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Introduction

INTRODUCTION  

SABRETALK is a high level or general source language that is easy to learn and use.  The SABRETALK 
compiler is designed to produce programs that run in the control or executive environment called the 
Transaction Processing Facility (TPF).

The compiler produces, as output, IBM System 370 Assembler language programs that are re-entrant, that 
is, programs where a single image of the program in main storage can be servicing several requests.

The most economical approach to applications programming is through the use of a high level language.  By 
using SABRETALK, programmers are able to focus their attention on program logic rather than the individual 
machine characteristics, thereby improving programmer productivity.

Another advantage derived by the use of SABRETALK is the ease with which programs may be modified. 
This is possible because of the decreased number of coding statements in a given segment and the high 
degree of readability of these statements; furthermore, if programmers use descriptive names and 
comments SABRETALK can be nearly self-documenting in many cases.  Finally, the time necessary for 
program debugging can be reduced considerably because of the clarity of the language and the extensive 
error flagging routines built into the compiler.
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PROGRAMMER'S REFERENCE GUIDE ORGANIZATION  

The purpose of this guide is to provide programmers with the rules and conventions for coding application 
segments and/or programs, for subsequent use in the TPF System.  In addition special consideration 
information has been provided for TPFDF users (see Appendix B).

This guide contains nine chapters:

CHAPTER 1: PROGRAM COMPONENTS:

This chapter introduces the basic components and terminology used in the language.

CHAPTER 2: DATA DEFINITION RULES:

This chapter introduces the construction rules of the basic value statements and Data type 
definitions.

CHAPTER 3: EXECUTABLE STATEMENT RULES:

This chapter introduces the construction of basic statements and production of simple routines.

CHAPTER 4: EXPANDED DATA DEFINITION RULES:

This chapter provides a more in-depth description of the Data Definition rules and coding 
conventions.

CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES:

This chapter provides an in-depth discussion on executable statements, Built-in functions and 
Macros supported by SABRETALK and the TPF system.

CHAPTER 6: ALTERNATIVE CODING METHODS:

This chapter discusses efficient coding techniques for optimizing programs.

CHAPTER 7: COMPILER OPTIONS:

This chapter discusses a list of compiler options that may be temporarily over-ridden by the 
programmer.

CHAPTER 8: THE COMPILER IN AN INTERACTIVE ENVIRONMENT:

This chapter discusses interactive programming facilities through the use of an Interactive 
Environment Monitor (IEM).  It also introduces the Syntax Checker.

CHAPTER 9: COMPILER MESSAGES:

This chapter provides a list of compiler messages.

- x -



Introduction

FORMAT OF THIS GUIDE  

From this point on, the manual will present examples that will help to clarify the descriptions given and points 
made. A uniform system of notation will be used, according to the following rules:

    A)  :      :   Vertical sets of dots enclose an example.
        :      :

        _      _
    B)  |      |   Braces (sets of  vertical circumflex) enclose alternative items from 
        |      |   which selection must be made.
        -      -

    C)  (      )   Brackets (sets of vertical parentheses) enclose options that may be
        (      )   omitted.

        _         _
    D)  | DEC     |    ( ALIGNED )     When more than one element is stacked in
        | DECIMAL |    ( PACKED  )     braces or brackets the programmer may
        -         -                    select the element he desires.

    E)    ...      A series of three periods indicates a variable number of items that may be
   included in a list.

    F)    F07A     Underlining – used to identify hexadecimal alphabet numerals.

    G)  Upper-case letters, semicolons, colons, single quotes, parentheses and commas represent 
information that must appear exactly as shown.

    H)  Words written in lower case letters denote  programmer-defined code according to the rules of 
the specific element.  Although the compiler recognizes only upper case, mixed case is used in this Guide so 
that capitals may be used to stress keywords in examples of statements.

    I)  The appearance of one or more items in sequence indicates that the items, or their replacements, 
should appear in the specified order.

    J)  The notation  *BIN, *BS, etc. is used to mean BIN type of data, BIT type of data, etc.

Throughout this guide, all references to the Transaction Processing Facility will be in an abbreviated form: 
TPF.

ADDITIONAL SABRETALK PUBLICATIONS  

• SABRETALK Installation and Maintenance Guide

• SABRETALK Programmer's Reference Card
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CHAPTER 1: PROGRAM COMPONENTS

CHAPTER 1: PROGRAM COMPONENTS  

PROGRAM COMPONENTS  

The SABRETALK programs are coded in free form and can consist of:

• Statements
• Comments
• Assembler Instructions

Statement Classification  

A SABRETALK program is constructed from basic elements called statements. Within a program, control 
normally passes sequentially from one executable statement to the next.  As shown in figure 1.1 below, 
statements may be grouped in categories:

1



CHAPTER 1: PROGRAM COMPONENTS

____________________________________________________________________
|                                                                  |
|   Statement Category   Statement Function                        |
|                                                                  |
|   Program Structure:                                             |
|                                                                  |
|       PROC             To begin programs and internal procedures |
|                        and programmer-declared functions         |
|                                                                  |
|       END              To  indicate  the  last  statement  of DO |
|                        groups,  programs,  internal   procedures |
|                        and programmer-declared functions         |
|                                                                  |
|   Data:                                                          |
|                                                                  |
|       DCL              To   specify   identifiers   and    their |
|                        attributes                                |
|                                                                  |
|       INCLUSION        TO   incorporate   pre-coded              |
|                        statements   and/or   pre-compiled   data |
|                        record descriptions                       |
|                                                                  |
|           %INCLUDE     TO    include     pre-coded               |
|                        statements from a library                 |
|                                                                  |
|           %INCLUDEAF   To  include   pre-compiled  data   record |
|                        descriptions from a library               |
|                                                                  |
|       CONST            To initialize a CONSTANT value            |
|                                                                  |
|   Executable:                                                    |
|                                                                  |
|       START            To indicate  the  entrance to  executable |
|                        code  when storing of register  contents, |
|                        passed   from  a  calling   program,   is |
|                        necessary                                 |
|                                                                  |
|       Assignment       To transfer data                          |
|                                                                  |
|       Control          To affect the order of statement execution|
|                                                                  |
|           GOTO         To branch                                 |
|                                                                  |
|           IF           To branch conditionally                   |
|                                                                  |
|           DO           To flow conditionally                     |
|                                                                  |
|           CALL         To transfer control to internal procedures|
|                                                                  |
|           RETURN       To return control from internal procedures|
|                        or from programmer-declared functions     |
|                                                                  |
|       Macros           To communicate with the TPF System or     |
|                        with PL/TPF                               |
|__________________________________________________________________|

Figure 1.1 Categories of Statements

General Statement Structure  

Statement labels must abide by the rules for identifiers and they must be followed by a colon.

2 



CHAPTER 1: PROGRAM COMPONENTS

General Format:

        (Statement Label and)  (Identifying)  (Statement)   Statement
        (colon              )  (Keyword    )  (Body     )   Terminator
        (                   )  (           )  (         )

        :   labl4:                GOTO          labl2             ;   :
        :                         DCL        netpay BINARY(15)    ;   :
        :                                                             :

Comments  

Comments included in the text of the program serve to make it more comprehensible and provide a very 
effective means of documenting program logic.  In general, a comment may be inserted anywhere a blank is 
permitted, except within a character-string.

Comments may precede or follow a statement or they may be placed within the statement itself.  The format 
for a comment is as follows:

               /*text of the comment*/

The beginning and termination of a comment are denoted by the /* and */ composites, respectively. 
Comments cannot be terminated with a slash in column 72; column 71 is the last column in a record.  Blanks 
are permitted within the comment text.  Any series of characters may be used in the comment text, with the 
exception of */ itself, since this would signify the termination of the comment.  There is no length restriction 
on a comment.

Keywords  

Keywords are reserved words that may only be used as: 

• statement identifying keywords(including macro keywords) 
• data attribute keywords 
• miscellaneous keywords 
• built-in function keywords 
• register-specification keywords.
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 Statement        Data                          Built-in   Register
 Identifying      Attribute        Misc.        Function   Specification
 Keyword          Keyword          Keyword      Keyword    Keyword
 -------          -------          -------      -------    -------
 CALL             ALIGNED          BY           ABS        #RAC
 CONST            AUTO (AUTOMATIC) ELSE         ADDR       #RGA
 DCL (DECLARE)    BASED            THEN         ALPHA      #RGB
 DO               BIN (BINARY)     TO           BSTM       #RGC
 END              BIT              WHILE        BSTR       #RGD
 GLOBW            CHAR (CHARACTER) FILL         CASE       #RGE
 GLOBX            CONSTANT                      CSTR       #RGF
 GOTO (GO TO)     DEC (DECIMAL)                 INDEX      #RDA
 IF               DEC FLOAT                     LSTR       #RDB
 PROC (PROCEDURE) DEF (DEFINED)                 MAX        #RG0
 RETURN           ENTRYBLOCK                    MIN        #RG1
 START            FUNCTION                      MOD        #RG2
 Macros           LAB (LABEL)                   NSTR       #RG3
 %INCLUDE         PACKED                        NUMERIC    #RG4
 %INCLUDEAF       PIC (PICTURE)                 ROUND      #RG5
                  PTR (POINTER)                 SHL        #RG6
                                                SHR        #RG7
                                                SIGN       #RG14
                                                VSTR       #RG15
                                                           #0       #R0
                                                           #1       #R1
                                                           #2       #R2
                                                           #3       #R3
                                                           #4       #R4
                                                           #5       #R5
                                                           #6       #R6
                                                           #7       #R7
                                                           #14      #R14
                                                           #15      #R15

Macro keywords  

Macro keywords are names of macro requests. SABRETALK supports:

A) TPF macros (ENTRC, GETCC, etc.)
B) SABRETALK Macros (GLOBX, GLOBW, etc.)
C) User-defined macros (CSERA, INBLK, etc.)

4 
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Assembler Language Instructions  

Assembler Language instructions may be coded in columns 1 through 72 of card image records, if the BAL 
option is in effect.  Coding an X in column one identifies an unlabeled Assembler Language instruction. 
Assembler Language instructions having labels must be coded with a period in column one.  Comments 
must be coded with an asterisk in card column one.

