal procedures compiled within the main body: the CALL
statement and the RETURN statement.

Figure 5.3 lllustrates the general organization of a program.

120

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

|PROCEDURE ---| subix1: PROC;

| statement ---

| —--

| DCL 1 prog_temps ALIGNED,

| 2 (i, j, k, 1) BIN,

| 2 (p, q, r, s) PTR,

| 2 a CHAR(10),

| 2 (b, x, z) BIN(31),

| 2 ¢ BIN(15);

| DCL 1 record BASED(e) ALIGNED;
|
I

|

I

I
| |
I I
I I
| |
I I
I I
| |
| 2 1link ptr, |
I 2 key, I
DECLARE -----	3 sub_key_1 CHAR(5),
statements	3 sub_key_ 2 BIN(31),
	3 sub_key_ 3 CHAR(4),
	2 counts,
	3 total _sold BIN(31),
	3 dollar_amt DEC(11,2);
	%INCLUDEAF EBOEB;
	DCL calc FUNCTION;
	DCL 1 inputs BASED(f),
	2 text CHAR(30),
I I 2 type BIT(8); I	

--	
START -------	START (e=#R3); /* base of record in #3 */
statement --- c	
I --- I	
	ENTRC ssa6(#R4=q, f=#R3);
	cn
	CALL look_up(sub_key_3);
[main --------	-
body	.
	X = j + calc(q, z - total_sold, 25);
I I ‘e I	
	EXITC;
	look_ up: PROC(a); /* internal PROCEDURE */
I I e I	
internal ----	c
PROCEDURE	RETURN; /* rtrn from internal PROCEDURE */
	END look_up;
	calc: PROC(r, b, c¢); /* declared function */
programmer- - -	-
declared	RETURN(k + 1); /* return from programmer- */
function	/* declared function */
I	END; I
	BACKC (#R5=k) ;
IEND ---------	END subixi: /* end of program */
statement ---	

I

I
Figure 5.3 General Organization of a SABRETALK Program.

121

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

122

CHAPTER 6: ALTERNATIVE CODING METHODS

CHAPTER 6: ALTERNATIVE CODING METHODS

EFFICIENT PERFORMANCE

SABRETALK allows the programmer a high degree of flexibility to perform operations. Various data types
may be combined within statements with all necessary conversions, packing, and alignment handled by the
compiler.

There are many methods to solve a given problem. Some methods are more efficient than others are; that

is, they accomplish the same result while using fewer resources. In some instances, the programmer must
consider the trade-offs that will result from using one method as opposed to another. Use of the ALIGNED

or PACKED attribute is an example of this. Use of the ALIGNED attribute may cause unused core between
data items, but will result in more efficient code generation. The PACKED attribute will optimize core usage
but may result in code inefficiency due to misalignment of data items. It is up to the individual programmer

to decide which advantage is more favorable to his particular situation and code his program accordingly.

The following sections outline several areas where the programmer may be able to optimize his program.

DATA CONVERSION

The variety of data types handled by SABRETALK allows the programmer to operate on data in several
different methods or to mix various data types in expressions. It is possible to create a situation where
unnecessary conversions are required thereby causing a loss of efficiency due to the extra code generated.

When the programmer designs his program and is deciding on the data types for his input data, output data,
and work areas, he will be free to use any data type he desires. In certain instances he may be required to
DECLARE his data to be a certain type due to overall system design. Because of this, he should ask himself
the following questions when declaring the remainder of his data:

1. Is a conversion implied? Is the result of an operation assigned to a variable of a different
data type?

2. Could the conversion be avoided?

3. If the conversion is within a loop, could it be moved outside of the loop?

The assembler language code generated by the compiler will be kept to a minimum if the following
guidelines for the use of *NCS, *DEC, and *BS data are observed:

123

CHAPTER 6: ALTERNATIVE CODING METHODS

Use of Numeric Character-String (*NCS) Data

The programmer should recognize the inefficiencies that exist with the use of Numeric character-string data.

*NCS data items are always stored in character (Zoned Decimal) format, one character to a byte. In Zoned
format, bytes form a field of four-bit portions as shown:

where N specifies a numeric code, Z specifies a zone code, Z/S specifies either a zone or a sign code. The
value -234 (shown in hexadecimal) would appear as:

F 0] F 2 F 3 D 4

where the hexadecimal 'F' is the standard zone code, the hexadecimal 'C' is the standard plus code, and the
hexadecimal 'D' is the standard minus code.

Before arithmetic operations may be performed on *NCS data items, they must be converted to the Packed
Decimal format. In Packed format, bytes form a field of four-bit portions as shown:

where D signifies a decimal digit, S signifies a sign code. The value -234 (shown in hexadecimal) would
appear as:

0] 0] 0] 0] 2 3 4 D

If data items must be declared as *NCS to conform to input or output requirements, and if they will also be
used in arithmetic calculations, they should be converted to another data type prior to the arithmetic
operation. They should not be converted back to *NCS until all arithmetic operations have been completed.

Use of Decimal Data

If fractional values are unnecessary and arithmetic is to be performed, it is much more efficient (both in
storage requirements and execution time) to DECLARE it as BINARY rather than DECIMAL. Since arithmetic
operations are frequently performed in DECIMAL, consideration should be given to declaring operands of
arithmetic expressions as DECIMAL.

DCL (a, d) BIN(15), b DEC(3,0);
a=b*d+ 5;

In the above example, the operation b*d will be performed first; d will be converted to DECIMAL, then the
multiplication performed. The BINARY literal 5 will then be converted to DECIMAL and added to the
intermediate result of b*d. This final result will be in DECIMAL which will then be converted to BINARY for
storage into a.

DCL (a, d) BIN(15), b DEC(3,0), c(10) CHAR(4);
c(2 * b) = 'a';

124

CHAPTER 6: ALTERNATIVE CODING METHODS

In the above example, the literal 2 will be converted to DECIMAL and, after multiplication, the result
converted back to BINARY.

Better code will result if all DECIMAL fields are declared with an odd number of digits. This is because, on
the IBM System/360, DECIMAL fields are stored in the packed decimal format and the sign occupies the last
position of the last byte. If possible, all DECIMAL variables should be declared with the same number of
digits in the fractional portion, so as to further optimize the generated code.

Use of BIT-String Data

Under the following circumstances, the use of BIT-strings in arithmetic expressions is as efficient as
BINARY:

1) The length of the string is 8 bits and byte aligned.
2) The length of the string is 16 bits and halfword aligned.
3) The length of the string is 32 bits and fullword aligned.

Much more code is generated for BIT-strings where the length is not a multiple of 8.

AVOIDING POOR PROGRAMMING TECHNIQUES

The results of a relational operation, either a one (1) or a zero (0), may be used in many other types of
statements besides the IF statement. The value returned may be used in an arithmetic expression, an
Assignment statement, a CALL statement, a RETURN statement, etc.

CALL intproc((a < b) + (c =d) + (e A= f));

In the preceding example, a value of 0, 1, 2 or 3 will be passed to the internal PROCEDURE depending upon
how many of the relational (comparison) operations held true.

Compiler Restriction

The compiler limit that is restrictive is the limit of 255 on dimensions. In certain situations this limit can easily
be circumvented. The following circumvention is not to be used if the area is a core block attached to the
ECB, whose limit (127,381,1055,etc.) may be violated.

If a dimension larger than 255 is required, the user can specify an area following the declared area.
Indexing can then proceed through both areas.

DCL a(200) CHAR(3);
DCL a2(100) CHAR(3);
DCL (i, j) BIN;

j=0;
DO i = 1 TO 300;
IF a(i) = 'jfk'
THEN j = j + 1;
END;

The preceding example will count the occurrences of the character-string 'jfk’ in a 300-element array. The
declaration of a2 is really an extension of a. Indexing will proceed through all 300 entries with no problem.
When extending an array in this manner, the second declaration (a2 in the example) should immediately

125

CHAPTER 6: ALTERNATIVE CODING METHODS

follow the first. Note that if a were in BASED storage (say a 1055-byte block), the same technique can be
applied but the DCL for a2 is unnecessary.

DCL a(200) CHAR(3) BASED(aptr) ;

aptr = celcr2 ;

] =0

DO i =1 TO 300 :

IF a(i)

END ;

- ljfkl

THEN j = j + 1 ;

Other Techniques For Efficient Coding

/* poor method */

IF frmtoday < -1 | frmtoday > 1

THEN GOTO a;

/* Dbetter

method */

IF ABS(frmtoday) > 1
THEN GOTO a;

/* poor method */

IF seccode

THEN holdsw

IF seccode

THEN holdsw

IF seccode

THEN holdsw

IF seccode

THEN holdsw

/* Dbetter
IF seccode
seccode
seccode
seccode

THEN holdsw

- ldl

- lllb;
- ISI

- lllb;
- lpl

= l1lb;
- lcl

- lllb;
method */
- ldl
- ISI
- lpl I
- lcl

- lllb;

In the example above, the second method proves to be more efficient both in generated code and execution

time. In the first set of statements, the BAL code to set holdsw
all four IF statements will always be executed.

'1'b will be generated four times and

126

CHAPTER 6: ALTERNATIVE CODING METHODS

/* poor method */

IF pchetc(c) > 1200
THEN cmram = 'p';
IF pchetc(c) = 1200
THEN cmram = 'n';
IF pchetc(c) = 2400
THEN cmram = 'm';

/* better method */
bchetc = pchetc(c);
IF bchetc > 1200

THEN cmram = 'p';
IF bchetc = 1200

THEN cmram = 'n';
IF bchetc = 2400
THEN cmram = 'm';

In the example above, the second set of statements causes the Assembler Language code necessary to
calculate the subscript to only be generated once.

In the following example the value place(race) is produced ten times as a result of unnecessary
subscription within a loop:

car = 0 ;
loop: car = car + 1 ;
team(car) = place(race) ;
IF car A= 10 THEN GOTO loop ;

Move this subscripted value 'place(race)’ outside of the loop and many undesirable processing steps will be
saved:

points = place(race) ;
car = 0 ;
loop: car = car + 1 ;
team(car) = points ;
IF car A= 10 THEN GOTO loop ;

A very efficient way to zero a structure that is less than 256 bytes in length is illustrated below:

DCL 1 input BASED(inptr),
2 team CHAR(30),
2 habitat,
3 street CHAR(20),
3 city CHAR(20),
3 state CHAR(18),
3 zip PIC'99999',
2 age PIC'999',
2 salary DEC(6,2);

BSTR(input,1,8) = '00'x;
CSTR(input,2) = CSTR(input);

127

CHAPTER 6: ALTERNATIVE CODING METHODS

An area larger than 256 bytes may be initialized using the same general technique:

dcl 1 struct BASED (sptr),

2 team CHAR(250),

2 city CHAR(250),

2 zip CHAR(250),

2 age CHAR(250);

2 key CHAR(55);
BSTR(struct,1,8) = '00'x;
CSTR(struct, 2) = CSTR(struc);

Code generated:

* BSTR(STRUCT,1,8) = '00'x;
MVI STRUCT$+1(256,R5),X'00'

* CSTR(STRUCT,2) = CSTR(STRUC);
MVC STRUCT$+1(256,R5),STRUCTS(R5)
MVC STRUCT$+257(256,R5), STRUCT$+256(R5)
MVC STRUCT$+513(256,R5), STRUCT$+512(R5)
MVC STRUCT$+769(256,R5), STRUCT$+768(R5)
MVC STRUCT$+1025(30,R5),STRUCT$+1024(R5)

Initializing a field
Techniques for initializing a field are illustrated as follows:

DCL msg CHAR(4);

msg = ' ! ; /* 1initialize to blanks */
msg = '0000' ; /* init'lize to zoned decimal zeros */
BSTR(msg) = '0'b; /* 1initialize to binary zeros */

Testing and setting single-bit fields in the following manner is very efficient.

DCL (a, b, c) BIT(1);

To set bits to zero or one:

b
b

lolb;
l1lb;

128

CHAPTER 6: ALTERNATIVE CODING METHODS

To invert a bit:

/* poor method */
IFb="1'b THEN b = '0'b;

/* better method */
b = Ab;
To test bits:

IFa='1b | b="'0'b| cA='1b | d="0'b THEN x = y;

Use of Logical Operations

The following examples illustrate methods in which the logical operations can be used advantageously:
Suppose one wants to place EBCDIC numeric zones (all one bits) into a two-character field, k.

DCL k CHAR (2);
BSTR(k) = BSTR(k) | 'FOFO'X;

This operation causes the hex digit E (1111 in binary) to be inserted into the zones of field k. The numeric
portions of k are not altered.

Suppose one wants to test for odd or even in a value. A function to test for odd could be as follows:

DCL odd FUNCTION;
DCL arg BIN(31);

odd: PROC(argl);

RETURN(arg & 1);

END;

The expression in the RETURN statement causes all bits of arg to be set to zero except the rightmost which
is zero (false) if the number is even, but one (true) if the number is odd. This function might be used as
follows:

IF odd(i + j) = 1 THEN GOTO x_odd;

i and j are added and if the result returned by odd is one, the program will GOTO x_odd.

A different test for odd/even is:

If MOD(x,2) = 1 THEN GOTO Xx_even;

Bit Manipulation

It is seldom necessary for the programmer to use bit manipulation like his assembler language counterpart,
but occasions will arise. By judicious use of &, |, /, SHL and SHR, it is possible to manipulate bits to almost
any degree. In most cases this results in the generation of more suitable coding.

129

CHAPTER 6: ALTERNATIVE CODING METHODS

To illustrate this, consider the following case: there is a code word (codewd) which contains 32 conditions
numbered 0 through 31. Each bit in codewd stands for a condition. If it is on, the bit is one, if it is off, the bit
is zero. At various times it will be necessary to set and test these bits.

First, let us examine how to test whether bits 26, 28 and 30 are on.

IF (codewd & '101010'b) = '101010'b THEN x = y;

The & operation "erases" all but the relevant three bits. The result of this is compared to see if the three
relevant bits are on. Ifit is desired to set 'on' the nth-bit-from-the-right (where n=codex=0 to 31) of codewd,
the following can be used.

codewd = codewd | SHL(1, codex);

The SHL function positions the single bit specified in the first parameter at the appropriate position specified
by codex. The | operation then inserts this bit into codewd. Several values could be set with one
assignment.

codewd = codewd | SHL(1, codex) | SHL(1, codey);

If it is desired to test a particular bit on the basis of codex, the following can be used.

IF SHR(codewd, codex) & 1 = 1 THEN GOTO sam;

The value codewd is shifted and then all but the low bit is eliminated by the &. If the result is not zero, the
program will go to sam.

Suppose it is decided to set a bit in codewd off on the basis of codex.

codewd = codewd & (/~SHL(1, codex));

In this case the mask is created and positioned by the SHL. However, we want to insert a zero and not a
one. All positions of the mask now contain ones except that to be set to zero. The & operation will thus
leave all bits except for that to be zeroed, set as they were.

A higher level of complexity is to set a relevant bit in codewd to a value contained in the bit named x.
codewd = (codewd & "SHL(1, codex)) | SHL(x, codex);

This first causes the appropriate bit in codewd to be set to zero. The bit x is then positioned by the second
SHL and inserted into codewd with the | operation. Note that x may contain zero or one.

130

CHAPTER 6: ALTERNATIVE CODING METHODS

Several other notes on bit manipulation are relevant:
. It is possible to concatenate BIT-strings.

. Watch out for negative numbers. For example, a SHL of a positive number will result in
a negative number if the sign bit has a one in it after the shift.

. The effect of algebraic shifting can be obtained by multiplying or dividing by a power of 2.

. The logical operators and the SHL/SHR functions can be used on data declared as BINARY
Or on expressions.

. If a BIT field is not aligned on a byte boundary, it may be better to move it to a work area
before performing many calculations. Then, when processing is complete, move it back.

. Use comments to describe your program logic, data variables, and input and output fields.

. While it is legal to write an expression in an IF statement with no relational operator
(See Chapter 3, IF Statement), it often turns out that an explicit comparison with zero results in
better code generated.

/* poor method */
IF ~a THEN GOTO c;

/* better method */
IF a = 0 THEN GOTO c;

131

CHAPTER 6: ALTERNATIVE CODING METHODS

Figure 6.1 is an example of a SABRETALK program:

exa4dil:

entryl:

tg2:
err:
dun:
beginlbl:

PROC;

%INCLUDEAF ebOeb;

DCL

DCL

DCL

DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCL

CONST tbl2,

1 workarea,
2 prntblk,
3 header
3 text
2 message,
id
msgnbr
msgcodel
msgcode2
msgcode3
msg

WWwwwow

1 fltinfo

2 fltno(2)

2 fltin

2 fltout

2 flttbhl(3)
1 tbhli(8)

2 seat

2 meal

th1l2(8)
(ptri,ptr2) PTR
find

1blsw(3) LAB;
days

hours

minutes

seconds
(a,b,c,d, e, f)
(i,3,k)

START(fptr=#R2, f=#R3) ;

ptr2

= addrtbl2;

CHAR(12),
CHAR(20),

DEC(3),
DEC(5,2),
BIT(8),
BIT(3),
BIT(29),
CHAR(32);

BASED (fptr),
BIN(31),
BIN(15),

BIN,

CHAR(8);
DEFINED tbl2,
BIN(15),
CHAR(3);

BIN(15) ALIGNED CONSTANT;
ALIGNED;
BIN(31) ALIGNED;

BIN;
BIN;
BIN;
BIN;
BIN ALIGNED;
BIN;

'0001001000110100'B ;

ENTRC exa5dl(#R3=ptr2, find=#5);
CSTR(ebw021,1,4)=VSTR(ebw001,1,k);

GOTO

1bl4;

IF find = 0 THEN GOTO err;
CSTR(ebw021, j)="john';
ENTNC exa6d1l;
a=b+c-d*e/f;
1blsw(1)=fptr;

i, f=0;

k='10100'B ;

d=16 ;

14

/* clear loop controls */

132

CHAPTER 6: ALTERNATIVE CODING METHODS

1bl4:

dcldfunc:

intproc:

extproc:

DO I=1 TO 16 BY 3 WHILE K < A;

a=a+1;

IF b > 7 THEN GOTO 1bl4;

ELSE

DO a=a-1,

END

b=b+1;

IF ¢ "= d THEN
DO f=d+e;
k=b+a;

END ;
END ;

c ="

msgnbr = i+k;
days d-a;
msg = text ||
GOTO extproc,
PROC(a);
RETURN(c+3);
END ;
PROC(a);

In =]

RETURN;
END intproc;

ELSE a=k+i;

F8_

flttbl;

ENTRC ssad4dil(#R0=b);
BACKC (#R3=fptr);

END exadd1;

_ D9_

A3'X ;

T e e e e s — —————————————————————— ——— —

igure 6.1 Example of a SABRETALK program:

133

CHAPTER 6: ALTERNATIVE CODING METHODS

134

‘ CHAPTER 7: SABRETALK COMPILER OPTIONS

CHAPTER 7: SABRETALK COMPILER OPTIONS

The output of the compiler is determined by pre-established installation default parameters. These defaults
are initialized by the systems programmer but may be temporarily overridden by the programmer.

The compiler options established as defaults may be overridden temporarily by the programmer, for his
compilation, through the use of the loader OPTIONS statement.