    Card column 1-----|
                      |
                      V
                 :    .addtag   MH    R15,data$(R7)    :
                 :    X         A     R15,=F'25'       :
                 :    X         ST    R15,data$(R7)    :
                 :    *  comment.                      :

When Assembler Language instructions are inserted between a ‘GOTO’ statement and a SABRETALK 
routine, a SABRETALK Label must be inserted immediately after the 'GOTO' statement in order to produce 
the correct branch instruction around the BAL code.

                               -------------
                               GO TO BACK;
                        MOVE:
    Card column 1-----|
                      V
                 :    .MOVERTN  MH    R15,data$(R7)     :
                 :    X         A     R15,=F'25'        :
                 :    X         ST    R15,data$(R7)     :
                 :      BACK:   IF ..........           :
                 :                 THEN .....   ;       :

This facility should be used with caution and should not be employed to correct errors.  Since register usage 
in the BAL code generated is under the control of the compiler, the programmer must be sure that the 
registers he uses are properly selected.  This requires that the program, to which Assembler Language 
instructions are to be added, be compiled and that the programmer use the generated output to guard 
against any conflict in the use of registers.   Note that compiler modification as well as program modification 
may cause a difference in register selection and invalidate the Assembler Language instructions.

If the NOBAL compiler option is in effect, coding assembler statements will result in a return code of 12 and 
error SBT0042E being issued.  (See Chapter 7, Compiler Options, for more information)

PROGRAM CONSTRUCTION RULES  

A) Statements and comments are coded in columns 2 through 71.

• A semicolon denotes the end of a statement.
• A statement may begin in any column.

B) Card sequence numbers, which may be coded in columns 73 through 80, are ignored by the 
compiler.
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C) When it is necessary to continue a statement or a comment on another line and there is a logical 
break point, the first part of the statement may begin on one line and continue on the next line, 
beginning anywhere on that next line. An unlimited number of continuation lines may be used for a 
statement.

    Card column 2------|        Card column 71------|
                       |                            |
                       V                            V
                  :    a = b + c *( d + e ) +            :
                  :    f + g *( h + j ) ;                :
                  :                                      :

 But splitting a name, as in the following example, is not recommended.

    Card column 2------|               Card column 71------|
                       |                                   |
                       V                                   V
                 :                                   a = tot    :
                 :     al ;                                     :
                 :                                              :

D) When it is necessary to continue an assignment statement with a literal on another line, write the 
literal through column 71, and then continue the literals in column 2 of the next line.

    Card column 2------|        Card column 71------|
                       |                            |
                       V                            V
                  :    A = 'BBBBBBBBBB''BBBBBBBBBBBBB    :
                  :    BBBBBBBBBBBBBBBBBBBBBBBBBB'       :
                  :                                      :

E) Syntax checked macros:

1) The maximum number of characters accepted per line is 56.
2) When it is necessary to continue a literal on another line, end statement before column 72 with a 

quote and a comma, then continue on next line beginning with quote in any column.

    :                                                              :
    :    WTOPC 'DOT=YES','PREFIX=API2','NUM=61','LET=i',           :
    : 'TEXT=''BUG ENCOUNTERED WHILE EXECUTING TEST PROGRAM A',     :
    :              'PI2611212''';                                  :

F) Non-syntax checked macros: When it is necessary to continue a statement on another line, write the 
statement through column 71 and continue in column 2 of next line.

    Card column 2                       Card column 71--|
       |                                                |
       V                                                V
    :      WTOPC DOT=YES,PREFIX=API2,NUM=61,LET=I,TEXT=BU   :
    :  GENCOUNTE RED WHILE EXECUTING TEST PROGRAM API2611   :

6 



CHAPTER 1: PROGRAM COMPONENTS

Format of Programs  

A typical format for a program might be:

A) Program name (in a PROC statement)

B) DECLARE statements
1) Names of areas

a) to be referenced, or
b) containing parts to be referenced

2) Names and specifications of areas that will  become  part of the program

C) START statement

D) Processing statements

E) END (of program) statement

A simple example of a SABRETALK program:

         :   abc1d0:  PROC;                    :
         :            DCL factor BIN;          :
         :            START (factor = #R1);    :
         :            factor = factor + 1;     :
         :            BACKC;                   :
         :            END abc1d0;              :
         :                                     :

The layout of a program need only follow a few rules; however, standardized formatting of statements 
enhances readability, helping to clarify the logic and data structure of a program. The previous program 
example above could be written without a standardized format, as follows:

         :   abc1d0: PROC; DCL factor BIN;   :
         :   START (factor=#R1); factor=     :
         :   factor+1; BACKC; END abc1d0;    :
         :                                   :

Throughout this guide, sample programs and statements have been formatted for readability; it is hoped that 
the programmer will adopt a coding style along these lines.

7
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Figure 1.2 is the Assembler Language coding produced by compiling the above example. The assembler 
language listing has been re-formatted to conform to the print limitations of this Guide.

________________________________________________________________________
|                                                                      |
|LOC    OBJECT CODE   ADDR1 ADDR2 STMT   SOURCE STATEMENT              |
|___    ___________   _____ _____ ____   ________________              |
|                                                                      |
|                                   1           PRINT NOGEN            |
|                                   2           BEGIN NAME=ABC1,       |
|                                                     VERSION=D0       |
|                                 551           ALASC L0               |
|000024 4017 0004    00004        556           STH   R1,FACTOR$(R7)   |
|000028 41F0 0001    00001        557           LA    R15,0001         |
|00002C 4AF7 0004    00004        558           AH    R15,FACTOR$(R7)  |
|000030 40F7 0004    00004        559           STH   R15,FACTOR$(R7)  |
|                                 560           BACKC                  |
|000038                           564           LTORG                  |
|                          00004  565 FACTOR$   EQU   0004             |
|                          00000  566 $TEMPAUT  EQU   0000             |
|                          00008  567 $TEMPDBL  EQU   0008             |
|                          00010  568 $TEMPFW1  EQU   0016             |
|                          00014  569 $TEMPFW2  EQU   0020             |
|                                 570           FINIS                  |
|                                 778           END                    |
|                                                                      |
|______________________________________________________________________|

Figure 1.2 Compiler-generated Assembler Language Coding
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CHARACTER SETS  

The 59 characters used by the compiler consist of:

• Alphabetic characters  (including three from the Universal character set)
• numeric characters
• special characters

Alphabetic Characters:  

    Character Name 8-Bit Code         Character Name        8-Bit Code
    --------- ---- ----------         --------- ----        ----------

    A              1100 0001          O                     1101 0110
    B              1100 0010          P                     1101 0111
    C              1100 0011          Q                     1101 1000
    D              1100 0100          R                     1101 1001
    E              1100 0101          S                     1110 0010
    F              1100 0110          T                     1110 0011
    G              1100 0111          U                     1110 0100
    H              1100 1000          V                     1110 0101
    I              1100 1001          W                     1110 0110
    J              1101 0001          X                     1110 0111
    K              1101 0010          Y                     1110 1000
    L              1101 0011          Z                     1110 1001
    M              1101 0100          $        dollar sign  0101 1011
    N              1101 0101          @        at sign      0111 1100
                                      #        number sign  0111 1011

Numeric Characters  

    Character  8-Bit Code              Character  8-Bit Code
    ---------  ----------              ---------  ----------

    0          1111 0000               5          1111 0101
    1          1111 0001               6          1111 0110
    2          1111 0010               7          1111 0111
    3          1111 0011               8          1111 1000
    4          1111 0100               9          1111 1001
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Special Characters  

    Character  Name                            8-Bit Code
    ---------  ----                            ----------

    +          plus sign                       0100 1110
    -          minus sign                      0110 0000
    *          asterisk / multiplication code  0101 1100
    /          slash / division sign           0110 0001
    <          'less than' symbol              0100 1100
    >          'greater than' symbol           0110 1110
    =          equal-to symbol                 0111 1110
    &          'and' symbol                    0101 0000
    |          'or' symbol                     0100 1111
    ^          'not' symbol                    0101 1111
    (          left parenthesis                0100 1101
    )          right parenthesis               0101 1101
    '          single quote                    0111 1101
    ,          comma                           0110 1011
    :          colon                           0111 1010
    .          period                          0100 1011
    _          break character                 0110 1101
               blank                           0100 0000
    ;          semicolon                       0101 1110
    %          inclusion symbol                0110 1100

Composites   
Composites are sets of two or more characters that are reserved. Blanks are not permitted within 
composites.

• Composite Operators:

        ^<    not-less-than
        ^>    not-greater-than
        ^=    not-equal-to
        <=    less-than-or-equal-to
        >=    greater-than-or-equal-to
        ||    concatenation

• Pointer Qualification Composite:

     ->    arrow symbol

• Comment Composites:

        /*    start of comment
        */    end of comment

10 



CHAPTER 1: PROGRAM COMPONENTS

CHARACTER SET USAGE  

Separators  

    Name               Graphic      Use
    ----------------   -------    ---------------------------------

    left and right       ( )      sometimes  used in an expression  for
    parentheses                   enclosing  sequences of operands  and
                                  operators,   for  specifying   infor-
                                  mation   associated   with    various
                                  keywords and for enclosing subscripts

    single quote          '       a pair  of single quotes is  used  to
                                  enclose     bit     and     character
                                  strings,  and  is  used  in   PICTURE
                                  specifications

    comma                 ,       separates elements of a list

    period                .       decimal point

    break character       _       used within an identifier or  label to
                                  enhance readability

    colon                 :       used  to separate the statement  label
                                  from the statement

    semicolon             ;       indicates the end of a statement

Use of blanks  
Blanks  are  used as characters in character-strings or, with relative freedom, as separators in statements. 
Blanks are not permitted within identifiers or composites.  Identifiers  or  keywords  must  be   separated 
from immediately adjacent identifiers or immediately adjacent keywords by one or more blanks.  Individual 
parts of a statement that are not separated by  parentheses or  some other separator must be separated by 
blanks.

The Hexadecimal Numerics  

When  used  in hexadecimal notation, the following are recognized as numeric digits:

        0 1 2 3 4 5 6 7 8 9 A B C D E F

Miscellaneous Character Sets  

The arrow (->) symbol is used as a pointer qualifier.

The equal-to sign (=)  besides being used as a relational operator in an expression is used as an 
assignment statement operator.

The  number  sign  (#)  is used as a prefix character in System Equates, and also for register specification 
in the START statement and in certain macros.

11



CHAPTER 1: PROGRAM COMPONENTS

Certain  character sets are used to perform specific functions.  The character sets that function as operators 
can be categorized into four groups:

• arithmetic 
• logical
• relational
• concatenation.

The Arithmetic operators are:

        +    Addition or prefix plus
        -    Subtraction or prefix minus
        *    Multiplication
        /    Division

The Logical operators are:

        &    And
        |    Or
        ^    Not

The Relational operators are:

        <    Less-than
        =    Equal-to
        >    Greater-than
        ^<   Not-less-than
        ^=   Not-equal-to
        ^>   Not-greater-than
        <=   Less-than-or-equal-to
        >=   Greater-than-or-equal-to

  The Concatenation operator is:

        ||   Concatenation
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DATA CLASSIFICATION  

Figure  1.3  illustrates the data classification tree and will serve as a general introduction to data 
classification.
________________________________________________________________________
|                                                                      |
|                                                     |-subscripted    |
|                                         |-constant--|                |
|                                         |           |-unsubscripted  |
|                           |-major-------|                            |
|                           | structure   |           |-subscripted    |
|                           | (collection |-element---|                |
|                           |  of minor     variable  |-unsubscripted  |
|          |-identifier-----|  structures                              |
|          |  (named    )   |  and/or                 |-subscripted    |
|          |  (data item)   |  fields)    |-constant--|                |
|          |                |             |           |-unsubscripted  |
|          |                |-minor-------|                            |
|          |                | structure   |           |-subscripted    |
|          |                | (collection |-element---|                |
|          |                |  of fields)   variable  |-unsubscripted  |
|data item-|                |                                          |
|          |                |             |           |-subscripted    |
|          |                |             |-constant--|                |
|          |                |             |           |-unsubscripted  |
|          |                |-field-------|                            |
|          |                              |           |-subscripted    |
|          |                              |-element---|                |
|          |                                variable  |-unsubscripted  |
|          |                                          |                |
|          |-literal                                  |-pseudo-        |
|             (unnamed)                                 variable (*)   |
|                             (*) (not allowed in structures)          |
|                                                                      |
|______________________________________________________________________|
Figure 1.3 Data Classification Tree 

Identifiers are names given to data items by the programmer in order that they may be referenced. 
Identifiers are composed of Alphabetic, Numeric and optional break characters  ( _ ).  The first character of 
an identifier must be A through Z, $, @, or #.  The break character may appear in the identifier to enhance 
readability – e.g.:

        :                  :
        :   gross_pay      :
        :                  :

When coding identifiers, the following rules apply:

A) The first character of an identifier must be alphabetic.
B) All identifiers within a program must be unique.

There  is no length restriction on an identifier; however, while the program is being compiled, an 
identifier greater than eight characters is reconstructed using only the first four and last four 
characters.  For example, the identifier   flight_ordinal_number  would be compacted to 
fligmber  during the compilation process.  It is possible for two reconstructed identifiers to appear 
identical:

        :    flight_ordinal_number    :
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        :                             :
and
        :    flight_number            :
        :                             :

would both be compacted to become:

        :    fligmber                 :
        :                             :

A) Character # may not be imbedded within an identifier.

The programmer is responsible for ensuring that this compacting does not create duplicate identifiers as 
illustrated above. The compacted form of the identifier would appear only on the generated assembler output 
listing, not on the programmer's source code listing.

Whereas identifiers are data names, the names of executable statements are called labels.  All of the rules 
above that apply to identifiers also apply to labels.  Labels are used for branching, control being given to the 
statement whose label is supplied in a GOTO statement.  It is often necessary to make use of the symbolic 
address of a labelled executable statement, and so the need for the term 'label' which will be used to mean 
the name/symbolic address of the executable statement.

        :          lbl:   b = c;           :
        :                                  :

DATA CONSTRUCTION METHODS  

To explain the construction and the use of statements, a number of definitions, confined necessarily to the 
context of this guide, are now essential.

The  word  'data' is used to mean information, and we shall refer to data or portions of data as data items 
within the constraints of SABRETALK .

The term 'BIT', though specifically meant to represent either the binary digit one (1) or the binary digit zero 
(0), will also be used to mean the core area in which such a digit may be stored.  

Certain sets of binary digits are known as numerics, alphabetics, alphanumerics, decimals, binary values, 
special characters, characters, character-strings; all these terms are self-descriptive.

The usual method of data construction, data reference, data manipulation, etc., is based on the contents of 
an area.  The area size is determined, the data name (identifier) and the characteristics (attributes) of the 
data that will reside in the area are determined, and then a data statement  that  explicitly defines the area is 
prepared as part of the program.  If net_pay is a DECIMAL  data item up to five decimal digits, then the 
programmer may define (i.e., DECLARE) the area in which it will reside as follows:

        :    DECLARE net_pay DEC(5);        :
        :                                   :
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Any data item that is assigned to the area will:

1) conform to the attributes of the area
2) be referenced using the area contents name
3) be assigned an obtainable area address

Variables  

The term variable refers to a named area that may be assigned any value that can conform to the attributes.

        :       DCL   vrble2   BIN ;        :
        :                                   :

Literals  

The  facility  to define specific values without naming them through the use of identifiers creates a class of 
values called literals.   A literal is a value located within the program and, since it has no name, it is 
completely defined when it appears in a program statement.

        :        fld2 = 25;      \           :
        :        fld3 = .4 ;      \          :
        :        fld4 = '101'B;    \         :
        :        fld5 = 'F23C'X;   / Literals:
        :        fld6 = 'page';   /          :
        :        fld7 = 6.2E23'; /           :

A literal, then, is a specific, unnamed, unchangeable value which is defined by  a portion of a statement and 
whose attributes are implicit in the literal.  Literal Data is discussed later in Chapter 2.

Constants  

The ability to reference, by name, a specific unchangeable value that  occupies a specific area is available in 
SABRETALK.  Two statements are needed:

• a data statement that explicitly declares an area into which a named  constant is to be  placed, defines 
the attributes of the value and specifies the keyword CONSTANT

• a second statement whose keyword is CONST, where a specific value and the name of the value are 
supplied.  The value is given in the form of a literal or a SYSEQ (System Equate) tag, and a comma is 
placed after the identifier.

        :    DECLARE max_pay DECIMAL(5) CONSTANT;    :
        :    CONST max_pay, 63210. ;                 :
        :                                            :

The  previous  example shows a DECLARE statement explicitly defining an area in which can be stored a 
specific five digit DECIMAL value named max_pay and it shows the additional statement necessary to 
initialize the area max_pay with a specific value, 63210. decimal.  Once initialized, a constant value
cannot be changed.

A constant, then, is a named specific value occupying a specified area.  The area is declared by one 
statement and the unchangeable value is initialized by a second.  The  declaration  and  initialization of 
constants is described in detail in Chapter 4.

FIGURE  1.4  is meant to show the statement structure that will be explained in Chapter 2, Data Definition 
and in Chapter 3, Executable Statements.
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________________________________________________________________________
|                                                                      |
|       abc1s1: PROC;                                                  |
|               DCL wt BIN(31);                                        |
|               DCL msg CHAR(20);                                      |
|               DCL rwfactor BIN;                                      |
|               DCL clear PIC '999';                                   |
|               DCL clearance BIN;                                     |
|               DCL decr BIN;                                          |
|               DCL obsthgt BIN;                                       |
|               DCL i BIN;                                             |
|               decr = 100;                                            |
|       loop:      DO i = 1 TO 10;                                     |
|                  clearance = wt * rwfactor - obsthgt;                |
|                     IF clearance > 0 THEN GOTO fin;                  |
|                  wt = wt - decr;                                     |
|                  END;                                                |
|               decr = decr + 500;                                     |
|               GOTO loop;                                             |
|       fin:    clear = clearance;                                     |
|               msg = 'clearance = ' || clear || ' feet' ;             |
|               END abc1s1;                                            |
|                                                                      |
|______________________________________________________________________|

Figure 1.4 Example of a SABRETALK program
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CHAPTER 2: DATA DEFINITION RULES  

DECLARE   STATEMENT      

DECLARE (non-executable) statements are used to define data areas / data fields.  Keywords are used to 
define data attributes (properties associated with the data areas.)  There are no restrictions as to the number 
of DECLARE statements and they may be placed before or after any type of statement within the program, 
except that they must follow the PROC statement which names the program.  It is good practice to group 
DECLARE statements.

General DECLARE Format

     _         _
     | DCL     |  (level)  identifier  ( (dimension) )  data type
     | DECLARE |  (     )              (             )  attribute
     -         -                       (             )
     (storage  )  (data       ) ... (  ,  (level)  identifier
     (class    )  (alignment  )     (     (     )
     (attribute)  (attribute  )     (     (     )
                                    (

     ( (dimension) )  data type  (storage  )  (data       ) ... )   ;
     (             )  attribute  (class    )  (alignment  )     )
     (             )             (attribute)  (attribute  )     )
                                                                )

                        ( default   storage-class  attribute = AUTO   )
                        ( default   data alignment attribute = PACKED )

DECLARE Statement Rules

A) Although labels may be prefixed to DECLARE statements, the compiler discards such labels.

B) 'Level' (the numeric degree of data sub-classification) is a decimal integer from 1 through 255.  A level 
of one (1) is assumed if a level is not provided.

C) Attributes (which specify the form and characteristics of data) must immediately follow the identifier to 
which they apply (in one DECLARE statement).
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D) Multiple areas may be declared in one DECLARE statement, however, each 'identifier-attribute' set 
must be separated from the succeeding set by a comma:

                     :    DCL  a  attribute(s)  ,  b  attribute(s)  ,    :
                     :         c  attribute(s)  ;                        :
                     :                                                   :

will give the same result as:

                    :    DCL  a   attribute(s)  ;    :
                    :    DCL  b   attribute(s)  ;    :
                    :    DCL  c   attribute(s)  ;    :
                    :                                :

E) All fields must be declared.