OPTIONS STATEMENTS

The format of the OPTIONS statement is as follows:
Card column 1----]

|
Vv
OPTIONS=aaaaa(, bbbbbbb. . .)
()

The OPTIONS keyword must begin in column one. The next non-blank following the keyword must be an
equal sign. The next non-blank following the equal sign must be one or more compiler options, each of
which is separated from the preceding one by a comma. This statement may be coded through column
71. In the event that all selected options will not fit on one statement, multiple OPTIONS statements must
be used. Notice that there is no statement terminator (;) for compiler options. Imbedded blanks are not
allowed.

Card column 1----]
|
\')
OPTIONS=INCLD, ICAFNO
or

OPTIONS=INCLD
OPTIONS=ICAFNO

All OPTIONS statements must immediately precede the PROCEDURE statement for the program.
Card column 1----]|

|

Vv

OPTIONS=NOCODE, ONL

abcdao: PROC;

END abcda0;

Details on temporary overrides of compiler options, a list of compiler options and a description of each of the

compiler options follows. The programmer should be sure to check which of these options are installation
defaults.

135

CHAPTER 7: SABRETALK COMPILER OPTIONS

Sample Options List: (* indicates suggested defaults)

* ALIGN NOALIGN
* ALPHA
* ANGB3 NOANGB3
* BAL NOBAL
CLEAR * NOCLEAR
* CODE NOCODE
* DECK NODECK
* DOLLAR NODOLR
GEN * NOGEN
* ICAFYES ICAFNO
INCLD * NOINCLD
* MAP NOMAP
* MLEVELO MLEVEL1 MLEVEL2
* NUMERIC
OPT * NOOPT
* PRINT NOPRINT
* SPACE
System Equate Identifiers (* GTS)
TERM * NOTERM
* XREF NOXREF

ALIGN / NOALIGN

The NOALIGN option will take advantage of the SYS/370 Byte-Oriented-Operand
facility that permits storage operands of most unprivileged instructions to
appear on any byte boundary.

If the data item is misaligned it will be flagged as thus, but the compiler
will not attempt to align the item, nor will it produce the move instructions
to aligned field (temporary field).

The programmer should be also be aware that when the NOALIGN option is in
affect some performance degradation is possible when storage operands are not
positioned at addresses that are integral multiples of the operand length. It
is suggested that fields that appear as misaligned and frequently used should
be aligned on integral boundaries.

ALPHA=(| TBLADDR| , name)
| TBL |

The ALPHA compiler option relates to the translate table the compiler
references when generating code for the ALPHA built-in function. It also
indicates the manner in which the table is accessed.

name is required. It indicates the identifier the compiler will use when
generating code for the ALPHA function. The compiler always generates the
GLOBZ macro for the ALPHA function. name is the identifier within the
global area that either contains the address of the table or is the name
of the table. name is therefore always a global tag.

TBL and TBLADDR are mutually exclusive. One of the two must be specified.
TBL indicates to the compiler that the name specified is the name of the

136

CHAPTER 7: SABRETALK COMPILER OPTIONS

table that is to be used when generating code for the ALPHA function.
TBLADDR indicates to the compiler that the name specified is a global
field containing the address of the table.

In the case where @trtal contains the table name:

ALPHA=(TBL, @trtal)

In the case where @trtap contains the table address:

ALPHA=(TBLADDR, @trtap)

ANGB3 / NOANGB3

This is a system-dependent consideration and should not concern the
applications programmer. When the tables for ALPHA / NUMERIC built-in
functions are relocated from the usual global area 1 to global area 3, and
references to global area 3 are desired, then the ANGB3 option is required.
With the ANGB3 option global macros are able to reference fields in either
global area 1 and/or 3. This is because the compiler generates the GLOBZ with
the fld= parameter when ANGB3 is specified. The macro definition of GLOBZ
used by the assembler must be the version that recognizes the fld= parameter
and its values and which generates appropriate GL1 and GL3 addressability).
The NOANGB3 option allows global references to fields in global area 1 only.

GLOBX @uilday (dayptr = #R15);

Code generated:
: GLOBZ REGR=R15, FLD=@ulday
LA R15, @ulday
DROP R15
ST R15, dayptr$(R7)

positn = ALPHA(field);

Code generated:
: GLOBZ REGR=R15, FLD=@trtal
LA R15,@trtal
DROP R15
SR R1,R1
LA R14,field$(R7)
TRT field$(20,R7),0(R15)
BE *+10
SR R1,R14
LA R1,1(,R1)
STH R1,positn$(R7)

BAL / NOBAL

OPTIONS=KEY=password, BAL where password is the directory protection key. This option allows
the programmer to code BAL statements within a SABRTALK program by placing an 'X' or '."in card
column one. If OPTIONS=KEY=password, NOBAL where password is the directory protection key is in
effect and an 'X' or '." is coded in card column one the following error will be issued:

SBTO042E EMBEDDED BAL STATEMENTS NOT ALLOWED.

137

CHAPTER 7: SABRETALK COMPILER OPTIONS

CLEAR / NOCLEAR

OPTIONS=CLEAR=(xx) where xx is the Hex pad byte. Coding CLEAR=(00) is the same as Coding
CLEAR with no options and will produce code to clear the user portion of the AUTOSTORAGE block to hex
zero's. Coding CLEAR=(40) will clear the AUTOSTORAGE block to blanks.

EXAMPLES:

1) CLEAR or CLEAR=(00)
ALASC L@
MVI 4(R7),X'00'
MVC 5(113,R7),4(R7)

1a) CLEAR=(40)
ALASC LO
MVI 4(R7),X'40"
MVC 5(113,R7),4(R7)

2) CLEAR or CLEAR=(00)
ALASC L1
MVI 4(R7),X'00'
MVC 5(113,R7),4(R7)
MVC 118(254,R7),117(R7)

2a) CLEAR=(40)
ALASC L1
MVI 4(R7),X'40"
MVC 5(113,R7),4(R7)
MVC 118(254,R7),117(R7)

3) CLEAR or CLEAR=(00)
ALASC L2
STM RO,R1,4(R7)
LA R14,12(,R7)
LA R15,1034
SLR R1,R1
MVCL R14,R0
LM RO, R1,4(R7)
XC 4(8,R7),4(R7)

138

CHAPTER 7: SABRETALK COMPILER OPTIONS

3a) CLEAR=(40)
ALASC L2
STM Re,R1,4(R7)
LA R14,12(,R7)
LA R15,1034
SLR R1,R1
ICM R1,B'1000',=X'40"
MVCL R14,R0
LM RO, R1,4(R7)
MVI 4(R7),X'40'
MVC 5(7,R7),4(R7)

4) CLEAR OR CLEAR=(00)
ALASC L4
STM RO,R1,4(R7)
LA R14,8(,R7)
LA R15, 4075
SLR R1,R1
MVCL R14,R0
LM RO, R1,4(R7)
Xc 4(8,R7),4(R7)

4A) CLEAR=(40)
ALASC L4
STM Re,R1,4(R7)
LA R14,8(,R7)
LA R15, 4075
SLR R1,R1
ICM R1,B'1000',=X'40"'
MVCL R14,R0
LM RO, R1,4(R7)
MVI 4(R7),X'40'
MVC 5(7,R7),4(R7)

CODE / NOCODE

If CODE is specified, an Assembler Language source listing will be generated intermixed with the
SABRETALK statement source listing. These options are independent of the DECK / NODECK options.

DECK/NODECK

If DECK is specified, the compiler will produce an Assembler Language source input data set unless a
terminal type error occurs. If other errors are noted during the compilation, this data set will still be
created; however, the return code will describe the severity of the error.

Return Code Meaning

0 Compilation successful

4 Information message generated
8 Warning message generated

2 Error message generated

6 NODECK option

The NODECK option always produces a return code of 16.

139

CHAPTER 7: SABRETALK COMPILER OPTIONS

DOLLAR / NODOLR

If DOLLAR is specified, the compiler will append dollar signs to every variable less than eight characters
in length. The regular BEGIN macro will be generated.

If NODOLR is specified, dollar signs will not be appended and the BEGIN macro generated will be

BEGIN ECB=NO, NAME=xxXxx, VERSION=xXx

If the NODOLR option is invoked, the application programmers should be aware of system tags generated
by the BEGIN and FINIS macros, tags (names) that may be duplicates of those generated by

SABRETALK. The programmer should also avoid using the standard tags generated by the compiler
such as SLIT, $TEMPxxXx, $GENXXXX.

In cases where the DOLLAR compiler option is in effect and the global tag @fnc00 is less than eight
characters, the statement in the following example:

DCL @fnco0 BIN(31) BASED fonptr ;

will cause the assembler to generate:

1) @fonco0$ for the field tag, and
2) LA RDB,@fnco0 for the expansion instruction.

These are technically (and need to be) two different names. If the global tag is eight characters or more
however, no dollar sign is appended: the two names are identical and a "PREVIOUSLY DEFINED
NAME" error diagnostic appears.

GEN / NOGEN

This option is used to provide additional information when the BEGIN macro is encountered. If GEN is
specified, the Assembler Language source statement PRINT GEN will be added to the Assembler
Language source input data set just before the BEGIN macro. (The programmer should be aware that
the BEGIN macro generates a PRINT NOGEN as its last statement). The default option NOGEN produces
PRINT NOGEN.

ICAFYES / ICAFNO

This option relates to the method by which data records referenced by %INCLUDE are accessed. If a
programmer codes a %$INCLUDE statement, and the ICAFYES option is invoked, the compiler will first
attempt to access the record from the ¥INCLUDEAF file. If the record is on the #INCLUDEAF file, it will
be used. If not on the ¥INCLUDEAF file, the record located on the %INCLUDE file will be used. If on
neither file, an error would be generated.

If the programmer codes a %INCLUDE statement and the ICAFNO option is invoked, the compiler will
look for the record on the %INCLUDE file only.

INCLD / NOINCLD

When INCLD is specified, a source listing of all statements read in from the %INCLUDE file will be

generated. These statements are always treated as user-coded compiler statements, regardless of the
option specified.

140

CHAPTER 7: SABRETALK COMPILER OPTIONS

MAP_/ NOMAP

When MAP is specified, the user will receive an Attribute File Map and a Register Usage Map for each
compilation. These maps describe the layout of storage and register assignments required by the
program.

Attribute file map listings will have the following format:

ATTRIBUTE- - -FILE---MAP

LEVEL NAME BASE TYPE HEX LOC SIZE DIM SSMULT DEC-DIG CARD#

1 bbb$ AUTO BIN 004 4:0 4 1 2
1 ccc$ AUTO BIN 008 8:0 4 1 2
1 fea$ AUTO DEC 00C 12:0 3 1 5.02 11
1 aaa$ AUTO CHAR OOF 15:0 20 1 12
1 b$ AUTO BIN 023 35:0 2 10 2 15 misaligned
1 i$ AUTO BIN 037 55:0 2 1 16 misaligned
1 dds AUTO ECS 039 57:0 4 1 .00 18
1 ee$ ptri$ STR :0 20 1 29
1 ptri$ AUTO PTR 040 64:0 4 1
1 eel$ CHAR 10 20 1 30
An explanation of each column follows:
. LEVEL the structural level of the named item.
. NAME the name of the declared item.
. BASE the storage class of the item.
. TYPE the data type to which the item belongs.
. LoC the byte location (displacement) of the item (in decimal), followed, when needed, by
the decimal number of the bit (within byte) location.
. SIZE the length of the item in bytes and, where needed, in additional bits.
. DIM for arrays, the number of items in the array (in decimal) - - otherwise the value 1.
. SSMULT the number of bytes per array item in decimal.
. DEC-DIG for DECIMAL data, the decimal number of integer digits, followed by the decimal
number of fraction digits.
. CARD# the sequence number of the card record in which the item appears.
Register Usage Map listings will have the following format:
REGISTER- - -USAGE - - -MAP
BASE NAME STORAGE ALLOCATED REGISTER ASSIGNMENTS
AUTOMATIC 544 req 7 R7
CONSTANT reg 8 RS8
ENTRY BLOCK reg 9 R9
CONTROL PGM reg 10 R10
CONTROL PGM reg 11 Ri11
CONTROL PGM reg 12 R12
CONTROL PGM reg 13 R13
rptr$ 800 reg 6 R6

141

CHAPTER 7: SABRETALK COMPILER OPTIONS

MLEVELO® / MLEVEL1 / MLEVEL2

If MLEVELO is specified, all error, warning and information messages will be listed in the diagnostic
listing at the end of each compilation.

MELVEL1 - error and warning messages only.

MLEVEL2 - error messages only.

NUMERIC

NUMERIC=(| TBLADDR|, name)
| TBL |

The NUMERIC compiler option relates to the translate table the compiler
references when generating code for the NUMERIC built-in function. It also
indicates the manner in which the table is accessed.

name is required. It indicates the identifier the compiler will use when
generating code for the NUMERIC function. The compiler always generates the
GLOBZ macro for the NUMERIC function. name is the identifier within the
global area that either contains the address of the table or is the name of
the table. name is therefore always a global tag.

TBL and TBLADDR are mutually exclusive. One of the two must be present.
TBL indicates to the compiler that the name specified is the name of the
table that is to be used when generating code for the NUMERIC function.
TBLADDR indicates to the compiler that the name specified is a global field
containing the address of the table.

In the case where @trtno contains the table name:

NUMERIC=(TBL,@trtno)

In the case where @trtad contains the table address:

NUMERIC=(TBLADDR, @trtad)

OPT / NOOPT
If the option OPT is invoked, the compiler will optimize the literal pool. If NOOPT is invoked, the literal

pool optimization pass is omitted. If an error is encountered when the program is compiled, the NOOPT
option is automatically invoked for that compile.

PRINT / NOPRINT

The PRINT / NOPRINT option is a general control parameter and will override the other print related
options: MAP, XREF, CODE, etc. If PRINT is specified, output will be provided in accordance with
the other print related options. If NOPRINT is specified, there will be no printed output produced,
regardless of the other options.

142

‘ CHAPTER 7: SABRETALK COMPILER OPTIONS

System-Equate-ldentifiers Options (GTS, ONL, etc.)

This option specifies a three-character code designating the group of system-equate tags that will be
recognized when compiling the program. An installation can specify up to four three-character tags that
relate to the particular system-equate macros (valid within the BDAM file. The program may only refer to
one SYSEQ at a time). The two indicated above are only examples. The installation establishes the valid
three-character tags by executing the utility RESETEQU. The default option is established by executing
a PERM type run. When an installation wishes to change any of the three character tags, within a
particular system-equate, the utility UPDATEQU must be executed.

TERM / NOTERM

The TERM option specifies that diagnostic messages, along with their corresponding source statements,
are to be placed in the data set, or the device, described by the SYSTERM DD card in the JCL
compilation request. This option is similar to the Assembler option of the same name.

TRACE / NOTRACE

The TRACE option gives SABRETALK code in the BAL listing.

XREF / NOXREF

If XREF is specified, a cross-reference listing will be provided specifying the statement number of those
statements that define or use the symbols of a program. An asterisk following a statement number
denotes that the symbol was referenced as a receiving field in that statement.

CROSS - -REFERENCE - -LISTING

SYMBOL DEFN REFERENCES

array2$ 138 245 287 287 288

array3$ 139 220 234 240 303 313

flt_no$ 150 432

highchk$ 77 123 127 129 254 254 255 261
266 267 269

ndx4$ 48 123*

tag$ 43 327

The SYMBOL column will contain the alphabetized names of identifiers and labels that are essential in
the assembled program. Macro arguments and INCLUDEAF identifiers may also appear.

The DEFN column will contain the decimal number of the source statement that defines the symbol. The
names of macros and the word INCLUDEAF may appear as counterparts of SYMBOL entries.

The REFERENCES column will contain the decimal number(s) of statements wherein the symbol is
referenced.

143

CHAPTER 7: SABRETALK COMPILER OPTIONS

Compiler Support of Variable Block Sizes:

The compiler will accept user-defined size limits for the four storage block classes. Specification of
limits will be accomplished through the use of new compiler options.

Option Option Option

Keyword Meaning Syntax

KEY PROTECTION KEY key=password

ECB ENTRY CONTROL BLOCK ecb=size

PSB PROGRAM (CONSTANT) STORAGE BLOCK psh=size

BSB BASED STORAGE BLOCK bsh=size

ASB AUTOMATIC STORAGE BLOCK ash=(namel, size1l,
name2,size2, ...)

password: a one to four character sequence (excluding commas and blanks), controlled by an
installation's Compiler Support Group

size: one to four decimal digits, whose value must not exceed 4096 (4k)

name: a one to eight character sequence which should be a valid argument for the ALASC macro
(compiler does not validate)

Option specifications must have no imbedded blanks, and must be separated by commas.

During compilation (EXEC) runs, the correct KEY=password specification is required in order to override
default block sizes, and it must be coded prior to any block option.

Option overrides may be specified on a SABRETALK OPTIONS statement, or by a processor override
statement available to your System Control Group.

Example:
OPTIONS=KEY=2ZZZ, PSB=4096

- must begin in column one (1)
- coded prior to the first program statement

All compiler options in effect (with the exception of KEY) are listed at ends of compilations. The KEY will
be listed at the ends of compiler PERM runs.

To provide full support for the PSB option, the compiler's core management philosophy has been
revised. Consequently, it is possible to compile most programs of 4K bytes within the typical region size
of 220K, supplied by most SABRETALK users running under standard OS/MVT.

In the event that the available main storage for a compilation is exhausted, however, the following
Terminal error message is issued:

SBT0186T - INSUFFICIENT CORE ALLOCATED FOR THIS COMPILATION. RUN ABORTED.

This unfortunate and typically rare condition can be remedied by increasing the region size used for the
compilation.

Word of Caution:
These options should not be used indiscriminately. It should be understood that they only provide

compilation flexibility, and in no way insure that a resultant program will be compatible with attributes of
a given TPF System. At System One, for example, the TPF modifications required to support core-

144

CHAPTER 7: SABRETALK COMPILER OPTIONS

resident programs up to 4K bytes in size (PSB=4096), consisted of changes to the Loader, the Allocator,
the Post Processor and the Control Program System Error routines.

Changing the Compiler Block Size Options:

For KEY, code:
KEY=newpassword

For ECB, PSB and BSB, code:
ECB=newsize
PSB=newsize
BSB=newsize
(NOTE: maximum newsize for BSB is 4096)

For ASB:

To add an entry, code:
ASB=(newname, hewsize)

To change the size of an existing entry, code:
ASB=(oldname, newsize)

To delete an entry (name and size), code:
ASB=(oldname, 0)

NOTE: No more than five (5) ASB entries may be active at one time.

Changes are accepted during compilation (EXEC) runs and during PERM runs. It should be clear that
'EXEC' changes are only in effect for the duration of the compilation, and PERM changes establish new
permanent defaults. Typically, PERM runs are only conducted by a Compiler Support Group, due to
‘write protection’ provided for the compiler components. The KEY password may only be changed during
a PERM run, since during an EXEC run it is used to restrict access to the block size options, and must,
therefore, match the established value.

Logically, the implementation of this enhancement does not alter the compiler's method of enforcing the
block size limits. What has changed is that previously hard-coded values are now dynamically
assigned. A brief explanation of block size evaluation follows:

For Automatic storage, the compiler attempts to find an argument for the ALASC macro (from all
those stored with the Automatic Storage Block (ASB) option), which is associated with the smallest
size equal to or greater than the byte count of all fields declared in Automatic storage. Sizes
specified in the ASB option should be 8 bytes less than the true sizes of the desired Automatic
storage blocks, since the first 8 bytes in the blocks are for the TPF System usage. For example, a
size of 1047 describes a block of 1055 bytes.