F) A field cannot be initialized in the DECLARE statement.

Implicit length  

DECLARE function to allows implicit length to be coded by referring to a previously declared item's identifier.

Syntax:
DECLARE tagname type (size);
DECLARE tagname2 type (tagname);  <---- size of tagname

Note: tagname must be declared prior to being used as an implicit length.

Valid for BIN, BIT, CHAR, DEC and DEC FLOAT data types:

   DCL  BLOCK  CHAR(1055);
   DCL  BUFFER  CHAR (BLOCK);  <---- becomes CHAR(1055)

Examples:
  %INCLUDE DT0CA,DTCA28;
   DCL 01 DT0CA BASED (DCTAPTR),
       02 DCTAHDR,
          03 ADCTA CHAR(22),
          03 DDCTA CHAR(ADCTA);   <---- becomes CHAR(22)
   DCL 01 DC1TA BASED (DCT1PTR),
       02 DCT1HDR,
          03 ADCT1 CHAR(80),
          03 DDCT1 CHAR(ADCT1),   <---- becomes CHAR(80)
          03 DDCT2 CHAR(DDCTA),   <---- becomes CHAR(22)

   DCL A_BLOCK CHAR (1055);
   DCL BLK_BUFFER CHAR (A_BLOCK) BASED(BLKPTR);  <---  CHAR(1055)

   DCL I  BIN(31);
   DCL J  BIN(I);    <---- becomes BIN(31)

   DCL BTST BIT(16);
   DCL BBDEF(4) BIT(BTST);    <---- becomes BIT(16)
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   DCL A_LONG_NAME CHAR(80);
   DCL NAMETEST CHAR(A_LONG_NAME) DEFINED BLK_BUFFER; <--- CHAR(80)

   DCL DEC7V3 DEC(7,3);
   DCL DEC9V5 DEC(9,5);
   DCL DECTEST DEC(DEC9V5,DEC7V3);    <---- becomes DEC( 9, 3)
   DCL DECTEST DEC(11 , DEC9V5);    <---- becomes DEC( 11, 5)
   DCL DECTEST DEC(DEC7V3, 4);    <---- becomes DEC( 7, 4)

   DCL CALCA DEC FLOAT (16);
   DCL CALCB  DEC FLOAT (CALCA);   <---- becomes DEC FLOAT(16)
   DCL CALC1 DEC FLOAT (6);
   DCL CALC2 DEC FLOAT (CALC1);    <---- becomes DEC FLOAT(6)

   DCL INCTEST CHAR(DDCT1);        <---- becomes CHAR (22)

DATA TYPES  

The discussion of data types attempts to point out why one might select a given data type over another for a 
particular data item.  The programmer should also reference Chapter 3, Expressions and Data Conversions, 
and Chapter 3 Assignment statements, as an aid for determining whether the most efficient data type for a 
given situation has been selected by the programmer.

BINARY   Data      

Data items are declared BINARY by coding the data attribute BIN or BINARY in the DECLARE statement. 
BINARY data is either 16 or 32 bits in length.  The high order bit is the sign indicator.  The number of 
numeric BINARY digits may be specified in the DECLARE statement as either (15) or (31) by placing the 
desired number in the parentheses following the keyword. If not specified, the default value is 15.  The 
number of digits may also be specified by referring to a previously declared identifier (see Implicit length 
above).

General declare format for BINARY data:
        _         _                _        _
        | DCL     |   identifier   | BIN    |   (  (15)  )
                                                    15
        | DECLARE |                | BINARY |   (  (31)  )
        |         |                |        |   (        )
        -         -                -        -

        :    DCL seat_count BIN (15);          :
        :    DECLARE rev_miles BIN (31);       :
        :    DECLARE miles BIN (rev_miles);    :
        :                                      :

In the example:  

seat_count is sixteen bits in length
rev_miles is thirty-two bits in length
miles is the same (implicit) length as the data item rev_miles, thirty-two bits in length.

Each data item has a sign indicator as the high order bit and is stored in fixed-point BINARY format.  If 
BINARY data must reside in a field that is not 16 or 32 bits in length, the field may not be declared as 
BINARY.  The field should be declared as BIT (bit-string) data of the required size (see below).

An example of the assignment of a value (in this case a BINARY literal) to a BINARY field is as follows:
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            :   seat_count = 50;   :
            :                      :

The internal representation of seat_count in hexadecimal is 0032.

BIT  -String Data      

BIT-string data items are declared by use of the data attribute BIT.  The number of bits is specified by a 
decimal integer, enclosed in parentheses, with a value of 1 through 32.  The number of bits may be specified 
by using the identifier of a BIT field previously declared.  BIT-strings are always treated as unsigned.

General DECLARE Format for BIT-string Data:
        _         _
        | DCL     |   identifier  BIT (n)   ;
        | DECLARE |
        |         |
        -         -
                      (where n = number of bits: (0 < n <= 32) )

        :    DECLARE code_chk BIT(8);    :
        :    DCL flight_sw BIT(1);       :
        :    DCL fileaddr BIT(32);       :
        :    DCL chk2 BIT(code_chk);     :
        :                                :

In the example above:

code_chk is eight bits (one byte) in length
flight_sw is one bit in length. 
fileaddr is thirty-two bits (four bytes) in length
chk is the same implicit length code_chk, eight bits (one byte)  in length.  

None of the data items is signed; however, in circumstances where positive arithmetic values are required, 
BIT may be used. For example, if only one byte is available for a counter, the counter may be declared as 
BIT (8). The value is treated as unsigned.

An example of the assignment of a value (in this case a BIT-string literal) to a BIT-string data item is as 
follows:

                :   code_chk = '80'x;   :
                :                       :

The internal representation of code_chk in hexadecimal is 80.
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Use of BIT-strings in arithmetic expressions is as efficient as BINARY under any of the following conditions:

A) Length is 8 bits and field is byte aligned.
B) Length is 16 bits and field is half-word aligned.
C) Length is 32 bits and field is full-word aligned.

Considerably more code will be generated when the length of the BIT-string is not a multiple of 8.

DECIMAL   Data      

When declaring DECIMAL data items, the data attribute DECIMAL or DEC is used.  Following this keyword, 
the number of digits and the assumed decimal point placement are specified by two decimal integers, 
enclosed in parentheses, and separated by a comma.  The first integer specifies the total number
of digits and must be a decimal integer 1 through 15.  

The second integer specifies the number of digits to the right of the assumed decimal point and must be a 
decimal integer from 0 through 15.  If the second integer is zero, the integer and preceding comma may be 
omitted, in which case the decimal point is assumed to be to the right of the rightmost digit.  Either digit or 
both digits may be replaced by identifier names of prior-declared DECIMAL items.  DECIMAL data will be 
stored in the packed decimal format.

Programmers should develop the habit of declaring DECIMAL fields with an odd number of total digits. If an 
even number of digits is specified, the number will be rounded upward to the next odd number; e.g. a 
DEC(4,2) is treated as a DEC(5,2).

General DECLARE Format for DECIMAL Data:
        _         _                _         _
        | DCL     |   identifier   | DEC     |   (n  ( ,m )  )  ;
        | DECLARE |                | DECIMAL |       (    )
        |         |                |         |       (    )
        -         -                -         -       (    )

                (where n = total number of integer and fractional digits
                                                          (0 < n <= 15))
                                  (where m = number of fractional digits
                                                         (0 <= m <= 15))
                                                                (m <= n)

        :   DECLARE fare DEC(7,2);            :
        :   DCL average DEC(3);               :
        :   DCL unround DEC(7,3);             :
        :   DECLARE cost DEC(fare,unround);   :
        :                                     :

In the example:

fare has 7 digits, the last 2 of which are fractional, or to the right of an assumed decimal point.
average  has 3 digits, all of which are to the left of an assumed decimal point.
unround has 7 digits, the last 3 of which are fractional, or to the right of an assumed decimal point.
cost has the same implied length as fare – 7 digits, but the same assumed number of fractional 
digits as unround, so the last 3 digits are to the right of an assumed decimal point.  (See Implicit length 
section above for additional examples of implicit length for DEC type.)  

For each of the fields, data would be stored in the packed decimal format.

An  example of the assignment of a value (in this case a DECIMAL literal) to a DECIMAL field is as follows:

        :   fare = 468.10;   :
        :                    :
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The internal representation of fare in hexadecimal is 0046810C

The DECIMAL attribute should not be used without specific reason.  It should be used whenever fractional 
values are involved, or when the field is involved in arithmetic operations and the use of DEC for a particular 
field would provide the most efficient code overall.  Certain arithmetic operations, using either mixed data 
types or DECIMAL data items having different assumed decimal points, can cause expensive conversions. 
Refer to Literal Data, this chapter, for additional information.

DECIMAL FLOAT   Data      

When declaring Floating Decimal data items, the data attribute DEC FLOAT or DECIMAL FLOAT is used. 
Following this keyword, the number of digits of precision specified by one decimal integer, enclosed in 
parentheses.  The precision must be either 6 (short form) or 16 (long form).  The identifier of a previously 
declared DEC FLOAT item may also be used.   The short form is stored as four bytes of storage, and the 
long form as eight bytes.  Internal representation is always left justified; e.g., DEC FLOAT (6) is short form 
and DEC FLOAT (16) is long form.  DECIMAL FLOAT data is stored as a signed hexadecimal fraction and 
an unsigned seven bit binary integer called the characteristic.

General DECLARE Format for Decimal Floating Data:
        _         _                _         _
        | DCL     |   identifier   | DEC FLOAT    |     (p   )  ;
        | DECLARE |                | DECIMAL FLOAT|     (    )
        |         |                |              |     (    )
        -         -                -              -     (    )

                      (p = precision   short (6)  or  long (16) )

        :   DECLARE fare DEC FLOAT(16);     :
        :   DCL average DEC FLOAT(6);       :
        :                                   :

In the example:

fare has a maximum of sixteen decimal digits of precision.  
average has a maximum of six decimal digits of precision.  

The data item may represent a decimal number with more than sixteen digits.  This is done through the use 
of an exponent in scientific notation.  The coded format must contain a decimal point and an E for exponent 
followed by a one or two digit exponent.  Both the number and the exponent may be signed.