For the Entry Control Block (ECB) and Based Storage Block (BSB), the total byte counts of all fields
declared in these storage classes are compared, respectively, against the limits established with the
ECB and BSB options.

For Program (Constant) storage, the byte count of compiler-generated Assembler Language
instructions is compared against the limit established with the PSB option. Such byte count is
approximate because the compiler does not expand TPF macros and thus cannot take into account
a macro expansion byte count. It is therefore possible for a program size limit that was below the
maximum during the compilation, to still be exceeded during assembly of the generated Assembler
Language instructions.

In all cases, total byte counts are depicted in compiler output listings. Exceeding block size limits in
effect for a compilation causes appropriate Error messages to be issued, as follows:

145

CHAPTER 7: SABRETALK COMPILER OPTIONS

SBTO155E

SBTO157E

SBTO159E

SBTO161E
LIMIT.

AUTOMATIC STORAGE SIZE LIMIT HAS BEEN EXCEEED.

PROGRAM SIZE LIMIT HAS BEEN EXCEEDED.

ENTRY BLOCK SIZE LIMIT HAS BEEN EXCEEDED.

THE AREA POINTED TO BY THE POINTER EXCEEDS BASED STORAGE SIZE

NOTE: Because of the format flag in storage blocks, the maximum size allowed on a Based Storage
Block (BSB) should be 4095.

146

‘ CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT

CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT

SPECIAL NOTE: This chapter may be of limited use, as most examples involve
using TSO for editing SABRETALK source code.

The purpose of this section is to familiarize programmers with the facilities available to them in an
INTERACTIVE environment under control of an INTERACTIVE environment monitor (IEM), such as TSO, in
the OS system. The assumption is made that the programmer is familiar with the general operation of an
IBM INTERACTIVE environment. For those who are not, the following IBM publications are recommended:

* IBM OS/VS2 PROGRAMMING LIBRARY: TSO (order number GC28-0629)
« IBM OS/VS2 TSO TERMINAL USER'S GUIDE (order number GC28-0645)
* IBM OS/VS2 TSO Command Language Reference (order number GC28-0646)
e IBM Virtual Machine Facility / 370: CMS User's Guide (order number GC20-1819)

e IBM Virtual Machine Facility / 370: Terminal User's Guide (order number GC20-1810)
e IBM Virtual Machine Facility / 370: Quick Guide for Users (order number GX20-1926)

Throughout this section, examples will have the following format:

. data typed by the user will appear in lower case
. SYSTEM REPLIES WILL APPEAR IN UPPER CASE
CREATING A PROGRAM

With an INTERACTIVE monitor, programs are created, modified and saved in the EDIT mode. The
programmer initiates the EDIT mode by using the EDIT command in the command mode. The format using
TSO is:

edit name sabr (old) (noscan)
new) (scan)

(
() ()

EDIT, name and SABR are required. SABR tells the monitor that the program being edited is a
SABRETALK program. New is also required when the program does not exist. The SCAN and NOSCAN
options involve the syntax checking of the program's statements. If it is desired that syntax errors be
displayed after every statement, SCAN must be specified:

edit name sabr new scan

If the programmer does not want such interruptions while building his program, he can accept the NOSCAN
default:

edit name sabr new

After the program has been built, notification of all syntax errors can be obtained by use of the SCAN
subcommand of the EDIT mode.

After the EDIT command for a NEW program has been given, the INTERACTIVE monitor facilitates the
building of the program by automatically supplying statement numbers before each statement. This is
known as the INPUT phase of the EDIT mode. After the monitor supplies the line number, the cursor is
positioned at what would correspond to card-column one on a coding form. The programmer must
remember that all SABRETALK statements must start in or after column two. The spacebar must be
depressed before starting a statement.

147

CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT

The INPUT PHASE is terminated:
1) Implicitly when the syntax checker detects an error. This occurs only when SCAN was specified.
2) Explicitly by entering a null (empty) line.

The INPUT phase can be re-initiated by typing the INPUT sub-command or by entering a null line. After all
statements have been typed, the programmer should return to EDIT mode, save his data set and END the
EDIT phase. He can then compile his program. He may then re-enter EDIT to correct any errors not
previously detected. This cycle can continue until the program is ready to be executed.

The following simulation shows what program creation looks like in practice:

READY

edit myprog sabr new scan
INPUT

00010 myprog: PROC,

00020 DCL (a,b) BIN;
00030 a=bh;
00040 END myprog;
00050

EDIT

save

SAVED

end

READY

SYNTAX CHECKING

This section describes the Syntax Checker. Syntax checking is the process by which the system determines
whether or not the source language statements in a given program are constructed properly. It detects
syntax errors that can be found by scanning one complete statement. Diagnostic messages are generated
for any errors of syntax that are detected.

This section also describes HELP information available for SABRETALK Functional descriptions and syntax
of selected statements are available in EDIT mode, through the use of the HELP subcommand.

The Syntax Checker

The syntax checker allows a programmer in an INTERACTIVE environment to make corrections as he is
keying in his program at the terminal. If a programmer makes a syntax mistake while entering his program,
the syntax checker sends an error message to his terminal informing him of the error. The programmer can
then re-enter the statement in the correct format and continue writing his program.

A programmer may use a batch technique to place a newly written program into an installation's library. If
this library is available to the INTERACTIVE monitor, the program may be retrieved and scanned in its
entirety for syntax errors. The programmer can then correct invalid statements. The result, whether the
program was developed in a batch or an INTERACTIVE environment, is a syntactically correct program that
is ready to be compiled.

The compiler may then be invoked by keying in a command from the terminal. This compile could uncover
additional programmer errors. These would be inter-statement type errors such as undefined labels,
duplicate names, data type incompatibilities, etc. If such errors are encountered, the programmer can
correct his source from the terminal and compile the program again. When a clean compile is received the
program is ready for execution testing.

148

CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT

The syntax checker performs single-statement validation as opposed to inter-statement checking. Its
purpose is to eliminate syntax errors from a program before it is submitted for compilation. It is limited to the
verification of punctuation, spelling of keywords, placement of keywords and operand in statements, etc.
Inter-statement logic and meaning are evaluated when the program is compiled.

In the EDIT mode, notification of syntax errors is controlled by the SCAN/NOSCAN options and by the
SCAN sub-command.

Syntax Checking New Statements

The user can request that each line he enters from the terminal in INPUT mode be immediately scanned for
syntax errors by specifying the SCAN option with the EDIT command or ON with the SCAN sub-command.
Before the record is scanned it is put in the user's data set. If a syntax error is found in a record just entered
by the user, and an error message is displayed, the system will switch from INPUT to EDIT mode so that
corrections can be made. The user returns to INPUT mode by entering a null line or the INPUT command.

Syntax Checking Old Statements

The SCAN sub-command can be applied to existing statements by specifying the SCAN subcommand with
no operands. The entire program will be scanned for syntax errors. The syntax checker will complete the
scan then display all errors found during the scan. The line number and an error message will be included
for programmer reference.

Most errors halt syntax checking of a statement, that is, if more than one syntax error exists in a statement,
only the first one will be reported. However, some errors encountered in structured DECLARE statements do
not terminate the syntax checker and multiple error messages for a single statement can be generated.

Structure Mode

The syntax checker under an INTERACTIVE environment has flexibility that is not found in most other high-
level language syntax checkers. It allows the programmer to code a structure a line at a time and have his
input checked logically against the data already entered for the structure. This is the only variation from the
rule that every entry to the syntax checker must be a complete statement or statements.

In order to provide this flexibility certain rules have been established. The programmer should acquaint
himself with the logic of structure mode and the rules that apply before attempting a line-by-line scan of a
structure.

Initializing Structure Mode

The syntax checker builds internal lists that permit the structure to be checked a line at a time. Each line of
input can be compared against the data already entered to see if the rules of dimension and level have been
violated. The syntax checker determines that the programmer desires to build a structure when it receives a
DECLARE statement followed by a comma instead of a semi-colon.

INPUT
00010 DCL 1 rec,

Once the checker is in structure mode, it will retain all of the internal lists built for the structure until the
structure is completed or certain unrecoverable syntax errors are encountered.

149

CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT

Completing the Structure

The example given above initialized structure mode. The programmer can now continue his structure a line
at a time.

00020 2 date BIN,
00030 2 address CHAR(35);

Input line 30 above closes out the structure with a semi-colon. At this point the syntax checker is no longer
in structure mode.

Error Handling in Structure Mode

Appropriate messages will be issued if errors are detected within the structure. Errors uncovered in a
structure fall into two categories:

1) Errors that do not affect the internal lists. These errors are recoverable.

2) Syntax or logic errors that negate the validity of the internal lists. These errors are not
recoverable.

Recoverable Errors

An example of such an error is depicted in the following simulation:

INPUT
00010 DCL 1 rec,
00020 2 partno BIN(33),

SBT014 20 DECLARATION OF A BINARY FIELD MUST BE 15 OR 31.
EDIT

The terminal is now in EDIT mode, ready for correction. The programmer should correct the error:

c /33/31/
00020 2 partno BIN(31),

He should then enter a null line to get back into INPUT mode.

INPUT
00030

The syntax checker is now ready to accept more data for the structure.

NOTE: The corrected line should not be rescanned. The internal lists have been set up for this line
already. A rescan would cause line to be placed in the lists again and an unintentional syntax error
would result.

Unrecoverable Errors

Certain syntax and logic errors occur in structure mode that negate the validity of the internal lists.

When these errors are encountered the syntax checker will delete the lists and send messages that will
guide the programmer in corrective action:

150

CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT

INPUT

00010 DCL 1 rec (10),

00020 2 mypart BIN,
00030 2 partlst,

00040 3 logs (6) BIN,

SBT029 40 DIMENSION HAS BEEN DECLARED WHEN ALREADY IN FORCE.
SBTCCC CORRECT ERROR AND RESCAN FROM LINE 10.
EDIT

At this point the internal lists for the structure have been deleted and the syntax checker is effectively out
of structure mode. The error should be corrected, and the entire structure rescanned:

c /(6) //
00040 3 logs BIN,
SCAN 10 40

The syntax checker will thus be forced back into structure mode, this time with the correct internal lists.
The programmer can then go back into INPUT mode and complete the structure.

Rules for Structure Mode
1) Each line must end in a comma. Structure mode is terminated by a semi-colon.
2) Do not rescan the structure unless the syntax checker sends the request message:

CORRECT ERROR AND RESCAN FROM LINE nnnn.

3) Termination of structure mode can always be forced by entering a semi-colon.

Coding Standards

This topic is included to point out to the SABRETALK user in an INTERACTIVE environment, some coding
standards for the syntax checker. The way a statement is entered under control of the INTERACTIVE
monitor makes little difference to the compiler. However, the syntax checker works on a statement-by-
statement basis. These tips are provided to assist the programmer.

The treatment of statements:

The syntax checker works on a statement-by-statement basis. It is therefore most efficient to enter one
statement at a time. When the syntax checker is active during the INPUT mode each line entered must be a
complete statement or an error will be issued. There are two types of statements recognized by the syntax
checker. The firstis a COMMENT statement. It begins with the composite /* and ends with */. The syntax
checker is unable to detect a COMMENT that extends over one line. When a programmer wishes to enter a
multi-line COMMENT he should begin and end each line with /* and */, respectively. The second type of
statement is a Program statement. Every Program statement ends with a semi-colon. It may follow a
COMMENT or another Program statement. An entire structure is considered a program statement just as
any other type of statement except a COMMENT.

151

CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT

Unacceptable Statements

The following statements cannot be syntax checked without causing confusion to the Syntax Checker:
1) Statements containing non-syntax macros.
2) Non-SABRETALK Statements:

NOTE: Assembler Language statements, with or without labels, and the OPTIONS statement do not cause
an error. The syntax checker disregards them.

Programmer Declared Functions

One assumption that the syntax checker makes is that all identifiers have been or will be declared within the
program being entered. One exception is a programmer declared function. Two rules should be
remembered:

1) Before a programmer defined function can be referenced, it must be declared.
2) If a change is made to an old program on a line with a programmer declared function, or a

new line is to be inserted which contains reference to a programmer declared function, the line with
the DECLARE for the FUNCTION must be scanned.

152

‘ CHAPTER 9: SABRETALK COMPILER MESSAGES

CHAPTER 9: SABRETALK COMPILER MESSAGES

The compiler issues information, warning, and error messages. The mutually exclusive options
MLEVELO/MLEVEL1/MLEVEL2 determine which class or classes of messages will be printed at the end of
the compilation.
There are seven types of messages:

A) Syntax errors

B) Programmer errors

C) Terminal errors

D) Internal Compiler errors

E) System (Loader) errors

F) Warning messages

G) Information messages
The type of message is encoded in the message printout:

card no. error no. message

10 SBTOO71E DATA ERROR - ILLEGALLY
MIXED DATA TYPES.

SA\BIRETALK ERROX NUMBER PROGRA\IVIIMER ERROR

The codes for errors and messages are:

1) S - Syntax error

2) E - Programmer error

3) T - Terminal error

4) C - Internal Compiler error

5) W - Warning message

6) |- Information message

7) L - Loader message

153

CHAPTER 9: SABRETALK COMPILER MESSAGES

Source statements that generate errors are flagged in the source listing:

CARD NO. SOURCE STATEMENT

20 bbb = INDEX (aaa, hh, bbb);
****ERROR****

21 bbb = bstr(b(i));
****ERROR --------=---=-=--- >

The error encountered on card number 21 above is a Syntax error. (The grammatical rules of the language
have been violated.) The ‘arrow point’ highlights the symbol causing the error.

The error messages themselves are listed at the end of the compilation. The messages associated with the
examples above would be:

card no. error no. message

20 SBTOO76E THE ARGUMENT TYPE IS
INCORRECT.

21 SBT0002S SYNTAX ERROR - THE LEFT

PARENTHESIS IS INVALID
AFTER THE NAME IN
CARD COLUMN 16.

The Compiler also generates a message indicating the approximate byte count of the Assembler Language
program associated with the source program. The figure provided at the bottom of the source listing
excludes macro expansions. It includes all literals and constants before any optimization takes place. The
number is provided to give the programmer some insight as to the

approximate size of the program. If the programmer needs to know the exact size he must, of course,
assemble the generated code.

Following are lists of messages by types. The message text itself will appear in upper case letters and may
be followed by a short note (in upper and lower case) which provides a further explanation and/or advice.

Note: For Loader errors see the Sabretalk Installation Guide.

SEVERE PROGRAMMER ERROR MESSAGES

SBTOO04E ILLEGAL CHARACTER / STRING
The statement contains a character used in a way that violates the language rules. Check
the last character-string to see if it was closed properly.

SBTO0O5E NESTED INCLUDES ARE ILLEGAL
One may not use the %INCLUDE statement to read in a file that contains another %INCLUDE
statement.

SBTO006E FORMAT ERROR IN %INCLUDE STATEMENT

SBTOO08E %INCLUDE FILE NOT FOUND

The file name following the %INCLUDE has not been found on the library. Check spelling or
contents of %INCLUDE library.

SBTO010E %INCLUDEAF FILE NOT FOUND
Same as SBTO008E, but %INCLUDEAF file is involved.

154

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBTOO011E

SBTOO13E

SBT0014E

SBTOO15E

SBTOO16E

SBTOO17E

SBT0018E

SBTO019E

SBT0020E

SBT0021E

SBTO022E

SBT0023E

SBT0024E

SBTO025E

IS AN UNDEFINED SYMBOL.
The identifier specified in the error message has not been declared in this program.

CHARACTER SIZE IS NOT BETWEEN 1 AND 256.
Length specification of CHARACTER field must be 1 - 256.

DECLARATION FOR A BINARY FIELD MUST BE 15 OR 31.
Length specification of BINARY field must be 15 or 31.

DECIMAL POINT IS NOT BETWEEN 1 AND 15.
15 is the maximum number of decimal digits that can be declared.

THE DECIMAL POINT IS GREATER THAN THE SIZE OF THE FIELD.
The first number specified in the length and precision of a DECIMAL number includes those
digits to the left and right of the decimal point, the second number indicates the number of
digits to the right of the decimal point only.

BIT SIZE IS NOT BETWEEN 1 AND 32.
Length specification of BIT field must be 1 - 32.

THE DIMENSION ATTRIBUTE IS GREATER THAN 255 OR LESS THAN 1.
Arrays have a maximum of 255 elements.

THERE IS A CONFLICT IN ELEMENTARY ATTRIBUTES.
More than one data type has been used to describe a single identifier.

THE BASE IS NOT IN AUTO STORAGE OR IS NOT A POINTER.
The implicitly declared pointer following the BASED attribute has previously been declared
but not as a pointer in AUTOMATIC storage.

THERE IS A CONFLICT IN STORAGE CLASSES.
A storage class has previously been designated for this structure or element variable. The
entire structure must reside in one class storage.

PREVIOUSLY DEFINED NAME.
The identifier specified in the error message has previously been declared in this program.
All identifiers must be unique.

LEVEL1 HAS NOT BEEN DEFINED.

The major structure of a structure must be defined as level 1:
DCL 1 able,
2 baker CHAR(2),
etc.

LEVEL ERROR OR THE 'DEFINED' IS NOT AT THE END OF THE

DECLARE.
The major structure has been declared as other than level 1 or a variable has been declared
with a level other than 1.

THE END OF THE DECLARE IS NOT ELEMENTARY.
A DECLARE statement has not been completed. Usually the error occurs when a level
umber has been omitted from a structure making statement look like a multiple DECLARE:
DCL 1 structure,
strut2 CHAR(20);

155

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBTO026E

SBTO027E

SBT0028E

SBTO029E

SBTOO30E

SBTOO31E

SBTOO32E

SBTO0O33E

SBTOO34E

SBTOO35E

SBTOO36E

SBTOO37E

SBTOO38E

SBTOO39E

SBTO040E

SBT0042E

SBTO044E

SBTOO045E

THERE IS A CONFLICT IN THE FACTORED LEVEL NUMBERS.

When factoring attributes all identifiers must have the same level number. Such an error
would be:
DCL 1 rec,
2 (fld,flt),
3 (col,crd) BIN;

THE OBJECT OFTHE 'DEFINED' HAS NOT BEEN PREVIOUSLY DECLARED.
The DEFINED attribute must be based on an identifier declared in this program.

THE STORAGE CLASS HAS BEEN DECLARED AT A LEVEL GREATER THAN 1.
The storage class of a BASED structure must be declared at level 1. It may not appear at

any other level:
DCL 1 rec BASED (iptr),
2 head CHAR(8),
etc.

DIMENSION HAS BEEN DECLARED WHEN ALREADY IN FORCE.
An array cannot contain another array. The following DECLARE statement would create this
error:
DCL 1 record (10),
2 data (5) BIN;

THERE ARE 2 'DEFINES' FOR THIS ITEM.
The item declared with the DEFINED attribute is based on an item that has also been
declared with the DEFINED attribute.

THE LEVEL IS EITHER GREATER THAN 256 OR LESS THAN 1.
Level, if specified, must be between 1 and 256. If not specified, (as in a single variable,) it is
assumed to be 1.

SYSEQ REFERENCE CONTAINS IMBEDDED BLANK(S).

FUNCTION TABLE EXCEEDED.
There are more than 32 programmer declared functions in one program segment (external
procedure.)

BASE TABLE EXCEEDED. MORE THAN 92 POINTERS WERE DECLARED.

LENGTH OF RECEIVING FIELD IS SHORTER THAN SENDING FIELD,
MVCL DOES NOT TAKE PLACE.

ERROR - THE SEMICOLON AFTER THE THEN/ELSE IS INVALID.

ERROR - THE SEMICOLON AFTER THE SEMICOLON IS INVALID.

THERE IS AN UNDEFINED SYMBOL IN THIS STATEMENT.
The Compiler was unable to determine what symbol in the statement was the one not
declared in the program. Check identifiers in the statement against DECLARE statements.

DECLARATION FOR A DEC FLOAT FIELD MUST BE 6 OR 16.

THERE IS A CONFLICT BETWEEN DEFINED AND BASED ATTRIBUTES
FOR THIS ITEM.

EMBEDDED BAL STATEMENTS NOT ALLOWED.
NAME IN ALLOCATE STATEMENT IS UNDEFINED.

STORAGE CLASS FOR NAME IN ALLOCATED STMNT ISNT BASED OR RENTED

156

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBTO046E

SBTO047E

SBTO048E

SBTO049E

SBTOO50E

SBTOO51E

SBTO052E

SBTOO53E

SBTOO54E

SBTOO55E

SBTOO56E

SBTOO57E

SBTOO58E

SBTOO59E

SBTOO60E

SBTOO61E

SBT0062E

SBTOO63E

NAME IN FREE STATEMENT IS UNDEFINED.
STORAGE CLASS FOR NAME IN FREE STMNT IS NOT BASED OR RENTED.

RETURN STATEMENT ILLEGAL IN MAIN PROCEDURE.
Main (external) PROCEDURE may be entered and exited by the use of TPF ENTER and
BACK type macros only.

CONSTANT IS ILLEGAL AS A PARAMETER FOR AN INTERNAL PROCEDURE.

LABEL ON STATEMENT HAS BEEN DEFINED (NOT AS A FUNCTION).
The label on the PROCEDURE statement has been declared as an identifier in this program.

MAIN PROCEDURE CANNOT BE A FUNCTION.

LABEL ON FUNCTION HAS BEEN FOUND ON PREVIOUS PROC
STATEMENT .
All labels in a program must be unique.

TOO MANY INTERNAL PROCEDURES AND PROGRAMMER DEFINED

FUNCTIONS.
A maximum of 50 internal procedures and/or programmer declared functions are allowed in
a given program.

LENGTH OF CSTR (CHARACTER-STRING) IS GREATER THAN 256.
A character-string must be from 1 to 256 characters in length. This restriction applies to the
length specified in the CSTR function.

LENGTH OF BSTR (BIT-STRING) IS GREATER THAN 32.
A BIT-string must be from 1 to 32 bits in length. This restriction applies to the length
specified in the BSTR function.

LENGTH OF NSTR (NUMERIC STRING) IS GREATER THAN 15.
Because NSTR data is presumed to be data for arithmetic operations, its size is limited to the
15 digit restrictions of DECIMAL arithmetic.

2ND PARAM OF CSTR, BSTR OR NSTR CANT BE AN EXPRESSION
WITHOUT 3RD.

2ND PARAM OF CSTR, BSTR OR NSTR CANT BE A VARIABLE
WITHOUT 3RD PARAM.

EXPRESSION ILLEGAL AS 2ND PARAMETER OF BSTR (BIT-STRING).
The second parameter of the BSTR function must always be a constant if it is specified.

THE FIRST ARGUMENT OF A BSTM FUNCTION IS ILLEGAL.
The first parameter of BSTM must be a Variable or an expression.

THE SECOND ARGUMENT OF A BSTM FUNCTION IS ILLEGAL.
The second parameter of BSTM must be a BINARY literal.

NO ARGUMENT OR ILLEGAL ARGUMENT SPECIFIED ON MACRO
STATEMENT .
Check TPF macro manual and check macros supported by SABRETALK

NO LITERAL OR TILLEGAL LITERAL SPECIFIED FOR MACRO
STATEMENT.
Check TPF macro manual and check macros supported by SABRETALK

157

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBTOO64E

SBTOO65E

SBTOO66E

SBTOO67E

SBTOO68E

SBTOO069E

SBTO070E

SBTOO71E

SBT0072E

SBTO073E

SBTOO74E

SBTOO75E

SBTOO76E

SBTOO77E

SBTO078E

SBTOO79E

SBTOO80OE

SBTOO81E

STORAGE CLASS IS NOT PROGRAM BASED OR CONSTANT BASED.
The identifier specified in the CONST statement has not been defined in CONSTANT storage.

ILLEGAL MACRO NAME SPECIFIED IN MACRO STATEMENT.
More than one macro has been used in a statement or a macro has been used as an
identifier.

ILLEGAL NESTING OF CSTR, BSTR, OR NSTR FUNCTION.
The string functions may not contain other string functions as parameters.

INVALID REGISTER NOTED.
The register number employed in a register assignment is greater than 15.

IS AN UNDEFINED LABEL.
The label designated in the error message has not been defined in the program as a
statement label or label variable.

IS AN INVALID FUNCTION.
The function designated in the error message either has not been declared as a function, or
has a discrepancy in parameters. The number of parameters passed in the function
invocation does not match that on the PROCEDURE statement.

A BIT STRING IS NOT DIVISIBLE BY 8.

DATA ERROR - ILLEGALLY MIXED DATA TYPES.
The statement flagged with the error contains an operation that is illegal for the two types of
data involved. The operation could be assignment, arithmetic, relational, logical or string.

CONTINUATION CARDS FOR THIS MACRO MUST BEGIN PRIOR TO
CARD COL. 17.

THE FUNCTION NAME IS NOT IN THE LIST OF LEGAL FUNCTION

NAMES .
The function name is not a valid built-in function and has not been defined as a programmer
declared function.

THERE ARE AN INCORRECT NUMBER OF FUNCTION ARGUMENTS.
The number of parameters being passed to a built-in function does not match the required
input.

ARGUMENT WITHIN BUILT-IN FUNCTION INCOMPLETE.
Max built-in function requires at least two arguments within parentheses, and/or
parentheses must be balanced.

THE ARGUMENT IS ILLEGAL FOR THE BUILT-IN FUNCTION.
The parameter passed to the built-in function is not legal for that function.

AN INDEX FUNCTION HAS AN INVALID SIZE.
The first parameter of the INDEX built-in function must be a character-string larger than the
second.

THE FIRST ARGUMENT OF A LSTR FUNCTION CANNOT BE A BIT
STRING CHARACTER.

BASE IS NOT IN AUTOMATIC STORAGE NOR IS IT A POINTER.
The error is normally a result of incorrectly using a pointer qualifier.

THE FIRST ARGUMENT OF A LSTR FUNCTION CANNOT BE A LITERAL.

LITERAL ERROR -- ILLEGAL OR UNDEFINED LITERAL TYPE.

158

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBTO082E

SBTOO83E

SBTOO84E

SBTOO85E

SBTOO86E

SBTOO87E

SBTOO88E

SBTOO89E

SBTO091E

SBTO092E

SBTOO93E

SBTO096E

SBTOO97E

SBTOO99E

SBTO100E

SBTO0101E

SBTO103E

SBTO104E

SBTO108E

SBTO111E

LITERAL ERROR -- BIT-STRING LENGTH IS GREATER THAN 32.

LITERAL ERROR -- CONTENTS OF THE BIT-STRING ARE NOT
0 OR 1.

LITERAL ERROR -- TOO LARGE FOR ARITHMETIC DATA TYPE.
LITERAL ERROR -- NO DECIMAL POINT FOUND IN CAD FIELD.

LITERAL ERROR -- HEX FIELD GREATER THAN A FULL WORD.
Because the hexadecimal literal is another way of expressing a BIT-string literal, it is limited
to a fullword (32 bits) of valid hexadecimal digits.

LITERAL ERROR -- INVALID CHARACTER IN THE HEX LITERAL.
The label on the END statement does not match the label on the DO group in question.

THE SECOND ARGUMENT IS INVALID FOR AN ELEMENT OF A
SUBSCRIPT ENTRY

DO LOOP ERROR. THE LABEL ON THE END STATEMENT IS
UNDEFINED.

ATTRIBUTES IN FACTOR LIST.
Identifiers may be factored only if all the attributes in the DECLARE statement apply to all the
identifiers.

ERROR - MISSING OR MISPLACED END STATEMENT(S).
EXTRANEOUS END STATEMENT.
THE FIELD BEING SUBSCRIPTED IS UNDEFINED.

INDEX ERROR. A NON-DIMENSIONED ITEM.
The identifier being subscripted has not been declared as an array.

INDEX ERROR. THE DATA TYPE FOR THE INDEX IS INVALID.
The subscript variable may be BIT, BIN, DEC or NCS.

DO LOOP ERROR. WHILE OPERAND IS NOT A PROGRAMMER DEFINED
FUNCTION.

ILLEGAL EXPRESSION IN INDEX.
The expression is illegal for the INDEX built-in function.

INDEX ERROR. MORE THAN ONE VARIABLE IN INDEX.
Only one variable is permitted in a subscript expression.

INDEX ERROR. NEGATIVE VARIABLE.
A prefix minus is not allowed in a subscript expression.

INVALID DATA TYPE FOR THE SIGN FUNCTION.
The SIGN built-in function may only be used on arithmetic data types. No string data is
allowed.

INVALID REGISTER BEING USED AS A PARAMETER ON A MACRO.

The register number assigned in a macro statement conflicts with standard system register
assignments. Check a TPF macro manual.

159

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBTO113E

SBTO121E

SBT0122E

SBT0124E

SBTO125E

SBTO0126E

SBTO127E

SBT0128E

SBTO136E

SBTO150E

SBTO155E

SBTO156E

SBTO157E

SBTO158E

SBTO159E

SBTO160E

SBTO162E

SBT0163E

SBTO164E

SBTO165E

SBTO167E

REGISTER BEING STORED HAS BEEN ALTERED PRIOR TO THE START
MACRO.
The START macro should be the first executable statement. If it is not, registers being
stored by START may have been loaded prior to the stores.

INCORRECT DCL, INCOMPLETE INFO - CHECK ITEMS IN THIS STATEMENT
The error will normally point to an executable statement. However, the cause is usually a
DECLARE within a structure referenced within an expression. Check structures for improper
declares.

IS A POINTER THAT IS BEING LOADED BUT HAS NOT BEEN
INITIALIZED.
A register is being loaded with an uninitialized pointer.

CONSTANT PREVIOUSLY INITIALIZED
The constant referenced in the CONST statement has already been initialized.

ILLEGAL USE OF LOGICALS IN AN IF STATEMENT. USE
PARENTHESES.

ILLEGAL USE OF PARENTHESIS.

SIZE OF CONSTANT DOES NOT AGREE WITH DECLARED SIZE
The constant has been incorrectly initialized.

THIRD PARAMETER OF VSTR FUNCTION MAY NOT BE CHARACTER
STRING

ECS FEATURE HAS NOT BEEN INSTALLED IN THIS VERSION.

THE NUMBER OF DECIMAL DIGITS AFTER THE DECIMAL POINT > 15.
The maximum number of digits in DEC attribute is 15.

AUTOMATIC STORAGE SIZE LIMIT HAS BEEN EXCEEDED.
PICTURE SPECIFIES MORE THAN 15 DIGITS AND 32 CHARACTERS.
PROGRAM SIZE LIMIT HAS BEEN EXCEEDED.

IS A DECLARED CONSTANT WHICH NEEDS TO BE INITIALIZED.
ENTRY BLOCK SIZE LIMIT HAS BEEN EXCEEDED.
PICTURE SPECIFIES MORE THAN 15 DIGITS.
CHECK ALL MACROS - ONLY 256 CHARS ARE PASSED TO ASSEMBLER.

PICTURE ENDS WITH PARENTHESIS.
PICTURE specification should end with a single quote.

PICTURE SPECIFIES MORE THAN 32 CHARS.
The maximum PICTURE size for Numeric character-string fields is 32 characters only 15 of
which may specify digit positions.

NO NUMBER BETWEEN LEFT AND RIGHT PARENTHESES.

ILLEGAL 9 ENTRY.
Check placement of '9' characters.

160

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBTO168E

SBTO169E

SBT0170E

SBTO171E

SBT0173E

SBT0175E

SBTO176E

SBTO177E

SBT0178E

SBTO179E

SBTO180E

SBTO181E

SBTO183E

SBTO184E

SBTO186E

SBTO187E

SBT0188E

SBTO189E

SBTO190E

SBTO191E

SBTO192E

ILLEGAL V ENTRY.
Implied decimal point used with character-string is illegal.

MORE THAN ONE IMPLIED POINT.
Only one implied decimal point is allowed.

ILLEGAL R ENTRY.

LEADING AND TRAILING SIGN.
Only one sign is permitted.

ILLEGAL SIGN ENTRY.
Not one of: S + -

ILLEGAL C ENTRY.
Check CR placement.

CR/DB MAY NOT BE CODED IF A SIGN CHARACTER IS ALSO CODED.

ILLEGAL D ENTRY.
Check DB placement.

ILLEGAL INSERTION CHARACTER ENTRY.
Notoneof: . , / B

ILLEGAL DOLLAR SIGN OR Z ENTRY.
Check placement of $ or Z.

INVALID END.
No single quote.

INVALID CHARACTER.
Not a valid PICTURE character.

ILLEGAL LEADING CHARACTER.
Not one of: 9% -+ 2Z *

ILLEGAL FLOATING CHARACTER.
Not one of: $S+ - *

STATEMENT NOT WITHIN COLUMNS 2 - 71.
REQUIRED ERROR EXIT IN MACRO CALL HAS NOT BEEN SPECIFIED.

STATEMENT APPEARS TOO LONG, CHECK SEMI COLONS AND QUOTES.
The Compiler encountered an undetermined error situation. Usually caused by a previous
incomplete statement.

INVALID EDIT PATTERN FOR DECIMAL FLOAT DATA TYPE -EDIT PATTERN
MUST HAVE AN E.

INVALID EDIT PATTERN FOR DECIMAL DATA TYPE - EDIT PATTERN
CAN NOT HAVE AN E.

INVALID EDIT PATTERN FOR FLOAT DATA TYPE - PATTERN CONTAINING
A 'V MUST HAVE A DECIMAL POINT.

INVALID EDIT PATTERN FOR FLOAT DATA TYPE - PATTERN CONTAINING
A DECIMAL POINT MUST HAVE A V .

161

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBTO193E

SBT0243E

SBT0244E

SBT0245E

SBT0246E

SBT0247E

SBT0248E

SBT0249E

SBTO250E

SBT0251E

SBT0252E

SBTO253E

SBTO0254E

SBTO255E

SBT0256E

SBTO257E

SBTO258E

A REQUIRED MACRO ERROR EXIT IS ILLEGAL (PROCEDURE).

VARIABLES WITHIN A CSTR OR NSTR MAY NOT BE SUBSCRIPTED.
Calculate the value in a separate statement.

EXPRESSIONS CONTAINING THE CONST 0 MAY NOT BE SUBSCRIPTED.
The default for a subscript variable is 1.

DECLARED AS A FUNCTION HAS NOT BEEN INCLUDED IN
THIS PROGRAM.
The label was declared as a function. The function itself was not coded.

A VBL BEING LOADED INTO A REG IS > 4 OR ITS TYPE 1S
INVALID.
Redefine the variable.

A VBL BEING STORED FROM A REG IS > 4 OR ITS TYPE IS
INVALID.

Redefine the variable.

THE FUNCTION IS INCOMPATIBLE WITH THE CONCATENATE OPERATION.
Perform the concatenation in a separate statement.

ERROR EXIT ADDRESS IN MACRO HAS NOT BEEN DEFINED.
Insure error exit routine has a label.

ILLEGAL OP. RECEIVING FIELD WITHIN THE PROGRAMS BASE.
An attempt was made to modify program storage.

INDEX BEYOND INITIAL FIELD, NO 3RD PARAMETER OR FIELD TOO
LARGE.

TOO MANY ITEMS OF 1 DATA TYPE ON LEFT OF ASSIGNMENT

STATEMENT.
A maximum of 32 multiple assignments to fields of the same data type are allowed in a
single statement.

ENTRC MACRO - REGISTER WAS LOADED MORE THAN ONCE.
ENTRC MACRO - ECS CANNOT BE PASSED AS A PARAMETER.

ENTRC - ALL REGS ARE PARAMS, BASED DATA CAN'T BE LOADED OR
STORED.
There is no register available for use as a pointer to BASED storage. Move the data from
BASED to AUTO storage for purposes of parameter passing.

MACRO ARGUMENT LIMIT OF 20 HAS BEEN EXCEEDED.
RETURN STATEMENT MISSING FROM PROCEDURE

A PROCEDURE MUST BE CALLED. A GO TO <PROC> IS INVALID.

162

CHAPTER 9: SABRETALK COMPILER MESSAGES

TERMINAL ERROR MESSAGES

SBTOO03T

SBTOOO7T

SBTO009T

SBT0032T

SBTOO70T

SBT0078T

SBT0088T

SBTO090T

SBT0122T

SBT0147T

SBTO186T

SBT0188T

SBT0240T

SBT0241T

SBT0242T

SBTO256T

OVERFLOW OF STACK SPACE, STATEMENT TOO LONG
Reduce length of statement.

OVERFLOW OF %INCLUDEAF STACK, TOO MANY %INCLUDEAF
STATEMENTS
Eliminate some of the %INCLUDEAF statements.

OVERFLOW OF NAME STACK, TOO MANY IDENTS IN PROGRAM
The program being compiled contains too many identifiers. It probably is much larger than
the TPF system will handle, as well.

ERROR TABLE OVERFLOW DUE TO TOO MANY PROGRAMMER ERRORS.
COMPILATION IS TERMINATED.
Correct the errors that have been specified and re-submit the program for compilation.

TERMINAL ERROR. FIRST ACCESS MUST BE P1PSEDR.
INTERNAL COMPILER ERROR.

TERMINAL ERROR. PSEUDO REGISTER SAVE AREA TABLE SIZE
EXCEEDED.
THE STATEMENT CONTAINS TOO MANY OPERATIONS.

TERMINAL ERROR. NO DO INFORMATION TABLE AVAILABLE TO
PROCESS DO LOOPS. CARD NO. MAY BE INVALID.

TERMINAL ERROR. DO LOOP ERROR. THERE IS NO DO HEADER.
CARD NO. MAY BE INVALID.

LITERAL TABLE OVERFLOW. TOO MANY LITERALS AND/OR
CONSTANTS IN PROGRAM.
Reduce the size of the program and eliminate some literals.

TERMINAL ERROR. OUTPUT BUFFER LIMITS ARE EXCEEDED.
COMPILATION IS TERMINATED.
Reduce the size of the program.

INSUFFICIENT CORE ALLOCATED FOR THIS COMPILATION.
RUN ABORTED.
Reduce size of program or use %INCLUDEAF for data declarations.

TERMINAL ERROR. TILLEGAL STATEMENT CAUSED INTERNAL
COMPILER OVERFLOW
Remove the statement.