An example of the assignment of a value (in this case a DECIMAL FLOAT literal) to a DECIMAL FLOAT field 
is as follows:

        :   fare = -425.00E-02;    :
        :   average = 4.685E45;    :
        :                          :

The internal representation of fare in hexadecimal is C144000000000000

The DECIMAL FLOAT attribute should not be used without specific reason.   It should  be used whenever 
very large or small fractional values are involved.  Certain arithmetic operations using mixed data  types  can 
cause  expensive conversions.

Refer to Literal Data, this chapter, for additional information.
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CHARACTER   String Data      

CHARACTER string data items are declared by the use of data attribute CHAR or CHARACTER.  Length is 
specified by a decimal integer, enclosed in parentheses, with a value of 1 through 4087.  The length may be 
implicitly specified by using the identifier of a previously declared CHAR item.

General DECLARE Format for CHARACTER String Data:
        _         _                _           _
        | DCL     |   identifier   | CHAR      |   (n)   ;
        | DECLARE |                | CHARACTER |
        -         -                -           -
                                               (n = number of characters
                                                         (0 < n <= 4087))

        :    DECLARE text CHARACTER(27);     :
        :    DCL msg CHAR (4);               :
        :    DCL block CHAR (1055);          :
        :    DCL buffer CHAR (block);        :
        :                                    :

In the example:

text is 27 bytes in length
msg is 4 bytes  in length
block is 1055 bytes in length
buffer is the same implied length as block - 1055 bytes in length

For each of the fields, data would be stored in the EBCDIC format.

An example of the assignment of a value (in this case a CHARACTER string literal) to a CHARACTER field is as 
follows:

         :   msg = ' OK ';   :
         :                   :

The internal representation of msg in hexadecimal is 40D6D240.

Refer to Literal Data, this chapter for a discussion of CHARACTER string literals.

Numeric Character string Data  

Numeric Character string data items are declared by use of the PICTURE or PIC data attribute together with 
a PICTURE specification.

General DECLARE Format for Numeric Character-string:
        _         _                _         _
        | DCL     |   identifier   | PIC     |  'PICTURE          ;
        | DECLARE |                | PICTURE |   specification'
        -         -                -         -

Picture Specification for Numeric Character-strings

A PICTURE specification is composed of a series of PICTURE specification characters enclosed in a pair of 
single quotes. The PICTURE specification characters, for Numeric Character-strings, are 9 and V.  They are 
used to specify a digit position and the position of the assumed decimal point, respectively. The V serves as 
a separator for the integer and fractional portions if both are present.  If a V is not present, the decimal point 
is assumed to be to the right of the rightmost digit.  
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A PICTURE specification for a Numeric Character-string may consist of from 1 to 15 digits (9’s) and, 
optionally, 1 assumed decimal point (V).  Repetitive coding of a PICTURE specification character can be 
avoided by preceding it by the number of times, in parentheses, it is to be duplicated. The PICTURE
specification '999999V999' may be coded as '(6)9V(3)9' .  

The letter V does not contribute to the length assigned to the Numeric Character-string.  An actual decimal 
point will not be inserted; rather, alignment of the integer and fractional fields will occur on the position of the 
V in the string when data is stored in the field.  Numeric Character-strings can only contain values that are 
solely numeric in nature. The values are stored internally in the zoned decimal format.

        :    DECLARE flight PICTURE '9999';    :
        :    DCL wages PIC '9999999V99';       :
        :                                      :

In the example:
flight is allocated four integer and zero fractional zoned decimal digit positions. 

The length attribute of flight is four.
wages is allocated seven integer and two fractional zoned decimal digit positions.  

The length attribute of wages is nine.

An example of the assignment of a value (in this case a DECIMAL literal) to a Numeric Character-string field 
is as follows:

         :   wages = 893.29;   :
         :                     :

The internal representation of wages in hexadecimal is F0F0F0F0F8F9F3F2F9.

There are no Numeric Character string literals.

The major use of Numeric Character-strings is for data that will be used in input/output type operations. 
They may be coded in arithmetic expressions, however, most arithmetic operations will be considerably less 
efficient than similar operations performed on data with the DECIMAL or BINARY attributes. The following 
example serves to illustrate this point:

                :    DCL pass_count PIC '999';        :
                :    pass_count = 0.;                 :
                :        ...                          :
                :    pass_count = pass_count + 1. ;   :
                :                                     :

The internal storage representation of pass_count is in the zoned decimal format.   In the first assignment 
statement the packed decimal literal 0. is unpacked and stored into pass_count in the zoned decimal 
format.  In the second assignment statement, pass_count is packed and the addition is performed.  The 
result of this addition is unpacked and stored into pass_count.  If pass_count had been declared 
DECIMAL (3,0), the packing and unpacking instructions would not have been necessary. 

If the assignment had not contained a decimal point:

                :    pass_count = 0;              :
                :                                 :

then a BINARY value would have been specified and a conversion to DECIMAL would have occurred, 
making the conversion even more inefficient.

Please note that provision must be made in the PICTURE specification of the receiving field for at least one 
of the integer or fraction digits of the sending field.  Invalid coding will otherwise be produced.  For example:
        :     DCL passcount PIC 'V999';    :
        :     passcount = 333;             :
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        :                                  :

Examples of Numeric Character string assignments:

                               PICTURE
                               specification      Resultant
        Source data            characters         value
        -----------            -------------      ---------

           123                      999                 123
             1.2                      9V9                12
              .02                     9V9                00
             1.234                     V9999           2340
              .1234                    V9999           1234
            12.345                99999               00012

Edited Character-string Data  

Edited Character-strings and Numeric Character-strings represent the result of source data being shifted, 
truncated and padded to fit the pattern of a PICTURE specification. An Edited character-string is allowed a 
variety of additional characters in its PICTURE specification so that the PICTURE specification, as an editing 
tool, can be used to insert, append and suppress characters.

Edited character-string variables are declared with the PICTURE or PIC data attribute.  They allow the 
programmer to exercise greater control over his output data formats.  They are coded only as receiving 
fields in assignment statements and their primary purpose is to produce printable output fields.  It must be 
emphasized that any time an edit operation is performed, one more character than specified  (disregarding 
the V character) is used.  For example, the PICTURE specification 'ZZ99' will require five bytes of core, 
rather than four as specified.

General DECLARE Format for Edited Character-string Data
        _         _                _         _
        | DCL     |   identifier   | PIC     |  'PICTURE          ;
        | DECLARE |                | PICTURE |   specification'
        -         -                -         -

Packed arithmetic data assigned to Edited character-string variables will be converted to the zoned format. 
Editing cannot be specified for character-string data.  Data assigned to Edited character-strings must be 
arithmetic, containing only digits and, optionally, a sign and an assumed decimal point.  (Other characters, 
even though they may be coded in the PICTURE specification, are not allowed in the data to be assigned.) 
Floating Point data may only be assigned to a floating point Edited character-string.

For both Numeric Character-string and Edited Character-string fields, repetitive coding of a symbol can be 
avoided by preceding the symbol by the number of times it is to be duplicated.  This number must be 
enclosed in parentheses:

        :    '999999' can be coded as '(6)9'               :
        :    '******V999' can be coded as '(6)*V(3)9'      :
        :                                                  :

PICTURE   Specification for Edited Character-strings      

The  characters  used in PICTURE specifications for Edited character-strings may be categorized as follows:

A) Digit specifier / decimal point specifier
B) Suppression characters.
C) Insertion characters.
D) Signs and the currency symbol.
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E) Credit and debit characters.
F) Exponent character.

The PICTURE characters that are contained in the preceding groups may be coded in many combinations. 
The PICTURE specifications for Edited character-strings may consist of several parts including the sign 
specification, integer and fractional sub-fields.  Each of these sub-fields must contain a minimum of one 
character which specifies a digit, such as a 9, Z, or *.

The maximum length of the PICTURE specification is 32 characters.  Due to the fact that the largest 
arithmetic field that can be assigned to an Edited character-string consists of 15 digits, a maximum of 15 of 
the 32 PICTURE specification characters may specify digit positions.  The remaining characters may only be 
insertion type characters.

Suppression Characters  

To enhance the readability of printed arithmetic values, it is often desirable to replace leading zeros with 
blanks.  The letter Z and the asterisk (*) represent conditional digit positions and will cause leading zeros to 
be replaced by blanks or asterisks.

The letter Z causes leading zeros to be replaced by blanks.  When the specified digit position does not 
contain a leading zero, the digit will not be replaced.  Z cannot be specified in the same sub-field as *, nor 
can it appear to the right of the 9 or any drifting character.

The use of the asterisk (*) is the same as that of the Z, except that an asterisk, rather than a blank, will 
replace the leading zeros.

Examples of Suppression Characters in Edited Character-strings

                              PICTURE            Resultant
        Source data           specification      value
        -----------           -------------      ---------

          001000.                    ZZZ999        bbb1000
           12321.                     ZZ999         b12321
           00001.                     ZZZZZ         bbbbb1
           00000.                     ZZZZZ         bbbbbb
              19.4                    ZV999          b9400
               8                     ZZ9V99         bbb800
           00000                     ZZZVZZ         bbbbbb
             001.00                  **9V99         ***100
             000.01                  ***V**         *****1

If a Z or * appears to the right of the assumed decimal point V, then all the digit positions in the PICTURE 
specification must be Z's or *'s, respectively.  Fractional zeros will be suppressed if all fractional digits are 
zeros and all integer digits have been suppressed.  This will result in the entire data item being replaced by 
blanks or asterisks.

Insertion Characters  

The comma (,), period (.), slash (/), and blank (B) are insertion characters which cause the specified 
character to be placed into the  associated  position  of the data.  Although insertion characters do not 
specify digit positions, they are placed between  digits  and  therefore  occupy  a  character position  in  the 
Edited  character-string.   The comma, period, slash, and blank may be suppressed if they are part of a 
string of suppression  characters.   Suppression characters are not used to specify arithmetic characteristics.

The comma (,) specifies that a comma will appear in the position specified when no zero suppression 
occurs.   When zero suppression does occur, the comma is inserted only when a significant digit is to the left 
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of it or when the V character is coded immediately to the left of it and a fractional value appears.  If zero 
suppression does occur, the comma will be replaced according to the following rules:

A) If the first character to the left of the comma is an asterisk, an asterisk replaces the comma.
B) If this same character is a drifting sign or dollar sign, the comma is considered part of the 
drifting string.
C) If the first character to the left of the comma is a Z, the comma is replaced by a blank.

The period (.) specifies that a period will appear under the same conditions governing the appearance of 
the comma.  The period will not cause decimal point alignment of variables assigned to the Edited character-
string.  This can be accomplished only by use of the V.  Decimal alignment will occur on the V, even if the 
period appears elsewhere in the PICTURE specification.

The slash (/) specifies that a slash will appear with all of the governing conditions described above under 
insertion characters.

The blank (B) specifies that a blank will be inserted in the corresponding position with all governing 
conditions described above under insertion characters.

Unlike the character V, which may be coded only once in the PICTURE specification, the comma, period, 
slash, and blank may appear more than once.  This allows digits to be separated within the data item 
assigned to the Edited character-string.

Drifting Characters  

The Drifting Characters include the dollar sign ($), and the sign characters.  These are the letter s (S), the 
plus sign (+) and the minus sign (-).  The dollar sign ($) is used as the currency character.  The S, the plus 
sign and the minus sign are used to specify arithmetic signs in Edited character-strings.

It is possible to code these characters in a drifting or a static manner; multiple use of the character indicates 
that it is to be used in the drifting manner.  Characters to be used in the drifting manner must be coded in 
strings that specify every digit position through which the character may drift.  Strings of drifting characters 
will cause zero suppression similar to that caused by use of the Z character; however, the drifting character 
will always be inserted at the end of the string or just to the left of the most significant digit in the field.  

Strings of drifting characters may contain any one of the insertion characters and the V character.  If the 
insertion character is coded immediately following the drifting string, it is considered part of the string.  If a V 
character is coded immediately following the drifting string, it is not considered part of the string.  (As 
indicated previously, V serves as a separator for the integer and fractional sub-fields, if both are present.)  If 
a V is coded with drifting characters on both sides of it, the drifting character is the only character, which may 
appear in the sub-field to the right of the V.  In this case suppression will occur only if all fractional digits are 
zero and all integer digits have been suppressed, giving a resultant field containing only blanks.  Drifting 
strings cannot be followed by the suppression characters Z or *, and cannot be preceded by a PICTURE 
specification character which indicates a digit position.

If an insertion character will appear as part of a drifting character string, the following will apply:

A) The insertion character will appear if a significant digit has appeared to the left of it.

B) The drifting character will appear in its place if the position immediately to the right contains 
the most significant digit in the field.

C) A blank will appear if the most significant digit in the field is more than one character 
position to the right of the insertion character.

If a string contains the drifting character n number of times, the maximum digits that may appear are n.

If these characters are coded in the static manner, they will always appear in the position specified.
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The dollar sign ($) is used to specify the appearance of a currency character.  If coded in the static manner, 
the character will appear in the position specified.  It must be to the left or right of all digits in the field.  When 
coded in the drifting manner, appearance is governed by the rules specified above for drifting characters.

Examples of insertion characters and dollar sign in Drifting Character-strings.

                              PICTURE            Resultant
        Source data           specification      value
        -----------           -------------      ---------

          1234.56                    $$$9V.99      $1234.56
            25.30                    $$$9V.99      bb$25.30
          1234.56                   $,$$9V.99      $1,234.56
           234.56                   $,$$9V.99      bb$234.56

When using the sign characters (S + -), the string should always specify an odd number of digit positions 
(excluding the insertion character), in order to insure the desired result.

Only one of the sign characters may be coded in an Edited character-string.  When used in the static 
manner, the character must be to the left or right of all digits in the field.

• The S may be used in the static or drifting manner.  It specifies that a plus sign (+) will appear if the 
number is zero or greater, otherwise a minus sign (-) will appear.

• The plus sign (+) specifies a plus will appear if the number is zero or greater, otherwise a blank will 
appear.

• The minus sign (-) specifies a minus will appear if the number is less than zero, otherwise a blank will 
appear.

Examples of the sign characters in Drifting Character-strings.

                              PICTURE            Resultant
        Source data           specification      value
        -----------           -------------      ---------

          1234                       ----9        bb1234
         -1234                       ----9        b-1234
          1234                     ++++++9      bbb+1234
          1234.56                 ++,++9V.99     b+1,234.56
         -1234.56                 ++,++9V.99     bb1,234.56

Credit (  CR  ) and Debit (  DB  ) Composites       

The credit and debit composites may only appear to the right of all digits in the Edited character-string.  The 
string should always have an odd number of digit positions when these characters are coded, otherwise they 
will appear regardless of the value of the field.  They may not be coded if any other sign character is present. 
If an even number of decimal digits is desired, the source field must be adjusted so as to align the first digit 
of interest on a byte boundary. The 'edit' operation always starts on a byte boundary.

• The credit composite (CR) specifies that the field positions will contain the characters CR if the number 
is negative, otherwise two blanks will appear.

• The debit composite (DB) specifies that the field positions will contain the characters DB if the number is 
negative, otherwise two blanks will appear.
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Floating point Edited character-string.  

Floating point data may only be assigned to a special Edited character string.  The Edited character string 
MUST have a V. or a .V indicating the position of the assumed decimal point and MUST end in E99 or 
ES99.  Example:   

              DECLARE FPECS  PIC'$$,$$9V.99ES99'

LABEL   Data      

LABEL data items are declared by use of the data attribute LAB or LABEL.  They are variables to which are 
assigned statement labels (the program-relative address of the label is actually assigned) or other label 
variables.

General DECLARE Format for LABEL Data:
        _         _                _       _
        | DCL     |   identifier   | LAB   |  ;
        | DECLARE |                | LABEL |
        -         -                -       -

        :    DECLARE branch LABEL;    :
        :    DCL labvar LAB;          :
        :                             :

LABEL variables are allocated a half word of AUTOMATIC storage.

        :   DCL labvar LABEL;   :
        :         ...           :
        :   label2: a = b;      :
        :         ...           :
        :   label3: b = c;      :
        :         ...           :
        :   labvar = label2;    :
        :   GOTO labvar;        :
        :                       :

In this example labvar is declared a label variable and has the program-relative address of label2 
assigned to it.  Execution of the 'GOTO labvar' statement will now cause control to be transferred to the 
statement whose label is label2. That statement will be executed and control will continue sequentially. 
Elsewhere in the program label3 may be assigned to labvar, in which case a ’GOTO labvar‘ statement 
would transfer control to the statement whose label is label3, etc. The value assigned to labvar remains 
there until another value is assigned to it.  Unpredictable results are obtained when a ‘GOTO labvar‘ 
statement is executed and labvar has never been set.

Label variables may not have PROCEDURE statement labels assigned to them.

POINTER   Data      

POINTER data items are explicitly declared by use of the data attribute PTR or POINTER. They are variables 
in which addresses, which refer to (point to) data items, can be stored.   Pointers may be declared either 
explicitly or implicitly.
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General DECLARE Format for POINTER Data (Explicitly Declared):
        _         _                _         _
        | DECLARE |   identifier   | POINTER | ;
        | DCL     |                | PTR     |
        -         -                -         -

        :   DECLARE rptr POINTER ;   :
        :   DCL input PTR ;          :
        :                            :

Implicit  declaration involves use of the BASED data attribute, which is discussed in depth later in Chapter 4.

General DECLARE Format for POINTER Data (Implicitly Declared):
        _         _
        | DECLARE |  identifier   attribute     BASED  (identifier)   ;
        | DCL     |
        _         _

        :   DECLARE passdata CHAR(1) BASED (passptr) ;   :
        :   DCL output BIN(31) BASED (outptr) ;          :
        :                                                :

In this example passptr and outptr are defined as pointers not by the specific use of the POINTER 
attribute but by the parenthesized name following the BASED attribute.

Use of either method of declaration will cause one full word of AUTOMATIC storage to be allocated for the 
pointer.  If a pointer is to be used to address a data block, the allocation of the data block to be used in 
conjunction with the pointer is accomplished by use of a macro (e.g., the TPF macro GETCC, etc).    

It is the programmer's responsibility to initialize the pointer to contain the address of the data block he 
wishes to reference after storage allocation has been accomplished.  Pointers may be used to reference 
data blocks and other areas of memory.  If the pointer is recognized as being based in the ECB then the 
compiler will generate the necessary initialization code.

More than one data item may not be BASED on the same pointer:

        :   DCL a PIC '9' BASED (aptr) ;   :
        :   DCL b CHAR(1) BASED (aptr) ;   :
        :                                  :

In order to bypass this restriction and yet, achieve the same end, do the following:

        :   DCL a PIC '9' BASED (aptr) ;   :
        :   DCL b CHAR(1) DEFINED a ;      :
        :                                  :

Literal Data  

Literals are specific unnamed data values that are defined where they appear in a statement.  Literals 
sometimes appear as parts of executable statements.  Literals may be of the DECIMAL, BINARY, BIT-string 
or CHARACTER-string data type.  We present them now just before the consideration of executable 
statements.

BINARY literals are coded as a maximum of 15 decimal numbers without a decimal point; an optional sign 
may be coded: the maximum value being 231  - 1, the minimum value being -231.  Internally, all BINARY 
literals are established by the compiler as a positive fullword ( BIN(31)) number.   If the programmer codes 
a negative BINARY literal, the minus is interpreted as a prefix operator and code is generated for the prefix 
minus operation.
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Note:  The method of spacing digits is for the sake of clarity, there are no internal blank spaces in values.

                                Internal storage
        BINARY literal          bit representation
        --------------          -----------------------------------
        12                      00000000 00000000 00000000 00001100

BIT-string literals are coded as a maximum of 32 binary or as a maximum of 8 hexadecimal digits, enclosed 
in a pair of single quotes, and immediately followed by the letter B or X, respectively.  No blanks may appear 
between the closing quote and the B or X.