ERROR ENCOUNTERED IN COMPILATION OF %INCLUDEAF.
%INCLUDEAF FILE NOT UPDATED.

AUTOMATIC STORAGE DECLARES NOT PERMITTED IN %INCLUDEAF
FILE. %INCLUDEAF FILE NOT UPDATED.
%INCLUDEAF must be BASED or ENTRYBLOCK storage class.

RENTED STORAGE DECLARES NOT PERMITTED IN INCLUDEAF FILE.
INCLUDEAF FILE NOT UPDATED.

NO EXECUTABLE STATEMENTS HAVE BEEN GENERATED AS A RESULT
OF THIS COMPILATION.

163

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBTO257T MULTIPLE INCLUDEAF FILE HAD ILLEGAL DEFINES. INCLUDEAF
FILE NOT UPDATED

SBT0264T DO INFORMATION TABLE CAPACITY EXCEEDED DUE TO AN EXCESSIVE
NUMBER OF DO LOOPS IN PROGRAM.

INTERNAL COMPILER ERRORS

Internal Compiler error messages, those ending in the letter C, should not concern the SABRETALK
programmer. If a statement causes an Internal Compiler error it should be reported to the SABRETALK
GROUP. Because these errors do not directly relate to the SABRETALK programmer, they have not been
included in this Guide.

WARNING MESSAGES

SBT0012W

SBTOO13W

SBT0014W

SBTO032W

SBT0034W

SBTOO37W

SBT0049W

SBT0061W

SBT0129W

SBTO130W

SBTO136W

SBTO155W

SBTO156W

SBTO157W

SBTO158W

WARNING - IS AN UN-INITIALIZED POINTER.
WARNING - INTERPRETATION OF THIS STATEMENT IS OBSCURE.

WARNING - CONSTANT DECLARED AS BIN(15) HAS BEEN
ALLOCATED AS BIN(31).

WARNING - SYSEQ REFERENCE CONTAINS IMBEDDED BLANK(S).
WARNING - MACRO PARAMETER CONTAINS IMBEDDED BLANK(S).

WARNING - MACRO PARAMETER REFERENCES A PROCEDURE NOT TAG.
BRANCH MAY CAUSE PROBLEM.

ARGUMENTS ON MAIN PROCEDURE STATEMENT WILL BE IGNORED.
FIRST SOURCE STATEMENT IS NOT A PROCEDURE STATEMENT.

WARNING - SEMICOLON MAY BE INVALID AFTER THE ELSE.
Verify that the semicolon is correctly placed in the statement after the THEN.

WARNING - MISSING OR MISPLACED END STATEMENT(S) SIMULATED
BY END OF INPUT.

WARNING - TRUNCATION MAY OCCUR - RECEIVING FIELD IS SHORTER
THAN SENDING FIELD.

WARNING - EXTERNAL PROCEDURE END STATEMENT IS EXTRA
OR MISPLACED - END STATEMENT IS IGNORED.

WARNING - LABEL ON EXTERNAL PROCEDURE END STATEMENT
DOES NOT MATCH NAME OF MAIN PROCEDURE.

WARNING - LAST SOURCE STATEMENT IS NOT AN END STATEMENT /
END MAY BE MISSING OR MISPLACED.

WARNING - END STATEMENT IS EXTRA OR
MISPLACED - END STATEMENT IS IGNORED.

164

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBTO160W

SBT0161W

SBTO166W

SBTO167W

SBTO172W

SBTO173W

SBT0174W

SBTO180W

SBTO190W

SBT0191W

SBT0192W

SBTO193W

WARNING - IMPROPER USE OF BUILT-IN FUNCTIONS WITHIN
AN TPF MACRO AND/OR ---(NOTE: THIS WARNING ISSUED
AS A PREFIX TO A RELATED SYNTAX MESSAGE) .

WARNING - AREA POINTED TO BY THE POINTER EXCEEDS BASED-
STORAGE LIMITS.

WARNING - MISSING OR MISPLACED END STATEMENT(S)
SIMULATED BY EXTERNAL PROCEDURE END STATEMENT.

WARNING - MISSING OR MISPLACED END STATEMENT(S)
PRIOR TO A RETURN IN AN INTERNAL PROCEDURE.

WARNING - LABEL ON END STATEMENT IS INCORRECTLY
USED - LABEL IS IGNORED.

WARNING -- ARRAY ELEMENT IS NOT INDEXED, DEFAULTS TO ONE.

WARNING -- ARRAY ELEMENT INDEX IS NOT SUPPORTED BY CASE.
INDEX DEFAULTS TO ONE.

WARNING -- ROUND FUNCTION - PLACE VALUE BEYOND RANGE OF
TARGET. NO ROUND WILL OCCUR.

WARNING -- LENGTH OF EDIT PATTERN EXCEEDS THE PRECISION OF THE
NUMBER BEING EDITED.

WARNING -- EDIT PATTERN CONTAINS A V BUT DOES NOT CONTAIN A
DECIMAL POINT.

WARNING -- EDIT PATTERN CONTAINS A DECIMAL POINT BUT DOES NOT
CONTAIN A V.

WARNING -- THIS IS A RECURSIVE CALL -- MAY RESULT IN A LOOP.

INFORMATION MESSAGES

SBT05001

OPTIMIZATION ERROR FROM POFORM - INFORM SABRETALK
GROUP.

SYNTAX CHECKER MESSAGES

SBT001S

SBT002S

SBT003S

DECIMAL NUMBER > 15.
A DECIMAL field can contain a maximum of fifteen digits.

BIT SIZE > 32.
A BIT-string can only be defined with a length of 1 to 32.

INVALID HEX CHARACTER.
A character in a hexadecimal literal was not 0 through 9 or A through E.

165

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBT004S

SBT005S

SBT006S

SBTOO7S

SBT009S

SBT010S

SBTO13S

SBT014S

SBTO15S

SBT016S

SBT017S

SBT018S

SBT019S

SBT021S

SBT023S

SBT024S

SBT025S

SBT026S

SBT028S

SBT029S

SBT031S

ILLEGAL CHAR OR STRING > 256.
Check the character-string length and make certain that there is no unpaired single quote.

SYNTAX ERROR IN %INCLUDE OR %INCLUDEAF.

INCOMPLETE STATEMENT.
The syntax checker must have an entire statement, enter the rest of the statement, or a
semi-colon.

STATEMENT CONTAINS UNCLOSED COMMENT.
To continue comment, enter /* at the start of the next line.

ILLEGAL BIT CHARACTER.
A character in a BIT-string literal was not O or 1.

DANGLING STRUCTURE.
A structure was not completed. Finish or enter a semi-colon.

CHARACTER SIZE IS NOT BETWEEN 1 AND 256.

DECLARATION FOR A BINARY FIELD MUST BE 15 OR 31.
Length of a BINARY field must be 15 or 31, plus the sign bit.

DECIMAL POINT IS NOT BETWEEN 1 AND 15.
15 is the maximum number of DECIMAL digits that can be declared.

THE DECIMAL PART IS > THE SIZE OF THE FIELD.
The second number indicates the decimal part - it must be smaller than the first number.

BIT SIZE IS NOT BETWEEN 1 AND 32.

THE DIMENSION ATTRIBUTE IS > 255 OR < 1.
Arrays have a maximum of 255 elements.

THERE IS A CONFLICT IN ELEMENTARY ATTRIBUTES.
More than one data type has been used to describe a single identifier.

THERE IS A CONFLICT IN STORAGE CLASSES.
The entire structure must reside in one storage class.

LEVEL 01 HAS NOT BEEN DEFINED.
The major structure must be defined as a level 1.

LEVEL ERROR OR THE DEFINED IS NOT AT THE END OF THE DECLARE.

The major structure has been declared as other than level 1 or an individual variable has
been declared with a level other than 1.

THE END OF THE DECLARE IS NOT ELEMENTARY.
A DECLARE statement has not been completed.

THERE IS A CONFLICT IN THE FACTORED LEVEL NUMBERS.
When factoring attributes, all identifiers must have the same level number.

THE STORAGE CLASS HAS BEEN DECLARED AT A LEVEL > 1.
The storage class of a BASED structure must be declared at level 1.

DIMENSION HAS BEEN DECLARED WHEN ALREADY IN FORCE.
An array cannot contain another array.

THE LEVEL IS > 256 OR < 1.

166

CHAPTER 9: SABRETALK COMPILER MESSAGES

SBT091S

SBT163S

SBT164S

SBT165S

SBT167S

SBT168S

SBT169S

SBT170S

SBT171S

SBT173S

SBT175S

SBT177S

SBT178S

SBT179S

SBT180S

SBT181S

SBT184S

SBT185S

SBT186S

ATTRIBUTES IN FACTOR LIST.
Identifiers may be factored only if all the attributes in the DECLARE statement apply to all the
identifiers.

PICTURE ENDS WITH PARENTHESIS.
PICTURE specification should end with a single quote.

PICTURE TOO LARGE.
Maximum PICTURE size for a Numeric character-string is 15, for an Edited character-string
is 32.

NUMBER BETWEEN LEFT AND RIGHT PARENS MISSING.

ILLEGAL 9 ENTRY.
Check placement of '9' characters.

ILLEGAL V ENTRY.
Implied decimal point used with character-string is illegal.

MORE THAN ONE IMPLIED POINT.
Only one implied decimal point is allowed.

ILLEGAL R ENTRY.

LEADING AND TRAILING SIGN.
Only one sign permitted.

ILLEGAL SIGN ENTRY.
Not one of: S + -

ILLEGAL C ENTRY.
Check CR placement.

ILLEGAL D ENTRY.
Check DB placement.

ILLEGAL INSERTION CHARACTER ENTRY.
Not one of: .,/ B

ILLEGAL DOLLAR SIGN OR Z ENTRY.
$ or Z inwrong place.

INVALID END.
No single quote.

INVALID CHARACTER.
Not a valid PICTURE character.

ILLEGAL FLOATING CHARACTER.
Notoneof: $ S + - *

UNCLOSED QUOTE.
A string started with a quote has not been terminated.

STATEMENT NOT WITHIN COLUMNS 2 - 71.

167

CHAPTER 9: SABRETALK COMPILER MESSAGES

168

APPENDIX A:

APPENDIX A:

The ECB shown here is an example of how one would describe a data record to be included in the
INCLUDE library. This is provided for information only, and should be used only after it is compared to the
installation requirements.

EXAMPLE FORMAT OF AN ENTRY CONTROL BLOCK

Format of the Entry Control Block: (an INCLUDE Member)

DECLARE 1 EBOEB ENTRYBLOCK, /* 1055 BYTE ECB
2 CEICHW PTR, /* CHAIN WORD
2 CE1BAD PTR, /* POST INTERRUPT BRANCH ADDR
2 CE1WKA, /* WORK AREA
3 EBWOOOF,
4 (EBWOOO,EBWOO1, EBWO02, EBWOO3) CHAR (1),
3 EBWOO4F,
4 (EBWO04,EBWOO5, EBWOO6, EBWOO7) CHAR (1),
3 EBWOOSF,
4 (EBWOO8S,EBWO09, EBWO10, EBWO11) CHAR (1),
3 EBWO12F,
4 (EBWO12,EBWO13, EBWO14,EBWO15) CHAR (1),
3 EBWO16F,
4 (EBWO16,EBWO17, EBWO18,EBWO19) CHAR (1),
3 EBWO20F,
4 (EBWO20,EBW621, EBWO22, EBW023) CHAR (1),
3 EBWO24F,
4 (EBWO24,EBW025, EBW026, EBWO27) CHAR (1),
3 EBWO2SF,
4 (EBWO28,EBW029, EBWO30, EBWO31) CHAR (1),
3 EBWO32F,
4 (EBWO32,EBW033, EBWO34,EBWO35) CHAR (1),
3 EBWO36F,
4 (EBW@36,EBWO37,EBWO38, EBW039) CHAR (1),
3 EBWO40OF,
4 (EBWO40,EBW041, EBW042,EBWO43) CHAR (1),
3 EBWO44F,
4 (EBWO44,EBW045, EBW046, EBWO47) CHAR (1),
3 EBWO4SF,
4 (EBWO48,EBW049, EBWO50, EBWO51) CHAR (1),
3 EBWO52F,
4 (EBWO52,EBW053, EBWO54, EBWO55) CHAR (1),
3 EBWO56F,
4 (EBW@56,EBWO57, EBWO58, EBWO59) CHAR (1),
3 EBWO6OF,
4 (EBWO60,EBWO61, EBWO62, EBWO63) CHAR (1),
3 EBWO64F,
4 (EBW064,EBWO65, EBWO66, EBWO67) CHAR (1),
3 EBWOG6SF,
4 (EBWO68,EBW069, EBWO70, EBWO71) CHAR (1),
3 EBWO72F,
4 (EBWO72,EBWO73, EBWO74,EBWO75) CHAR (1),
3 EBWO76F,
4 (EBWO76,EBWO77,EBWO78,EBWO79) CHAR (1),
3 EBWOS8OF,
4 (EBWOSO,EBWO81, EBW082, EBWO83) CHAR (1),
3 EBWO84F,

*/
*/
*/
*/

169

APPENDIX A:

NDNNDNNDMNDMNDDNDNDNMNDMNDNDNDNDNDNDDNDNDNDNDDNDDNDNDMNDMNDDNDDNDNDNDNDDNDNDMNDNDDNDDNDNDMNDDNDDNDNDMNDMNDDNDDNDDNDNDND

4 (EBWO84,EBW085,EBW0386,EBWO87) CHAR (1),

3 EBWOSSF,

4 (EBWO88,EBW0O89, EBW090, EBWO91) CHAR (1),

3 EBWO92F,

4 (EBW@92,EBW093, EBWO94, EBWO95) CHAR (1),

3 EBWO9GF,

4 (EBWO96,EBW097, EBW098, EBW099) CHAR (1),

3 EBW100F,

4 (EBW100,EBW101, EBW102,EBW103) CHAR (1),

3 EBW104F,

4 (EBSWO1,EBSW02,EBSW03,EBRS01) BIT (8),

3 EBW108F,

4 (EBCMO1,EBCMO2,EBCMO3,EBERO1) BIT (8),

CE1FA@ BIT(32),
CE1FM@ BIT(32),
CE1FA1 BIT(32),
CE1FM1 BIT(32),
CE1FA2 BIT(32),
CE1FM2 BIT(32),
CE1FA3 BIT(32),
CE1FM3 BIT(32),
CE1FA4 BIT(32),
CE1FM4 BIT(32),
CE1FA5 BIT(32),
CE1FM5 BIT(32),
CE1FA6 BIT(32),
CE1FM6 BIT(32),
CE1FA7 BIT(32),
CE1FM7 BIT(32),
CE1FA8 BIT(32),
CE1FM8 BIT(32),
CE1FA9 BIT(32),
CE1FM9 BIT(32),
CE1FAA BIT(32),
CE1FMA BIT(32),
CE1FAB BIT(32),
CE1FMB BIT(32),
CE1FAC BIT(32),
CE1FMC BIT(32),
CE1FAD BIT(32),
CE1FMD BIT(32),
CE1FAE BIT(32),
CE1FME BIT(32),
CE1FAF BIT(32),
CE1FMF BIT(32),
CE1FAP BIN (31),
CE1FMP BIN (31),
CEICRO PTR,

CE1CTOO CHAR(1),
CE1CTO1 BIT(8),
CE1CCO BIN (15),
CEICR1 PTR,

CE1CT10 CHAR(1),
CE1CT11 BIT(8),
CE1CC1 BIN (15),
CEICR2 PTR,

CE1CT20 CHAR(1),
CE1CT21 BIT(8),
CE1CC2 BIN (15),
CEICR3 PTR,

CE1CT30 CHAR(1),

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

FARW

FARW

FARW

FARW

FARW

FARW

FARW

FARW

FARW

FARW

FARW

FARW

FARW

FARW

FARW

FARW

F

/* FARW FOR PROGRAM CALL

CORE BLOCK REFENCE WORD - 0

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

CORE BLOCK REFERENCE WORD - 1*/

CORE BLOCK REFERENCE WORD - 2*/

CORE BLOCK REFERENCE WORD -

3*/

170

APPENDIX A:

NDNDNNNNMNDMNDDNDNDMNMDNDNDNDNDNDNDDNDDNDNDMNDDNDDNDNDNDMNDNDDNDNDNDNDDNDDNDNDNDDNDDNDDNDNDNDNDDNDNDNDNDDNDDNDNDNDNDDNDDNDMNDMNDDNDDNDNDMNDNDDNDDND

CE1CT31 BIT(8),
CE1CC3 BIN (15),
CEICR4 PTR,

CE1CT40 CHAR(1),
CE1CT41 BIT(8),
CE1CC4 BIN (15),
CEICR5 PTR,

CE1CT50 CHAR(1),
CE1CT51 BIT(8),
CE1CC5 BIN (15),
CEICR6 PTR,

CE1CT60 CHAR(1),
CE1CT61 BIT(8),
CE1CC6 BIN (15),
CEICR7 PTR,

CE1CT70 CHAR(1),
CEICT71 BIT(8),
CE1CC7 BIN (15),
CEICRS PTR,

CE1CT80 CHAR(1),
CE1CT81 BIT(8),
CE1CC8 BIN (15),
CEICR9 PTR,

CE1CT90 CHAR(1),
CE1CT91 BIT(8),
CE1CC9 BIN (15),
CEICRA PTR,

CE1CTA@ CHAR(1),
CEICTA1 BIT(8),
CE1CCA BIN (15),
CEICRB PTR,

CEICTBO CHAR(1),
CE1CTB1 BIT(8),
CE1CCB BIN (15),
CEICRC PTR,

CE1CTCO CHAR(1),
CEICTC1 BIT(8),
CE1CCC BIN (15),
CEICRD PTR,

CE1CTDO CHAR(1),
CE1CTD1 BIT(8),
CE1CCD BIN (15),
CELCRE PTR,

CE1CTE® CHAR(1),
CEICTE1 BIT(8),
CEA1CCE BIN (15),
CEICRF PTR,

CELCTF@ CHAR(1),
CEICTF1 BIT(8),
CE1CCF BIN (15),
CEICRP PTR,

CEICTP CHAR (2),
CE1CCP BIN (15),

CE1FX0
CE1FX1
CE1FX2
CE1FX3
CE1FX4
CE1FX5
CE1FX6
CE1FX7

CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR

(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CBRW

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

FOR

REFERENCE

REFERENCE

REFERENCE

REFERENCE

REFERENCE

REFERENCE

REFERENCE

REFERENCE

REFERENCE

REFERENCE

REFERENCE

REFERENCE

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

WORD

PROGRAM CALLS

/*
/*
/*
/*
/*
/*
/*
/*

FARW
FARW
FARW
FARW
FARW
FARW
FARW
FARW

EXTENSION
EXTENSION
EXTENSION
EXTENSION
EXTENSION
EXTENSION
EXTENSION
EXTENSION

NoUahWNRO

4*/

5%/

6*/

7*/

8*/

9*/

A*/

B*/

c*/

D*/

E*/

F*/

*/

*/

*/

*/

*/

*/

*/

*/
*/

171

APPENDIX A:

NDNMNMNMNNNDNMNDNDND

N

N

NDNNNNDMNDMNDDNDNDNMNDMNDNDNDNDNDNDDNDNDNDMNDDMDDNDNDMNDMNDNDDNDMNDMNDNDDNDDND

CE1FX8
CE1FX9
CE1FXA
CE1FXB
CE1FXC
CE1FXD
CE1FXE
CE1FXF
CE1SUD,

WWWWWWWwwwWwwWwwwwwww

CE1SUP,

3 EBCSDP

CE1SUG,

3 EBCSUG BIT

CE1SPO
CE1PLO
CE1PL1
CE1PL2
CE1PL3
CE1PL4
CE1PL5
CE1PL6
CE1PL7
CE1PLS
CE1PL9
CE1PLA
CE1PLB
CE1PLC
CE1PLD
CE1PLE
CE1PLF
CE1RDA
CE1RDB
CE1SVR
CE1SV1
CE1SVA
CE1SVB
CE1SVC
CE1SVD
CE1SVE
CE1SVF
CE1SVP
CE1PRL
CEINST
CEICXR
CE1CQE

EBCSDO
EBCSD1
EBCSD2
EBCSD3
EBCSD4
EBCSD5
EBCSD6
EBCSD7
EBCSD8
EBCSD9
EBCSDA
EBCSDB
EBCSDC
EBCSDD
EBCSDE
EBCSDF

CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR

(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),

(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)
(8)

(8),

(8),
(6),
(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),
(8),
(31),
(31),
(31),
(31),
(31),
(31),
(31),
(31),
(31),
(31),
(31),
(31),

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

N N N N N N N N N N N N N N N~

BIT

CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
CHAR
BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN
BIN
PTR,
CHAR (8),
BIN (31),

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

FARW
FARW
FARW
FARW
FARW
FARW
FARW
FARW

EXTENSION
EXTENSION
EXTENSION
EXTENSION
EXTENSION
EXTENSION
EXTENSION
EXTENSION

DETAIL DATA LEVEL ERROR

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
DETAIL PROGRAM LEVEL

IND -
IND -
IND -
IND -
IND -
IND -
IND -
IND -
IND -
IND -
IND -
IND -
IND -
IND -
IND -
IND - F
ERR

MOOW>»POONOUAWNRERO

1
OTTmMOOW>» OO

-
=
(%]

OR

GROSS DATA LEVEL ERROR IND

RESERVED

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM

REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER
REGISTER

NESTING
NESTING
NESTING
NESTING
NESTING
NESTING
NESTING
NESTING
NESTING
NESTING
NESTING
NESTING
NESTING
NESTING
NESTING
NESTING

SAVE
SAVE
SAVE
SAVE
SAVE
SAVE
SAVE
SAVE
SAVE
SAVE
SAVE

PROGRAM LEVEL
ADDRESS OF PGM NESTING AREA
CONTROL TRANSFER FIELD
2305 COPY QUEUE CHAIN WORD

LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL -
LEVEL
AREA -
AREA -
AREA -
AREA -
AREA -
AREA -
AREA -
AREA -
AREA -
AREA -
AREA -
COUNT

RDA
RDB
RAC
RG1
RGA
RGB
RGC
RGD
RGE
RGF
RAP

TMOOW>»OONOUDAWNEREO

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

172

APPENDIX A:

NDNMNMNNDNNDN

NDNNNNNNDMNDNNDN NDNMNNDND NDNDNDN

NN

N

NNNMNMNDNDNNDN

CE1SP1 CHAR (4),
CE1SON CHAR (16),
CE1AWA CHAR (8),
CE1AUT BIN (31),
CE1PBI CHAR (2),
CE1DBI,

3 CE1UID CHAR (2),
CE1SDBI CHAR (2),
CE1SP7 CHAR (2),
CE1TTA CHAR (8),
CE1COM,
CE1DES
CE10RG
CE1PRE
CE1MID
CEiCL1
CE1CL2
CE1CL3
CEiCL4
CEICL5
CE1CL6

PTR,
PTR,
CHAR (2),
CHAR (2),
BIT (8),
BIT (8),
BIT (8),
BIT (8),
BIT (8),
BIT (8),
CEICL7 BIT (8),
CEICL8 BIT (8),
CE1UTP BIT (8),
CE1SUN BIT (8),
CE1TNS BIT (8),
CE1SP9 BIT (8),
CE1CPX,

3 CEICPA BIT (8),
3 CEICPB BIT (8),
3 CEA1CPC BIT (8),
3 CEA1CPD BIT (8),
CE1SP2 CHAR (4),
CE1SP3 CHAR (6),
CE1TRV BIN (15),
CE1PSW CHAR (8),
CE1IOC BIN (15),
CE1HLD CHAR (1),
CE1TAP CHAR (1),
CE1TIN BIT (16),
CE1URM BIT (16),
CE1REC,

3 CE1TOP BIT (8),
3 CE10UT,

WWWWWwwWwWwwwwww

4 EBROUT CHAR (3),

3 CEL1TST CHAR (4),
CE1SP4 CHAR (2),
CE1SUC,

3 EBCSUC BIT (8),
CE1SUI,

3 CE1SYE BIT (8),
CE1TRC PTR,

CE1TCU CHAR (1),
CELTIM CHAR (5),
CE1IN1 BIT (8),
CEAIRTT BIT (8),
CE1SP5 CHAR (8),
CE1ARS,

3 CE1URA BIN (31),
3 CE1URB BIN (31),
3 CE1UR@ BIN (31),

/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

RESERVED

SON DECODE FIELD
AUXILIARY WORK AREA
AUTOMATIC STORAGE BLOCK
PROGRAM BASE ID

DATA BASE ID

SAVE DATA BASE ID
RESERVED

TEST TOOLS AREA

CRPL

MESSAGE DESTINATION
MESSAGE ORIGIN

CONSOLE PREFIX SMART ID
SMART USER ID

CONTROL INFORMATION

COMPOSITE USER - USER TYPE
SUB USER NUMBER

TTL NBR OF SUBUSERS
RESERVED

CONTROL PROGRAM WORK AREA

RESERVED

RESERVED

TRANSFER VECTOR FIELD
PROGRAM STATUS WORD
INPUT/OUTPUT COUNTER
HOLD COUNTER

SYMBOLIC TAPE MODULE NO.
TAPE STATUS INDICATORS
UNIT RECORD

TEST TOOL OPTIONS
TRACE OPTIONS

TERMINAL ADDRESS

RECORDING/TEST
RESERVED
CONTROL PROGRAM FLAG

SYSTEM ERROR INDICATORS

TRACE CNTRL XFER & CREATES
PTI CONTROL BYTE

ECB TIME STAMP

INDICATOR BYTE - 1

TRACE OUTPUT SELECTION
RESERVED

USER REGISTER SAVE AREA
REGISTER SAVE AREA - RDA
REGISTER SAVE AREA - RDB
REGISTER SAVE AREA - RAC

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

173

APPENDIX A:

WO WWWWWWwWw

w

CE1UR1 BIN (31), /* REGISTER SAVE
CE1UR2 BIN (31), /* REGISTER SAVE
CE1UR3 BIN (31), /* REGISTER SAVE
CE1UR4 BIN (31), /* REGISTER SAVE
CE1UR5 BIN (31), /* REGISTER SAVE
CE1UR6 BIN (31), /* REGISTER SAVE
CE1UR7 BIN (31), /* REGISTER SAVE
E1WKB, /* WORK AREA 2
EBX00OF,

4 (EBX000, EBX001, EBX002, EBX003) CHAR
EBX004F,

4 (EBX004,EBX005, EBX006, EBX007) CHAR
EBX008F,

4 (EBX008,EBX009,EBX010, EBX011) CHAR
EBX012F,

4 (EBX012,EBX013,EBX014,EBX015) CHAR
EBX016F,

4 (EBX016,EBX017,EBX018,EBX019) CHAR
EBX020F,

4 (EBX020,EBX021,EBX022, EBX023) CHAR
EBX024F,

4 (EBX024,EBX025,EBX026, EBX027) CHAR
EBX028F,

4 (EBX028,EBX029,EBX030,EBX031) CHAR
EBX032F,

4 (EBX032,EBX033,EBX034,EBX035) CHAR
EBX036F,

4 (EBX036,EBX037,EBX038, EBX039) CHAR
EBX040F,

4 (EBX040,EBX041,EBX042,EBX043) CHAR
EBX044F,

4 (EBX044,EBX045,EBX046,EBX047) CHAR
EBX048F,

4 (EBX048, EBX049, EBX050, EBX051) CHAR
EBX052F,

4 (EBX052,EBX053, EBX054, EBX055) CHAR
EBXO56F,

4 (EBX056,EBX057,EBX058, EBX059) CHAR
EBX060F,

4 (EBX060,EBX061, EBX062, EBX063) CHAR
EBX064F,

4 (EBX064,EBX065, EBX066, EBX067) CHAR
EBX068F,

4 (EBX068,EBX069, EBX070, EBX071) CHAR
EBX072F,

4 (EBX072,EBX073,EBX074,EBX075) CHAR
EBXO76F,

4 (EBX076,EBX077,EBX078,EBX079) CHAR
EBXO8SOF,

4 (EBX080,EBX081,EBX082, EBX083) CHAR
EBX084F,

4 (EBX084,EBX085,EBX086, EBX087) CHAR
EBX088F,

4 (EBX088,EBX089, EBX090, EBX091) CHAR
EBX092F,

4 (EBX092,EBX093, EBX094,EBX095) CHAR
EBX096F,

4 (EBX096,EBX097, EBX098, EBX099) CHAR
EBX100F,

4 (EBX100,EBX101,EBX102,EBX103) CHAR

EBX104F,

AREA
AREA
AREA
AREA
AREA
AREA
AREA

(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),
(1),

RG1
RGA
RGB
RGC
RGD
RGE
RGF

*/
*/
*/
*/
*/
*/
*/
*/

174

APPENDIX A:

/*
/*
DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

4 (EBXSWO,EBXSW1, EBXSW2, EBXSW3) BIT (8),
3 EBX108F,
4 (EBXSW4,EBXSW5, EBXSW6, EBXSW7) BIT (8),

2 CE1SP6 CHAR (15), /* RESERVED

2 CE1FLG BIT (8); /* FORMAT FLAG

2 CE1RES CHAR (300), RESERVED SYSTEM AREA
2 CE1USA CHAR (336), USER AREA

EBCFWO DEFINED CE1FAO,
2 EBCIDO BIN (15),

2 EBCRCO CHAR (1),

2 EBCCNO CHAR (1),

2 EBCFAO,

3 EBCFM@ CHAR (1),

3 EBCFCO CHAR (1),

3 EBCFHO CHAR (1),

3 EBCFRO CHAR (1);
EBCFW1 DEFINED CE1FA1,
2 EBCID1 BIN (15),

2 EBCRC1 CHAR (1),
2 EBCCN1 CHAR (1),
2 EBCFA1,

3 EBCFM1 CHAR (1),

3 EBCFC1 CHAR (1),

3 EBCFH1 CHAR (1),

3 EBCFR1 CHAR (1);
EBCFW2 DEFINED CE1FA2,
EBCID2 BIN (15),

2 EBCRC2 CHAR (1),
2 EBCCN2 CHAR (1),
2 EBCFA2,

3 EBCFM2 CHAR (1),

3 EBCFC2 CHAR (1),

3 EBCFH2 CHAR (1),

3 EBCFR2 CHAR (1);
EBCFW3 DEFINED CE1FA3,
2 EBCID3 BIN (15),

2 EBCRC3 CHAR (1),
2 EBCCN3 CHAR (1),
2 EBCFA3,

3 EBCFM3 CHAR (1),

3 EBCFC3 CHAR (1),

3 EBCFH3 CHAR (1),

3 EBCFR3 CHAR (1);
EBCFW4 DEFINED CE1FA4,
2 EBCID4 BIN (15),

2 EBCRC4 CHAR (1),
2 EBCCN4 CHAR (1),
2 EBCFA4,

3 EBCFM4 CHAR (1),

3 EBCFC4 CHAR (1),

3 EBCFH4 CHAR (1),

3 EBCFR4 CHAR (1);
EBCFW5 DEFINED CE1FAS5,
2 EBCID5 BIN (15),

2 EBCRC5 CHAR (1),
2 EBCCN5 CHAR (1),
2 EBCFAS5,

3 EBCFM5 CHAR (1),

3 EBCFC5 CHAR (1),

3 EBCFH5 CHAR (1),

3 EBCFR5 CHAR (1);

*/
*/
*/
*/

175

APPENDIX A:

DECLARE 1

DECLARE 1

DECLARE 1

DECLARE 1

DECLARE 1

DECLARE 1

DECLARE 1

EBCFW6 DEFINED CE1FA6,
2 EBCID6 BIN (15),

2 EBCRC6 CHAR (1),

2 EBCCN6 CHAR (1),

2 EBCFA6,

3 EBCFM6 CHAR (1),

3 EBCFC6 CHAR (1),

3 EBCFH6 CHAR (1),

3 EBCFR6 CHAR (1);
EBCFW7 DEFINED CE1FA7,
2 EBCID7 BIN (15),

2 EBCRC7 CHAR (1),
2 EBCCN7 CHAR (1),
2 EBCFA7,

3 EBCFM7 CHAR (1),

3 EBCFC7 CHAR (1),

3 EBCFH7 CHAR (1),

3 EBCFR7 CHAR (1);
EBCFW8 DEFINED CE1FAS,
2 EBCID8 BIN (15),

2 EBCRC8 CHAR (1),
2 EBCCN8 CHAR (1),
2 EBCFAS,

3 EBCFM8 CHAR (1),

3 EBCFC8 CHAR (1),

3 EBCFH8 CHAR (1),

3 EBCFR8 CHAR (1);
EBCFW9 DEFINED CE1FA9,
2 EBCID9 BIN (15),

2 EBCRCY CHAR (1),
2 EBCCN9 CHAR (1),
2 EBCFA9,

3 EBCFM9 CHAR (1),

3 EBCFC9 CHAR (1),

3 EBCFH9 CHAR (1),

3 EBCFR9 CHAR (1);
EBCFWA DEFINED CE1FAA,
2 EBCIDA BIN (15),

2 EBCRCA CHAR (1),
2 EBCCNA CHAR (1),
2 EBCFAA,

3 EBCFMA CHAR (1),

3 EBCFCA CHAR (1),

3 EBCFHA CHAR (1),

3 EBCFRA CHAR (1);
EBCFWB DEFINED CE1FAB,
2 EBCIDB BIN (15),

2 EBCRCB CHAR (1),
2 EBCCNB CHAR (1),
2 EBCFAB,

3 EBCFMB CHAR (1),

3 EBCFCB CHAR (1),

3 EBCFHB CHAR (1),

3 EBCFRB CHAR (1);
EBCFWC DEFINED CE1FAC,
2 EBCIDC BIN (15),

2 EBCRCC CHAR (1),

2 EBCCNC CHAR (1),

2 EBCFAC,
3 EBCFMC CHAR (1),
3 EBCFCC CHAR (1),

176

APPENDIX A:

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

3 EBCFHC CHAR (1),

3 EBCFRC CHAR (1);
EBCFWD DEFINED CE1FAD,
2 EBCIDD BIN (15),

2 EBCRCD CHAR (1),
2 EBCCND CHAR (1),
2 EBCFAD,

3 EBCFMD CHAR (1),

3 EBCFCD CHAR (1),

3 EBCFHD CHAR (1),

3 EBCFRD CHAR (1);
EBCFWE DEFINED CE1FAE,
2 EBCIDE BIN (15),

2 EBCRCE CHAR (1),
2 EBCCNE CHAR (1),
2 EBCFAE,

3 EBCFME CHAR (1),

3 EBCFCE CHAR (1),

3 EBCFHE CHAR (1),

3 EBCFRE CHAR (1);
EBCFWF DEFINED CE1FAF,
2 EBCIDF BIN (15),

2 EBCRCF CHAR (1),
2 EBCCNF CHAR (1),
2 EBCFAF,

3 EBCFMF CHAR (1),

3 EBCFCF CHAR (1),

3 EBCFHF CHAR (1),

3 EBCFRF CHAR (1);
EBCCX0 DEFINED CE1CRO,
2 EBCCRO PTR,

2 EBCCTO CHAR (2),

2 EBCCCO BIN (15);
EBCCX1 DEFINED CE1CR1,
2 EBCCR1 PTR,

2 EBCCT1 CHAR (2),

2 EBCCC1 BIN (15);
EBCCX2 DEFINED CE1CR2,
2 EBCCR2 PTR,

2 EBCCT2 CHAR (2),

2 EBCCC2 BIN (15);
EBCCX3 DEFINED CE1CR3,
2 EBCCR3 PTR,

2 EBCCT3 CHAR (2),

2 EBCCC3 BIN (15);
EBCCX4 DEFINED CE1CR4,
2 EBCCR4 PTR,

2 EBCCT4 CHAR (2),

2 EBCCC4 BIN (15);
EBCCX5 DEFINED CE1CRS5,
2 EBCCR5 PTR,

2 EBCCT5 CHAR (2),

2 EBCCC5 BIN (15);
EBCCX6 DEFINED CE1CR6,
2 EBCCR6 PTR,

2 EBCCT6 CHAR (2),

2 EBCCC6 BIN (15);
EBCCX7 DEFINED CE1CR?,
2 EBCCR7 PTR,

2 EBCCT7 CHAR (2),

2 EBCCC7 BIN (15);

177

APPENDIX A:

DECLARE 1 EBCCX8 DEFINED CE1CRS,

2 EBCCRS PTR,

2 EBCCT8 CHAR (2),

2 EBCCC8 BIN (15);
DECLARE 1 EBCCX9 DEFINED CE1CR9,

2 EBCCR9 PTR,

2 EBCCT9 CHAR (2),

2 EBCCC9 BIN (15);
DECLARE 1 EBCCXA DEFINED CE1CRA,

2 EBCCRA PTR,

2 EBCCTA CHAR (2),

2 EBCCCA BIN (15);
DECLARE 1 EBCCXB DEFINED CE1CRB,

2 EBCCRB PTR,

2 EBCCTB CHAR (2),

2 EBCCCB BIN (15);
DECLARE 1 EBCCXC DEFINED CE1CRC,

2 EBCCRC PTR,

2 EBCCTC CHAR (2),

2 EBCCCC BIN (15);
DECLARE 1 EBCCXD DEFINED CE1CRD,

2 EBCCRD PTR,

2 EBCCTD CHAR (2),

2 EBCCCD BIN (15);
DECLARE 1 EBCCXE DEFINED CE1CRE,

2 EBCCRE PTR,

2 EBCCTE CHAR (2),

2 EBCCCE BIN (15);
DECLARE 1 EBCCXF DEFINED CE1CRF,

2 EBCCRF PTR,

2 EBCCTF CHAR (2),

2 EBCCCF BIN (15);
DECLARE CITPCA PTR DEFINED EBW100F;

178

\ APPENDIX B.

APPENDIX B.