                                Internal storage
        BIT string literal      bit representation
        ------------------      -----------------------------------

        '011010'B               00000000 00000000 00000000 00011010
        'A3C4'X                 00000000 00000000 10100011 11000100

DECIMAL literals are coded as a maximum of 15 signed decimal numbers with a decimal point.  A sign may 
be specified; if not, plus is assumed.  If the programmer codes a negative DECIMAL literal, the minus is 
interpreted as a prefix operator and code is generated for the prefix minus operation. The internal 
representation of a DECIMAL literal is packed decimal.

                                    Internal storage
        DECIMAL literal             Hexadecimal representation
        ---------------             --------------------------
        28.                         02 8f
        28.2                        28 2f

DECIMAL FLOAT literals are coded as a mantissa followed by an exponent.  The mantissa is a decimal fixed 
point literal.  The exponent is the letter E followed by an optionally signed integer, which specifies a power of 
ten.  Decimal Floating-point literals have a precision of sixteen (eight bytes of storage).

        DECIMAL FLOAT literal        Scientific Notation
        ------------------------     --------------------------
        28.E5                        2.8 X 106   =   2,800,000.
        2.8E-03                      2.8 X 10-3  =   0.0028

CHARACTER-string literals are coded as a string containing a maximum of  256 EBCDIC  characters 
enclosed in a pair of single quotes.  If blanks are coded as part of the character-string they will become an 
integral  part  of  the string.   A maximum of 4,028 bytes of literals is allowed within a segment.  If single 
quotes are to appear within the string, each single quote must be represented by a composite of two single 
quotes.

In the following example note that although ‘miami’ and ‘sam's’ are shown as lower case alphabetics, they 
represent the upper case alphabetics (‘MIAMI’, ‘SAM'S’).

                                      Internal storage
        Character-string literal      hexadecimal representation
        ------------------------      --------------------------

        'miami'                       D4 C9 C1 D4 C9
        'SAM''S'                      E2 C1 D4 7D E2

Since there is no method for coding a Numeric Character-string literal or an Edited character-string literal, 
DECIMAL literals are used.
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Literal Specification Summary  

   Data format       Specification                       Examples
   -----------       -------------                       --------

A) binary            1 through 15  decimal digits             123
                     without a decimal point. A               -53
                     sign may be specified

B) bit-string

   1) bit coding     1 through 32 binary digits     '0100100001'B
                     enclosed in single quotes and        '1011'B
                     immediately followed by the
                     letter B

   2) hexadecimal    1 through 8 hexadecimal digits      '1234C'X
                     enclosed in single quotes and        'F1A3'X
                     immediately followed by the
                     letter X

C) decimal           1 through 15 decimal digits           123.
                     with a decimal point. A sign          -52.67
                     may be specified

D) decimal floating  1 through 16 decimal digits           1.E0
                     with a decimal point. A sign          -5.23E-12
                     may be specified. An exponent
                     E must be coded and a 1 or 2
                     digit exponent optionally signed

E) character-string  1 through 256 EBCDIC characters     'msg #2'
                     enclosed in single quotes

F) Numeric           (none)
    Character-string

G) Edited            (none)
    Character-string
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CHAPTER 3: EXECUTABLE STATEMENTS - RULES  

EXPRESSIONS AND DATA CONVERSIONS  

An expression is a combination of operator(s) and operands(s) used for computing a value. An operator is a 
symbol designating a process to be performed.  An operand is a value residing in a data area or the result of 
an expression (result/exp).  Expression types are determined by the types of operators coded within them. 
Operator (and hence expression) types are Arithmetic, Logical, Relational and Concatenation.

Expressions are not statements of themselves; they are used within various statements.

         :   IF count = 0 THEN GOTO error;   :
         :   DO WHILE invent < maxinvent;    :
         :   area = length * width;          :
         :                                   :

In the first example, count = 0 is an expression (relational).  
In the second example, invent | maxinvent is an expression (relational).  
In the third example, length * width is an expression (arithmetic).

More generally, operators can be grouped into two basic categories: prefix and infix.  A prefix operator is one 
that precedes an operand that is solely involved in that operation. An infix operator is one that is imbedded 
between two operands, both of which are involved in that operation. The prefix operators provided are the 
logical not (^), the arithmetic plus  (+) and the arithmetic minus (-). The plus and minus are also used as 
infix operators.

Prefix operators appear in constructions of the form:
        _                        _              _            _
        | keyword                |   prefix     | variable   |
        | logical operator       |   operator   | literal    |
        | relational operator    |              | constant   |
        | arithmetic operator    |              | result/exp |
        | concatenation operator |              |            |
        |                        |              -            -
        -                        -

        :   = - 4   :
        :           :

Infix operators appear in constructions of the form:
        _            _              _            _
        | variable   |   infix      | variable   |
        | literal    |   operator   | literal    |
        | constant   |              | constant   |
        | result/exp |              | result/exp |
        |            |              |            |
        -            -              -            -

        :   aaa - bbb   :
        :               :

For expressions involving several operands and/or operators, refer to 'Priority of Operators', this chapter, 
which specifies possible requirements for parentheses.

In the following sections that treat expressions, certain symbols are used to indicate the operand data-types 
(and to indicate the data-type for the result of an expression since it too is an operand.)
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    Symbol     Operand data-type          Value in field treated as:
    ------     ------------------------   ---------------------------

     STR       structure                  structure of one or more
                                             levels
     BIN       binary                     signed binary value
     BS        bit-string                 unsigned binary value
     DEC       decimal                    signed packed decimal value
     DEC FLOAT decimal floating           signed floating decimal value
     CS        character-string           string of EBCDIC characters
     NCS       Numeric Character-string   signed zoned decimal value
     ECS       Edited character-string    zoned decimal value
                                             with EBCDIC characters
                                             interspersed
     PTR       pointer
     LAB       label

Arithmetic Expressions  

An arithmetic expression is composed of one or more of the following operators:

        Operator   Meaning                     Syntax
        --------   ---------------------       ----------------------

        +          prefix or infix plus        ( operand )  + operand
                                               (         )

        -          prefix or infix minus       ( operand )  - operand
                                               (         )

        *          multiplication                operand    * operand

        /          division                      operand    / operand

Prefix plus and minus assign the algebraic signs, positive and negative, respectively, to the numeric 
quantity. Positive is attributed by default. 

Infix plus (+) and minus (-) specify addition and subtraction operations, respectively.

An operand may be a variable, literal or constant of any type  (subject to restrictions within arithmetic 
operations.  See figure 3.1, 'Results of Arithmetic Operations' for valid data-type combinations).
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Data Conversions  

Figure 3.1 shows the resulting data types obtained from combining two operands with an arithmetic 
operator.  For prefix operators, the result obtained is equivalent to combining two operands of the same data 
type in the infix expression.  For example, a prefix operator on a DECIMAL operand will not cause a 
conversion; the operation will be performed on the DECIMAL operand.  A prefix operation performed on a 
*NCS operand, however, will result in a conversion of that operand to DECIMAL (See Chapter 5, Precision).
____________________________________________________________________________
|   data |                                                                 |
|   type |  STR   CS    NCS   ECS   BS    DEC   FLT    BIN   PTR   LAB     |
|   -----|-------------------------------------------------------------    |
|   STR  |  -     -     -     -     -     -     -       -     -     -      |
|        |                                                                 |
|   CS   |  -     -     -     -     -     -     -       -     -     -      |
|        |                                                                 |
|   NCS  |  -     -    DEC    -    DEC   DEC    -      DEC    -     -      |
|        |                                                                 |
|   ECS  |  -     -     -     -     -     -     -       -     -     -      |
|        |                                                                 |
|   BS   |  -     -    DEC    -    BIN   DEC   FLT     BIN    -     -      |
|        |                                                                 |
|   DEC  |  -     -    DEC    -    DEC   DEC   FLT     DEC    -     -      |
|        |                                                                 |
|   FLT  |  -     -     -     -    FLT   FLT   FLT     FLT    -     -      |
|        |                                                                 |
|   BIN  |  -     -    DEC    -    BIN   DEC   FLT     BIN   BIN    -      |
|        |                                                                 |
|   PTR  |  -     -     -     -     -     -     -      BIN    -     -      |
|        |                                                                 |
|   LAB  |  -     -     -     -     -     -     -       -     -     -      |
|                                                                          |
| Key:                                                                     |
|                                                                          |
|  Dash (-) indicates illegal combination of data types.                   |
|                                                                          |
|  FLT  =  DEC FLOAT                                                       |
|                                                                          |
|  NOTE: Conversions to or from floating point must                        |
|        must not be based or defined storage.                             |
|__________________________________________________________________________|
Figure 3.1: Results of Arithmetic Operations: +,-,*,/

Examples of arithmetic expressions and their handling:

         :   DCL score BIN;            :
         :   DCL weight BIN;           :
         :   grade = score * weight;   :
         :                             :

Since both score and weight are BINARY, the result of the multiplication will be BINARY.

         :   DCL totcost  DEC(7,2);           :
         :   DCL unitcost DEC(7,2);           :
         :   DCL numunits BIN;                :
         :   totcost = unitcost * numunits;   :
         :                                    :

numunits will be converted to DECIMAL, then multiplied by unitcost, giving a DECIMAL result.
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         :   DCL totcost   DEC FLOAT(6);      :
         :   DCL unitcost  DEC FLOAT(6);      :
         :   DCL unitprice  DEC(7,2);         :
         :   DCL numunits BIN;                :
         :   totcost = unitcost * unitprice;  :
         :   totcost = unitcost * numunits;   :
         :                                    :

unitprice will be converted to FLOAT data, then multiplied by unitcost, giving a FLOAT result.
numunits will be converted to FLOAT data, then multiplied by unitcost, giving a FLOAT result.

         :   DCL totcost   DEC(7,2);          :
         :   DCL unitcost  DEC FLOAT(6);      :
         :   DCL unitprice  DEC(7,2);         :
         :   DCL numunits BIN;                :
         :   totcost = unitcost * unitprice;  :
         :   totcost = unitcost * numunits;   :
         :                                    :

unitprice will be converted to FLOAT data, then multiplied by unitcost, giving a FLOAT result that will 
be converted to DECIMAL.
numunits will be converted to FLOAT data, then multiplied by unitcost, giving a FLOAT result that will be 
converted to DECIMAL.