SPECIAL SABRETALK CONSIDERATIONS FOR TPEDF USERS

As a general rule, assembler macros within a SABRETALK segment are simply passed along to the
generated assembler language program. Any processing by the compiler is normally limited to syntax
checking of the macro. Consequently, if macro parameters contain entries in the form “keyword=value",
these parameters have to be enclosed in quotes so as not to cause syntax errors when examined by the
syntax checker. Example:

ROUTC 'LIST=R2', 'LEV=D2'(#R2=LISTPTR);

In the case of TPFDF macros, however, special processing has been introduced to allow more flexible
interchange of information between items known to SABRETALK and those needed by TPFDF. As such,
any keyword parameters (of the form "keyword=value") that are not enclosed in quotes, will be analyzed by
the compiler for possible resolution of SABRETALK symbols. For example:

TPFDF ADD, 'FILE=GR20OSR', 'NEWLREC=R5', ERROR=ERR1(#R5=P);

would cause the compiler to pass the first three parameters (ADD, FILE=GR20SR, NEWLREC=R5) exactly
as shown (except for the delimiting quote marks), while the fourth parameter (ERROR=ERR1) would be
changed to read “ERROR=ERR1$ “. (Assuming that the compiler option DOLLAR is in effect.)

In addition, because TPFDF may have to know about some fields which have been defined to the compiler
(but are not generally given to the assembler in base displacement formats), the compiler will generate the
correct references to such fields if a special flag ("?") is coded immediately before

each field. For example:

TPFDF READ, 'FILE=GR20OSR', UP,
KEY1=('R=GR20OKEY',6 S=?P->GR20KEY),
KEY2=('R=GR20AL2',6S=?P->GR20AL2), ERROR=ERR1;

In the above case, the sub-parameters S=?... cause the symbols given to be substituted with expressions
that yield the correct base and displacements so that the correct locations can be identified at assembly
time. In addition, the compiler will also cause the appropriate register to be loaded with the correct base
address so that the code will execute as expected. As such, the above macro reference would cause the
following code to be generated:

L R4, P$(R7)

TPFDF READ, FILE=GR20SR, UP,
KEY1=(R=GR20KEY, S=GR20KEY$(R4)),
KEY2=(R=GR20AL2, S=GR20AL2$(R4)), ERROR=ERR1$

The compiler automatically selects the registers in a predetermined order starting with R8 and continuing
"downward" to R1 if necessary. Thus:

. R9 will be selected for any fields in ENTRYBLOCK storage (ECB).

. R7 will be selected for any fields in AUTOMATIC storage.

. R6 will be selected for any fields of BASED storage assigned a permanent base of R6.
. R5 will be selected for any fields of BASED storage assigned a permanent base of R5.
. R4 thru R1 will be selected and loaded for any other fields as needed.

179

APPENDIX B.

Programmers should keep these assignments in mind whenever they need to pass values to TPFDF in
registers, i.e., they should not attempt to pass an automatic storage field while at the same time trying to
load R7 with some other value. It is best for programmers to select registers starting at RO and working
"upward" as far as necessary to avoid conflicts with the compiler selection.

Because CONSTANT storage fields reside in the same core block as the program, and consequently are
addressed through R8, they should not be passed to the TPFDF macro.

USER MACROS

This category is for Macros not specifically written for SABRETALK use which may not preserve registers
R1 - R7. Also, all coding used for Special macros (TPFDF type) will be allowed. For example, use of a
Question Mark to pass Base and Displacement.

After this type of Macro is issued, R7 will be restored from the ECB (CEL1AUT) and R1 - R6 will be marked
as altered. Example:

TESTC ADD, 'REF=SWOSEA', UP,WAIT=TAG1,
REG=?CORD6 , ERROR=TAG2
(CORD5=#R1, #R2=CP_ORD5) ;

generates:

L R2, CP$ORD5$(R5)

TESTC ADD, REF=SWOSEA, UP, WAIT=TAG1$, REG=CORD6$(R6), X
ERROR=TAG2$

L R7,CE1AUT

LA R7,8(,R7)

L R5, CPINCPTR(R7)

L R6, $PPTR$ (R7)

ST R1, CORD5$ (R6)

180

\ GLOSSARY

GLOSSARY

Definitions are biased to reflect a particular meaning associated with SABRETALK.

An asterisk (*) is used to mark duplicate entries: information about "Address, Absolute *" can be found
under "Absolute Address"

Absolute Address
The number of each storage location which is permanently wired into the hardware by the
manufacturer. In the case of core memory this is a byte address.

Absolute Value
A number whose magnitude is given but whose sign is not.

Addition, File *
Address, Absolute *
Address, Base *
Address, Machine *

Address Modification
The incrementation of an address for the purpose of preserving the relativity of relocated programs.

Address, Relative *

ALGOL
An acronym for "Algorithmic Language", one of the more common compilers. ALGOL is a powerful
statement-oriented algebraic language used principally for scientific problems. It was the model for
many of the newer artificial computer languages.

Aligned
A statement keyword that allows areas to be positionally adjusted, in byte multiples, so that they can
be more readily accessed and so as to more closely conform to the format (doubleword, full-word,
half-word, byte) of a major structure. (See Packed)

Allocation
The assignment of specific memory locations to program instructions or data.

Allocation, Dynamic *
Allocation, Storage *
Alphabet
An ordered set of language characters. The Roman alphabet consists of the 26 letters, a through z,

while the Universal alphabet of 29 characters contains the 26 letters and the symbols $, @ #.

Alphanumeric
An ordered set of characters that consists of the characters of an alphabet and numerals.

And, Logical *

And Symbol
The ampersand symbol (&) used to represent the logical "and" operator.

181

GLOSSARY

Area
A portion of memory whose smallest unit is a bit value and within which the binary representation of
a value or values may reside.

Arithmetic, Boolean *

Arithmetic Operator
One of the symbols for addition, subtraction, multiplication, and division (+, -, *, /). Used to
indicate the mathematical treatment of one operand by another.

Array
A collection of logically related data items, all of which have identical data attributes.

Assemble
The act of producing machine coding from a representative, symbolic version.

Assembler
A program designed to produce machine language coding from a representative, symbolic version.

Assembler Code
The specification of program instructions and data in symbolic form. (also Assembler coding)

Assembler Instruction
An element of Assembler code normally representative of a single machine instruction.

Assembler Language
(see Assembler Code)

Assignment Operator
The character (=) that signifies that an assignment of data is to be performed.

Assighment Statement
An executable SABRETALK instruction used to assign a value into an area or field. The assignment
operator is an equal sign (=).

Asterisk
Used as an operator, this character (*) denotes multiplication.

At Sign
Used as a character in the Universal alphabet, this character (@ is used as a prefix for a global tag.

Attribute
A characteristic of a value or of an area. Attributes in SABRETALK are frequently keywords.

Attribute, Data *

BAL
An acronym for Basic Assembler Language, an Assembler language used for many computers and
which is the object code or output code of SABRETALK.

Base
The starting location of data. Also, the first digit of a counting system; for example, when counting
items, if the first, second and third items are numbered 0, 1, 2 then the base is zero; if they are
numbered 1,2,3 then the base is one. In SABRETALK arrays are subscripted base one. (See
Radix.)

Base Address
Generally, the absolute address of the start of some area, to which may be added a relative
address. A choice of relative and/or absolute addresses provides a more flexible programming
environment.

182

GLOSSARY

Binary
Pertaining to a number system that uses only two digits: zero and one. Values can be represented
by digit groups: the decimal number "three" by 000011 or by 11; the letter "U" by 11100101.
Arithmetic is performed by decimal hardware or by binary hardware according to convention.

Binary Code
The representation of data in terms of binary digits.

Binary Coded Decimal
The representation of decimal digits by one of a number of binary code sets.

Binary Digit
A character representing one of the two possible binary values; zero or one.

Binary Number
A representation of a number by positional notation of binary digits. Where a point (.) is used to
separate the integer portion and fractional portion of a number, the binary number 111.01 would

represent:
+ 1 times 2 raised-to-the-power two
+ 1 t 2 t one
+ 1 " 2 " zero
+ 0 n 2 n n nus one
+ 1 v 2 v m nus two
Bit
An acronym meaning "Blnary digiT", the smallest unit of computer data. Frequently used to also
refer to the area in which a binary digit may reside.
Blank

The representation of:

« the absence of print where a print character might appear.
« the absence of a punch where a punch character might appear.
e aspecific symbol representing the absence of a print or punch character.

In SABRETALK a blank is considered a character.

Body, Statement *

Boolean
Pertaining to the algebra of logic formulated by George Boole; by extension, to the method whereby
the truth or falsity of statements may be represented by the binary digits zero and one: conclusions

from ordered sets of statements may then be derived by the rules of Boolean algebra.

Boolean Arithmetic
The operations involved in the use of the logical operators "and", "or" and "not".

Boundary
A restriction that limits a core location to a modular one.

Boundary, Byte *
Boundary, Character *
Boundary, Double-word *

Boundary, Full-word *

183

GLOSSARY

Boundary, Half-word *

Branch
One of the paths chosen as a result of the execution of a decision instruction; to give control to an
instruction other than the next sequential one.

Branch, Conditional *

Break Character
An underline character (_) frequently used as an aid in visually partitioning identifiers or labels.

Built-in Function
A SABRETALK keyword that results in the performance of a specific task through the collective
action of an instruction set.

Byte
An eight-bit modular unit of serial core represented by a core address.

Byte Boundary
A restriction that limits a core address to a byte module; also a character module.

Call
To transfer control to a specified closed internal procedure.

Card Column
A vertical strip through 1/80th of a card. Twelve rows cross the strip giving 4096 possible values per
column.

Card Image
A representation of an eighty-character record that constitutes a method of standardizing the size of
record modules.

Card Format
A string of eighty consecutive columns where each column could contain one character.

Character
A single planar graphic used as a visual representation of data. In a computer a character is
represented by an eight-bit module. Since it can also represent the addressable element of core, it
is often referenced as a byte. A blank is to be considered a character in SABRETALK.

Character Boundary
A byte boundary.

Character, Break *
Character, Drifting *
Character, Special *

Code
To express information in character patterns. The character patterns that express information.

Code, Assembler *
Code, Binary *
Code, Compiler *

Code, Decimal *

184

GLOSSARY

Code, Machine *
Code, Object *

Code, Re-entrant
(see Re-entrant)

Code, Source *
Column, Card *

Command
An instruction.

Comment
An aside. A note or remark that accompanies a portion of source code and has no effect on object
coding. SABRETALK comments have the form / * comrent */ .

Comparison Operator
Any ofthesymbols (= < > "= ~< 2> <= >=) that signify a comparison is to be
performed.

Compile
To translate from a more sophisticated, higher-level language to a more simple, machine-oriented
language.

Compiler
A program that compiles. Input to a Compiler (source code) is manipulated so as to produce a more
machine-compatible version of the data, data-structures and procedures desired. The consequential
output (object code) is usually accompanied by such programmer aids as cross- references, error
messages, etc.

Compiler Code
(see Compiler Language)

Compiler Instruction
(see Compiler Statement)

Compiler Language
The specification of program instructions and data in a more general problem-oriented statement
form, rather than the strict machine-oriented instruction format of an Assembler language.

Compiler Statement
In SABRETALK, a basic language element that ends in a semicolon (;) and that is used to
DECLARE data and/or specify executable directives.

Complement
The difference between a number and a string of identical digits; for example, the complement of
123 (using the digit string 99999) is 99876.

Composite
A set of two or more consecutive characters. In SABRETALK, composites may not contain a blank.

Composite Operator
A set of two or more consecutive characters that signifies an arithmetic, logical, relational,
parenthetical or concatenation operation is to be performed.

Computer Program
The orderly set of instructions, associative data and work area(s) needed to perform a computer
task.

185

GLOSSARY

Concatenation
The orderly appending of sequential data to sequential data. The result, of course, is a new and
larger set of data.

Concatenation Operator
The composite (] |) that signifies a concatenation operation is to be performed.

Concatenation Symbol
A composite of two vertical bars (| |) used to represent the concatenation operator.

Conditional Branch
The giving of control to an instruction as a result of executing a test instruction.

Constant
A data item, referenced by an identifier, the value of which may NOT change during execution of the
program.

Constant String
An ordered sequence of constants. In SABRETALK, the individual selection of constants from a
string is facilitated by declaring the area(s) in which they reside to be an array.

Control Program
A program or routine that supervises all other programs and is responsible for loading them,
performing their 1/O (input-output) tasks, for initiating and monitoring their activity and for terminating
them. The control routine for programs produced by SABRETALK is called TPF (Transaction
Processing Facility).

Control Routine
(see Control Program)

Core Memory
The large area of computer hardware used for the prime storage of data, instructions, programs etc.
in a computer.

Data
Representations of information. In SABRETALK, the basic data unit is a bit from which are built
elements called bytes, half-words, etc.. Though instructions are data elements, the SABRETALK
guide favors the term "instruction” for commands and "data" for non-instructional coding.

Data Attribute
A characteristic of a value or of an area in which a value may be found, not the value itself.

Data Field
An area in which information is to reside.

Data Item
Generally, a singular value.

Data LABEL

A misnomer; in the SABRETALK guide an attempt is made to refer to instruction names as
"LABELS" and to data names as "IDENTIFIERS".

Data Organization
The arrangement of data so that elements may be more easily or quickly accessed. Sequencing,
indexing and partitioning are some of the methods of arranging data.

Data Processing
Any of the operations performed on data by a computer.

186

GLOSSARY

Data Record
A collection of data fields or data items that have some correlation.

Data Set
Specifically, any data collection; by context, a collection of records.

Data Statement
In SABRETALK, the term used to identify a statement that particularly defines (declares) a data
item.

Decimal, Binary-coded *

Decimal Code
The representation of numeric information using decimal digits.

Decimal Digit
One of the characters, zero (0) through nine (9), used to represent the numbers of a system of radix
10 (the decimal system.)

Decimal Point
A period (.) used when necessary to define the boundary of the integer and/or fractional of a
number.

Decision Table
A two-dimensional chart used to format the results of logical operations. A truth table for a logical
'‘AND' would be:

Delimiter
An indicator that restricts sequential extension into another area.

Diagram, Logic
(see Decision Table)

Digit
A character used to denote a unit multiple. Hexadecimal digits, for example, consist of the digits O
through F

Digit, Binary *

Digit, Decimal *
Digit, Hexadecimal *
Digit, Significant *
Dimension

An attribute declared for arrays that specifies the number of identical sub-units in the array,
terminated by an END statement:

187

GLOSSARY

DO Group
In SABRETALK a relational set of statements or a part of a relational statement. The DO group
begins with a DO statement and is terminated by an END statement:

a: DOb =1 TO9 BY 2 WHLE c =5; ...END
IFd=1f THEN DO g = h; END,

DO Statement
In SABRETALK, the first statement in a DO group.

Double-word
An eight-byte unit of contiguous core on a double-word boundary.

Double-word Boundary
A byte boundary whose address is a multiple of 8.

Drifting Character
In SABRETALK, an editing character the positioning of which depends upon the location of the most
significant digit of an edited number.

Dynamic Allocation
The act of providing core areas at the request of, and during the run time of, a program.

Edit
To peruse and/or modify the format or the content of data. In SABRETALK, editing is normally
restricted to the modification of output data, particularly data that is in zoned-decimal format. The
prime purpose of editing is to produce printable or displayable numeric data.

Element

A basic or fundamental portion of data.
Element, Language *

Enclosure
A pair of delimiters that surround a sequential field.

Entry Point
In SABRETALK, the entry point of a program can be considered to be the first PROC statement in the
program. From here, control will pass to the START statement, if one is present, or will flow.

Equal Sign
The character (=) used in SABRETALK for assignment and comparison of variables.

Exclusive Or
A logical add operation in which a statement is assigned a value of one if true, zero if false. The
sum (no carry) of the values assigned to each of a set of statements determines the truthfulness of
the set.

Executive Routine
(see Control Program)

Expression
Two or more values and the enclosed operator(s) that constitute the arithmetic, logical, relational or
concatenation operations.

Expression, Logical *

External Reference
That which refers to an area outside of the program.

188

GLOSSARY

Factor
A multiplier or an integral divisor.

Factoring of Terms
In SABRETALK, the combining of statements with similar attributes into one statement. Only one
level of a structure may be factored:

DCL (a,b,c,d) BIN;

Field
A part of an area or a part of a record. Data is frequently structured in the following largest-to-
smallest graduations: library, data set, record, word, field.

Field, Data *

File Addition
The concatenation of files.

Fixed Point

An arithmetic in which the (decimal) point is placed at a specific position in a field and is not moved
thereafter. In contrast, floating point is an arithmetic in which the point is positioned or repositioned
so that a maximum amount of significant digits may be preserved and so that one (usually) digit
precedes the point.

Format, Card *

Full-word
A four-byte unit of contiguous core on a full-word boundary.

Full-word Boundary
A byte boundary whose address is a multiple of 4.

Function

e An activity.

e The way in which an activity is performed.

* In SABRETALK, a specific term for an internal procedure to which data is passed and which returns to
the caller a computed result.

Function, Built-in *
Group, DO*

Half-word
A two-byte unit of contiguous core on a half-word boundary.

Half-word Boundary
A byte boundary whose address is an even number.

Hexadecimal Code
The representation of numeric information using hexadecimal digits.

Hexadecimal Digit
One of the characters used to represent numbers in the number system of radix 16 (the
hexadecimal system.) The digits are represented by the characters 0 through 9 and by the letters A
through E. The binary equivalents of the sixteen digits are 0000 through 1111.

Identifier
In SABRETALK, the name given to a value or to a data field. The term “LABEL” will be generally
limited, in this guide, to the name of an executable statement.

189

| GLOSSARY

Identifying Keyword
A composite reserved in SABRETALK for defining data characteristics or for specifying the function
of a statement. Keywords are classified as statement identifiers, data attributes, separators and
built-in function names.

| F Statement
In SABRETALK, a relational statement that provides "then" or "else" branch control when the
results of a test are true or false.

Image, Card *

Inclusive Or
A logical overlay operation in which statements are assigned a value of one if true and a value of
zero if false. The logical resultant of OR'ing the statements is true unless all of the statements are
false. The SABRETALK "OR" operation is an inclusive "OR".

Index
The integer rank of an item in a sequential set. In SABRETALK, sets of similar data elements are
called arrays and an element is referenced by subscript, base 1, thus:
E(1) = first element (named "E") of array "A"
E(2) = second element of array "A"
E(3) = third element of array "A"
Infix
In SABRETALK, the type of operator that is inserted between two operands, as contrasted to the
type of operator (prefix) that precedes one operand. All operators in SABRETALK are infix. The
two operators plus (+) and minus (-) may also appear as 'prefix' operators.
Information
That portion of a signal or of a communication that has meaning.
Initialize
To bring to, or bring back to a starting state. SABRETALK will provide, for example, the object code
necessary to initialize "DO' loops when they are entered or re-entered.
Input
In relation to programs produced by SABRETALK, input would be any data supplied to the program,
before or after initialization, by a source external to the program.
Instruction

The command, or the equivalent of a command, that can cause programmable computer activity.
Instructions are usually:

. executed by the central processing unit.

. composed of binary numbers.

. represented as an operation to be performed and the operand(s) to be operated
upon.

Instructions of higher-level languages are called statements.
Instruction, Assembler *

Instruction, Compiler *
(see Compiler Statement)

Instruction, Machine *
Item

A singular portion of data that conveys unit information. In a general hierarchy of data structure, an
item might be a bit, a field, a word, etc..

190

GLOSSARY

Item, Data *

Iteration
One pass through a series of instructions, a series usually designed to manage modifications at
each of a number of passes. In SABRETALK, | F statements, DO statements and GOTO statements
provide for iterative processing.

I[e]
Input and/or output. (see Input, Output)

Keyword
In SABRETALK, a composite reserved for defining data characteristics or for specifying the function
of a statement. Keywords are classed as data attributes, statement identifiers, separating keywords
and built-in- function names.

Keyword, Identifying *

Keyword, Separating
(see Separator)

Label
The name given to an executable statement commonly equated with a core address. The
SABRETALK guide attempts to distinguish between names of executable statements (labels) and
names of values or data areas (identifiers.)

Label, Program *

Label, Statement *

Language
The syntax, the rules, the set of elements that comprise a communication system.

Language, Assembler *
Language, Compiler *

Language Element
A unit portion of a language; a character, a composite, an operator, an expression, a procedure, etc.

Language, Machine *

Length
An attribute of linear dimension, in terms of bits, bytes, etc. A distinction should be made between
length and precision. Length applies strictly to measurement; precision refers to the accuracy with
which a quantity is represented, particularly:

. when DECIMAL fractions are converted to BINARY fractions and vice-versa.
. when arithmetic operations result in truncation or in rounding.
. when a value is moved from a larger to a smaller area and some significance is lost.

Letters, Lower-case *
Letters, Upper-case *
List

A set of data items that are to be printed, read or displayed in order. In most cases, items in a list
are to be treated serially from beginning to end.

191

GLOSSARY

Literal
A data item which does not have an identifier, and which is referenced by the actual value it
represents.

Location
The specification of a place into which data may be stored. A more general term than the word
‘address'.

Logical And
A logical operation in which statements are assigned a value of zero if false, a non-zero value if true
and then the product (a bit multiplication product with no carry) is used to determine whether the set
of statements are true (1) or false (0).

Logical Expression
A portion of a statement that indicates one or more logical operations is to be performed.

Logical Not
A negating operation in which a statement is assigned a 'true’ value if false and assigned a 'false'
value if true. In SABRETALK, the 'not' symbol (*) is used as:

» alogical negate where the essence of the result is zero or nonzero (true or false).
e.g.

IF~ A THEN GOTO B ;

« an arithmetic negate where each bit in a location is replaced with a bit of opposite
value. NOTE: This is not the same as changing the sign.

Logical Operator
A symbol that indicates a logical operation is to be performed. The three logical operators in
SABRETALK are
e the 'not' symbol (*) - a logical not
e the'and' symbol (&) -a logical and
e the "or" symbol (]) - an inclusive or

Logical Or
(see Inclusive Or)

Lower-case Letters
The non-capital constructs of the Roman alphabet.

Machine Address
A unique number assigned to a small module of memory.

Machine Code
The character pattern(s) used to represent commands or data in a computer; machine language
code.

Machine Instruction
A character pattern used by a computer to perform an individual action including, in some cases,
operands or addresses essential to the act.

Machine Language
(see Machine Code)

Macro
The keyword that identifies the activity requested of an external system. Part of a macro statement.

Macro Statement

192

GLOSSARY

A statement or instruction used as a substitute for, and representing, a set of instructions. In most
cases, parameters may be included in order to modify portions of the represented set.

Mark, Question *

Memory
Any portion of a computer or computer peripheral in which information may reside.

Memory, Core *

Minus Sign
The dash character (-) that is used as a prefix/infix operator in arithmetic operations.

Modification, Address *

Name
An ordered set of specific characters used to reference a data item or a statement.

Noise
The portion of a signal that contains no information.

Not, Logical *

Not Symbol
The character (M) used to represent the logical "not" operator.

No-op
An instruction or statement that can be completely disregarded without affecting the result of a
routine in which it may be found. SABRETALK will not produce object code for many types of no-op
statements.

Null Statement
A SABRETALK statement that consists only of a statement terminator (;), or of a label and a
statement terminator.

Number
Used in this guide, loosely, to mean a concept in a number system, a numeral, a numeric, a serial
group of digits, etc..

Numeral
A symbol, character or graphic that represents a number.

Numeric
Pertaining to numerals.

Object Code
The representation of a language as it is produced (output) by a Compiler, Assembler, Translator,
etc.

Object Program
The output of an Assembler, Compiler or Translator.

Operand
That data item used by an operation process or processed by an operation.

Operation
In SABRETALK, that action performed by a statement operator.

Operator

193

GLOSSARY

In SABRETALK, a symbol representing one of a specific group of processes: arithmetic,
assignment, relational, concatenation, logical.

Operator, Arithmetic *
Operator, Assignment *
Operator, Comparison *
Operator, Composite *
Operator, Concatenation *
Operator, Logical *

Or, Exclusive *

Or, Inclusive *

Or, Logical *

Or Symbol
The vertical-bar character (]) used to represent the logical inclusive-or operator.

Organization, Data *

Output
That which is produced by a program, computer or device and which is, in essence, displayable on
paper, film, etc.

Overflow
Usually, the part of the result of an arithmetic operation that will not fit within the limits of the
computer's arithmetic registers.

Packed
A statement keyword that allows areas to be positionally adjusted so that they can be more tightly
grouped. (See Aligned.)

Patch
A temporary insertion into a program. Commonly used for minor corrections when a complete re-
compilation or re-assembly is not desired. Sometimes used for the insertion of a unique set of
instructions.

Picture Specification
A combination of editing and editing format codes that is used to modify numerals for output printing

and/or display.

PLII
An abbreviation for Programming Language |, a large Compiler adaptable for either scientific or
commercial applications and which provides simple or complex levels of programming. SABRETALK
is an extended subset of PL/I.

Plus Sign
The symbol (+) that is used as an infix operator in addition operations. (Disregarded as a prefix
operator.)

Point, Decimal *

Point, Entry *

194

GLOSSARY

Point, Fixed *

195

GLOSSARY

Pointer
An attribute keyword used to DECLARE an area as that which contains an address, usually an
address of some larger or major area.

Precision
The accuracy with which a value is represented. (See Length)

Prefix
In SABRETALK, the type of operator that precedes one operand, in contrast to the type of operand
(infix) that is inserted between two operands. The prefix operators in SABRETALK are the plus (+)
and the minus (-) signs.

PROCEDURE
A labelled unit of sequenced instructions that when given control (with or without parametric
information) performs some unique activity. Procedures are a major order of algorithmic internal
procedures and of heuristic internal procedures.

Processing, Data *

Program
A complete set of directions and data, in, or convertible into, machine code and which can
accomplish a singular task.

Program, Computer *

Program, Control *

Program, Executive
(see Control Program)

Program Label
In SABRETALK, the name assigned to a program by attaching it to the first statement.

Program, Object *
Program, Source *

Question Mark
A SABRETALK character that appears only as a character in a character-string.

Radix
The number of digits in a positional numbering system such as the decimal system, binary,
hexadecimal, etc. In the decimal system (the radix of which is ten decimal) the number 234
represents:

4
+ 3 times ten
+ 2 times ten times ten
Each successive position has a value ten times greater than the position on its right.
Real-time System
A computer operating system that provides output responses, each within a time period essential to
the response.

Record
Generally, a data unit of intermediate size that contains related fields.

Record, Data *

196

GLOSSARY

Re-entrant
The property of programs that allows a single copy of the program to concurrently service more than
one request by preventing the program from modifying itself during execution.

Reference, External *

Register
One of the group of basic hardware transfer nodes used for arithmetic, logical, relational and
assignment operations and for indexing, counting, addressing, etc. All instructions and manipulated
data pass through some register. The bit capacity of each register is individually fixed.

Relative Address
A location given as an incremental measurement from a base.

Return, Carriage *

Routine, Control
(see Control Program)

Routine, Executive
(see Control Program)

Separating Keyword
(see Separator)

Separator
In SABRETALK, any character or character group used to keep apart distinct elements of a
statement. Examples are the comma, colon, etc.

Separator, Statement
(see Separator)

Set
A collection.

Set, Data *

Sign
A representation of positive or negative quantity (+ -).

Sign, At *
Sign, Equal *
Sign, Minus *
Sign, Plus *
Significant Digit
Those unit portions of a numeral which represent its true value. Those unit portions of a numeral

which have not been changed as a result of manipulation or as a result of insufficient definition.

Source Code
The representation of a language as it is input to a Compiler, Assembler, Translator, etc.

Source Language
(see Source Code)

Source Program
A program in source code.

197

GLOSSARY

Source Statement
A unit portion of an Assembler or Compiler language.

Space
Referring, in this guide, to print line indexing. Not meant to signify a blank that is a character.

Special Character
The 20 SABRETALK characters that are used as operators.

Specification, Picture *

Statement
A basic problem-oriented language element that is used to delineate data characteristics and
problem-solving steps of higher-level languages.

Statement, Assighment *

Statement Body
The portion of a statement that follows an identifying keyword, or that is an assignment.

Statement, Compiler *
Statement, Data *
Statement, DO *
Statement, IF *

Statement LABEL
The name assigned to an executable statement.

Statement, Null *

Statement Separator
(see Separator)

Statement, Source *

Statement Terminator
In SABRETALK, the semicolon (;) that signifies the end of a statement.

Step
A common synonym for instruction.

Storage Allocation
The dispensation (and control) of core areas and memory areas. In SABRETALK programs, the
responsibility of allocating areas is generally divided between (or shared by) the control program and
the Compiler.

String, Constant *

198

GLOSSARY

Structure
A logical collection of data items, which may or not have identical data attributes, but which have a
hierarchical relationship to one another. A strict tree organization of data where members of the
major level are:

named data items, or
a next-lower-level set

and where members of the next (lower) level are:

named data items, or
a next-lower-level set

etc.

Supervising Program
(see Control Program)

Suppression
In SABRETALK, the deletion of unnecessary digits in a number, for example, deleting prefix-zeros,
or deleting suffix zeros after rounding.

Switch
An address or value used for the selection of alternatives.

Symbol
A graphic sign or set of signs, usually not alphanumeric, that represents some conventional abstract.
Examples: $ % ->

Symbol, And *

Symbol, Concatenation *

Symbol, Not *

Symbol, Or *

Syntax
The rules of grammar. Computer languages must be necessarily precise and therefore strictly
conform to thoroughly defined concepts.

System, Real-time *

Table, Decision *

Terminator
Any construct used to define the end. In SABRETALK, the semicolon (;) is used as an end-of-
statement mark.

Terminator, Statement *

Terms, Factoring-of *

TPF
An acronym for "Transaction Processing Facility", the control or executive program that initiates,

terminates and supervises the activities of all other programs.

Transfer Operator
(see Assignment Operator)

| 199

GLOSSARY

Truncate
To remove digits from the head and/or tail of a numeral. In SABRETALK, this is often necessary
when assigning values to a field of insufficient size.

Upper-case Letters
The capitals of the Roman alphabet.

Value
That which possesses a measurable quality and can therefore be compared.

Value, Absolute *

Variable
In SABRETALK, the contents of a named area to which may be assigned different values.

Word
In SABRETALK, a memory unit of four bytes on a full-word boundary.

Word, Double *
Word, Full *
Word, Half *

Zero Suppression
(see Suppression)

200

\ INDEX

INDEX

A labels and POINLeTS.........ccceevueriierienienieneetereeeeie e 50
ASSIGNIMONL.ececvveeeceeeeeeeecaeeeseseceesesesesee et eseseseeseseseseseenns multiple....................
arithmetic t0 arithmetiC.............vveerververrerrreensssereeseenenns simple...
arithmetic to BIT-string.... . structure
BIT-string to arithmetiC........coceeevveereeenieerieeeeseeeseenene R
BIT-string to BIT-StriNg......ccccccervueeeereeniieiereeneenneeeens Relational EXPressions.......cceveeeeeverriesieereerueesveesssnveeennnns 36
character-string to character-string...........ceccceveeveeveeennnnee 47

201

REVISIONS LOG

These are the revisions added to the current Sabretalk Manual dated 12/18/91. The previous issue was
dated 09/05/91.

7.4 CLEAR OPTION ADDED TO COMPILER OPTIONS.

202

READER'S COMMENTS

These pages are supplied to solicit the reader's comments, suggestions, corrections, questions and
requests for missing revisions. Return to:

SYSTEMONE CORPORATION
9300 NW 36th STREET
MIAMI FLORIDA 33178

203

REVISIONS LOG

204

REVISIONS LOG

205

REVISIONS LOG

206

REVISIONS LOG

207

	Table of Contents
	Introduction
	Programmer's Reference Guide Organization
	Format of this Guide
	Additional SABRETALK Publications

	CHAPTER 1: PROGRAM COMPONENTS
	PROGRAM COMPONENTS
	Statement Classification
	General Statement Structure
	Comments
	Keywords
	Macro keywords
	Assembler Language Instructions

	PROGRAM CONSTRUCTION RULES
	Format of Programs

	CHARACTER SETS
	Alphabetic Characters:
	Numeric Characters
	Special Characters
	Composites

	CHARACTER SET USAGE
	Separators
	Use of blanks
	The Hexadecimal Numerics
	Miscellaneous Character Sets

	Data Classification
	DATA CONSTRUCTION METHODS
	Variables
	Literals
	Constants

	CHAPTER 2: DATA DEFINITION RULES
	DECLARE STATEMENT
	Implicit length

	DATA TYPES
	BINARY Data
	BIT-String Data
	DECIMAL Data
	DECIMAL FLOAT Data
	CHARACTER String Data
	Numeric Character string Data
	Edited Character-string Data
	PICTURE Specification for Edited Character-strings
	Suppression Characters
	Insertion Characters
	Drifting Characters
	Credit (CR) and Debit (DB) Composites
	Floating point Edited character-string.

	LABEL Data
	POINTER Data
	Literal Data
	Literal Specification Summary

	CHAPTER 3: EXECUTABLE STATEMENTS - RULES
	EXPRESSIONS AND DATA CONVERSIONS
	Arithmetic Expressions
	Data Conversions
	Relational Expressions
	Relational Operations
	Logical Expressions
	Padding
	Boolean Arithmetic of Logical Operations
	Concatenation Expressions

	PRIORITY OF OPERATORS
	ASSIGNMENT STATEMENTS
	Simple Assignment
	Multiple Assignment
	Data Conversion, Truncation and Padding
	Structure Assignment
	Character-string to character-string assignment
	Arithmetic to arithmetic (*DEC, *NCS, *ECS, *BIN, *DEC FLOAT)
	BIT-string to BIT-string
	Arithmetic to BIT-string
	BIT-string to arithmetic
	Assignment of Labels and Pointers

	GOTO STATEMENTS
	DO STATEMENTS
	Non-iterative DO Group
	Iterative DO Group using WHILE Clause
	Iterative DO Group using a control variable

	IF Statements

	CHAPTER 4: EXPANDED DATA DEFINITION RULES
	DATA ORGANIZATION
	Arrays
	General Format:
	Subscripts

	Structures
	General Format of a Structure:

	Arrays Containing Structures
	Structures Containing Arrays
	Factoring of Attributes
	ALIGNED and PACKED Attributes
	General Format of ALIGNED and PACKED Data:

	STORAGE ALLOCATION
	AUTOMATIC Storage
	General Format:

	ENTRYBLOCK Storage
	General Format:

	CONSTANT Storage
	CONST Statements

	BASED Storage
	General Format:

	Explicit Pointer Usage
	General Format:
	General Rules for the Use of Pointers:

	DEFINED ATTRIBUTE AND DEFINED STORAGE
	General Format:
	General Rules for DEFINED Storage:

	INCLUSION STATEMENTS
	%INCLUDEAF Statement
	General Format:

	%INCLUDE Statement
	General Format:
	General Rules for %INCLUDE Statements:

	DATA STATEMENT STRUCTURE SUMMARY

	CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES
	PRECISION
	Arithmetic Operations
	Addition and Subtraction
	Multiplication
	Division
	Precision of MOD Operations on Decimal Data
	Results of Arithmetic Operations on BINARY Numbers

	Truncation

	FUNCTIONS
	Built-in Functions
	ABS Built-in Function
	MAX Built-in Function
	MIN Built-in Function
	MOD Built-in Function
	ROUND Built-in Function
	SIGN Built-in Function
	ALPHA Built-in Function
	NUMERIC Built-in Function
	INDEX Built-in function
	SHL Built-in Function
	SHR Built-in Function
	BSTR (pseudo-variable) Built-in Function
	CSTR (pseudo-variable) Built-in Function
	NSTR (pseudo-variable) Built-in Function
	VSTR Built-in Function
	ADDR Built-in Function
	CASE Built-in Function
	LSTR Built-in Function
	BSTM Built-in Function

	PROGRAMMER-DECLARED FUNCTIONS
	General Format:

	PROCEDURES
	General Format of PROCEDURE statements:
	Internal Procedures
	External Procedures

	MACROS
	General Format of Macro Statements:
	General Rules for Macro Statements

	REGISTER LOADING AND STORING
	System Equates in Macro Statements
	General Rules for Loading and Storing
	Sample Application Supported Macros

	PROCEDURE STATEMENTS
	General Format:
	General Rules for PROCEDURE Statements:

	START STATEMENTS
	General Format:
	General Rules for START Statements:

	END STATEMENTS
	General Format:
	General Rules for END Statements:

	CALL STATEMENTS
	General Format:
	General Rules for CALL Statements:

	RETURN STATEMENTS
	General Format:
	General Rules for the RETURN Statement:

	PROGRAM STRUCTURE
	Rules Governing Program Structure:
	Using Procedures Compiled Within the Program

	CHAPTER 6: ALTERNATIVE CODING METHODS
	Efficient Performance
	DATA CONVERSION
	Use of Numeric Character-String (*NCS) Data
	Use of Decimal Data
	Use of BIT-String Data

	AVOIDING POOR PROGRAMMING TECHNIQUES
	Compiler Restriction
	Other Techniques For Efficient Coding
	Initializing a field
	Use of Logical Operations
	Bit Manipulation

	CHAPTER 7: SABRETALK COMPILER OPTIONS
	OPTIONS STATEMENTS
	ALIGN / NOALIGN
	ALPHA
	ANGB3 / NOANGB3
	BAL / NOBAL
	CLEAR / NOCLEAR
	CODE / NOCODE
	DECK/NODECK
	DOLLAR / NODOLR
	GEN / NOGEN
	ICAFYES / ICAFNO
	INCLD / NOINCLD
	MAP / NOMAP
	MLEVEL0 / MLEVEL1 / MLEVEL2
	NUMERIC
	OPT / NOOPT
	PRINT / NOPRINT
	System-Equate-Identifiers Options (GTS, ONL, etc.)
	TERM / NOTERM
	TRACE / NOTRACE
	XREF / NOXREF
	Compiler Support of Variable Block Sizes:
	Changing the Compiler Block Size Options:

	CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT
	Creating a Program
	SYNTAX CHECKING
	The Syntax Checker
	Syntax Checking New Statements
	Syntax Checking Old Statements
	Structure Mode
	Initializing Structure Mode
	Completing the Structure
	Error Handling in Structure Mode
	Rules for Structure Mode

	Coding Standards
	The treatment of statements:
	Unacceptable Statements
	Programmer Declared Functions

	CHAPTER 9: SABRETALK COMPILER MESSAGES
	Severe Programmer Error Messages
	Terminal Error Messages
	Internal Compiler Errors
	Warning Messages
	Information Messages
	Syntax Checker Messages

	APPENDIX A:
	Example Format of an Entry Control Block

	APPENDIX B.
	Special SABRETALK considerations for TPFDF users
	User Macros

	GLOSSARY
	INDEX
	REVISIONS LOG
	7.4	CLEAR option added to compiler options.

	READER'S COMMENTS