Relational Expressions  

The following list contains all the relational (comparison) operators that may be used.  Several of the 
operators are composites.

        Operator   Meaning                         Syntax
        --------   ------------------------        ------------------

        <          less-than                       operand  < operand

        >          greater-than                    operand  > operand

        =          equal-to                        operand  = operand

        ^<         not-less-than                   operand ^< operand

        ^>         not-greater-than                operand ^> operand

        ^=         not-equal-to                    operand ^= operand

        <=         less-than-or-equal-to           operand <= operand

        >=         greater-than-or-equal-to        operand >= operand

An operand may be a variable, literal or constant of any type except *ECS (and subject to restrictions within 
arithmetic operations). See figure 3.2: 'Results of Relational Operations', this chapter, for valid data-type 
combinations.   (See Priority of Operators, this chapter, for possible requirement of parentheses).

Relational Operations  

There are two types of relational operations: Algebraic and Logical.
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• Algebraic relational operations involve the arithmetic comparison of two signed numeric 
values.

• Logical relational operations involve the left-to-right character-by-character comparison of 
one sequential character set with another. If the operands are of different lengths the shorter one is 
extended to the right with blanks.

                :    DCL b CHAR(3);                :
                :    IF b = 'a' THEN GOTO next;    :
                :                                  :

The above example results in a comparison of the three bytes of variable b with the three-byte character set: 
literal 'a', blank, blank.
_________________________________________________________________________
|  data |                                                               |
|  type | STR   CS    NCS   ECS   BS    DEC   FLT    BIN   PTR   LAB    |
|  -----|------------------------------------------------------------   |
|  STR  |  -     -     -     -     -     -     -      -     -     -     |
|       |                                                               |
|  CS   |  -     2     -     -     -     -     -      -     -     -     |
|       |                                                               |
|  NCS  |  -     -     3     -     3     3     -      3     -     -     |
|       |                                                               |
|  ECS  |  -     -     -     -     -     -     -      -     -     -     |
|       |                                                               |
|  BS   |  -     -     3     -     1     3     7      4     -     -     |
|       |                                                               |
|  DEC  |  -     -     3     -     3     6     7      3     -     -     |
|       |                                                               |
|  FLT  |  -     -     -     -     7     7     7      7     -     -     |
|       |                                                               |
|  BIN  |  -     -     3     -     4     3     7      5     -     -     |
|       |                                                               |
|  PTR  |  -     -     -     -     -     -     -      -     1     -     |
|       |                                                               |
|  LAB  |  -     -     -     -     -     -     -      -     -     1     |
|                                                                       |
|   Key:                                                                |
|                                                                       |
|  Dash (-) indicates illegal operation.                                |
|                                                                       |
|  FLT  =  DEC FLOAT                                                    |
|                                                                       |
|      1:  Align on right. Zero fill shorter  operand on left.  Arith-  |
|          metic compare.                                               |
|                                                                       |
|      2:  Align on left.  Blank fill shorter  operand on right.  Log-  |
|          ical compare.                                                |
|                                                                       |
|      3:  Convert  operand(s) to decimal.  Align on  assumed  decimal  |
|          point. Arithmetic compare.                                   |
|                                                                       |
|      4:  Align on right.  Zero fill bit operand on left.      Arith-  |
|          metic compare.                                               |
|                                                                       |
|      5:  Align on right.  Arithmetic compare.                         |
|                                                                       |
|      6:  Align on assumed decimal point.  Arithmetic compare.         |
|                                                                       |
|      7:  Convert operand(s) to floating point. Floating compare.      |
|_______________________________________________________________________|
Figure 3.2 Results of Relational Operations <, >, =, ^<, ^>, ^=, >=, <=
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The result of a relational operation is a 31-bit BINARY number equal to a positive one (1) if the comparison is 
true, or equal to a positive zero  (0) if the comparison is false.  The result of the expression may itself be 
used as  an  operand,  for example, the result of the following expression is two (2):

        :   ('abc' ^= 'xyz') + ('aaa' = 'aaa')   :
        :                                        :

Such coding can be confusing, and should be avoided.

Logical Expressions  

A logical expression is composed of one or more of the following operators:

        Operator            Meaning                Syntax
        --------            -------                -----------------

        ^                   not                            ^ operand

        &                   and                    operand & operand

        |                   or                     operand | operand

An operand may be a variable, literal or constant of any type subject to the restrictions for logical operations. 
See figure 3.3 'Results of Logical Operations', for valid data-type combinations.

Use of the 'not' operation specifies that the bits in the operand are to be reversed: the result can be 
considered as a bit product with no arithmetic carry. The  'or' operation is an 'inclusive or': the result can be 
considered as a bit overlay.  (See Priority of Operators, this chapter, for possible requirement of 
parentheses).
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________________________________________________________________________
| data |                                                               |
| type | STR   CS    NCS   ECS   BS    DEC   FLT    BIN   PTR   LAB    |
| -----|-------------------------------------------------------------  |
| STR  |  -     -     -     -     -     -     -      -     -     -     |
|      |                                                               |
| CS   |  -     -     -     -     -     -     -      -     -     -     |
|      |                                                               |
| NCS  |  -     -     -     -     -     -     -      -     -     -     |
|      |                                                               |
| ECS  |  -     -     -     -     -     -     -      -     -     -     |
|      |                                                               |
| BS   |  -     -     -     -     1     -     -      1     -     -     |
|      |                                                               |
| DEC  |  -     -     -     -     -     -      -     -     -     -     |
|      |                                                               |
| FLT  |  -     -     -     -     -     -     -      -     -     -     |
|      |                                                               |
| BIN  |  -     -     -     -     1     -     -      1     -     -     |
|      |                                                               |
| PTR  |  -     -     -     -     -     -     -     -      -     -     |
|      |                                                               |
| LAB  |  -     -     -     -     -     -     -     -      -     -     |
|                                                                      |
|   Key:                                                               |
|                                                                      |
|      Dash (-) indicates illegal combination of data types.           |
|                                                                      |
|      FLT  =  DEC FLOAT                                               |
|                                                                      |
|      1:  Align on right.  Zero fill on left to 32 bits.              |
|          Perform logical operation.                                  |
|______________________________________________________________________|
Figure 3.3 Results of Logical Operations:  &, |

Padding  

When two operands are combined in a logical expression, both operands are converted or extended to 32 
bits in length prior to the (infix) 'and' operation or (infix) 'or' operation. In the case of the (prefix) 'not' 
operation, the operation is performed prior to extending the field to 32 bits.  When fields of unequal lengths 
are combined in a logical operation they are aligned on the rightmost bit and then extended on the left, with 
zeros, to 32 bits.
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Boolean Arithmetic of Logical Operations  

        Initial  |         Operation
        values   |          result
        ---------| ---------------------------|
                 |                            |
        A    B   |   ^A    ^B    A&B    A|B   |
                 |                            |
        ---------|----------------------------|
                 |                            |
        0    0   |   1     1     0      0     |
                 |                            |
        0    1   |   1     0     0      1     |
                 |                            |
        1    0   |   0     1     0      1     |
                 |                            |
        1    1   |   0     0     1      1     |

        :   ^ '010111'B             yields  '101000'B   :
        :                                               :
        :   '111111'B & '101'B      yields  '000101'B   :
        :                                               :
        :   '010111'B | ^ '101'B    yields  '010111'B   :
        :                                               :
        :   ^ '101'B | ^ '111111'B  yields  '000010'B   :
        :                                               :

Concatenation Expressions  

There is only one concatenation operation provided:

        Operator           Meaning                 Syntax
        --------           -------------           ------------------
        ||                 concatenation           operand || operand

The concatenation operator is a composite of two logical 'or' characters.

An operand may be a variable, literal or constant of any type, subject to the restrictions for concatenation 
operations.  See figure 3.4  'Results of Concatenation Operations', this chapter, for valid data-type 
combinations.  (Refer to, Priority of Operators, this chapter, for possible requirement of parentheses.)

Concatenation specifies that the values of two operands are to be sequentially ordered; that is, the last 
character or bit of the first string is followed immediately by the first character or bit of the second string. 
Subscripted *NCS data can not be concatenated.

40



CHAPTER 3: EXECUTABLE STATEMENTS - RULES

___________________________________________________________________________
|                             OPERAND B                                   |
|    data |                                                               |
|    type | STR   CS    NCS   ECS   BS    DEC   FLT    BIN   PTR   LAB    |
|    -----|------------------------------------------------------------   |
|    STR  |  -     -     -     -     -     -     -      -     -     -     |
|O        |                                                               |
|P   CS   |  -     1     1     1     -     -     -      -     -     -     |
|E        |                                                               |
|R   NCS  |  -     1     -     -     -     -     -      -     -     -     |
|A        |                                                               |
|N   ECS  |  -     1     -     -     -     -     -      -     -     -     |
|D        |                                                               |
|    BS   |  -     -     -     -     2     -     -      2     -     -     |
|A        |                                                               |
|    DEC  |  -     -     -     -     -     -     -      -     -     -     |
|         |                                                               |
|    FLT  |  -     -     -     -     -     -     -      -     -     -     |
|         |                                                               |
|    BIN  |  -     -     -     -     2     -     -      2     -     -     |
|         |                                                               |
|    PTR  |  -     -     -     -     -     -     -      -     -     -     |
|         |                                                               |
|    LAB  |  -     -     -     -     -     -     -      -     -     -     |
|                                                                         |
|Key:                                                                     |
|                                                                         |
|   Dash (-) indicates illegal combination of data types.                 |
|                                                                         |
|   FLT  =  DEC FLOAT                                                     |
|                                                                         |
|   1:  Join operand B to operand A.  Result is a character-string        |
|       whose length is equal to the sum of the lengths.                  |
|                                                                         |
|   2:  Join operand B to operand A.  Result is a bit string whose        |
|       length is equal to the sum of the lengths.  Conversion is         |
|       not performed on binary fields therefore the result may           |
|       contain two sign bits.                                            |
|_________________________________________________________________________|
Figure 3.4  Results of Concatenation Operations

The results of the concatenation operation will always be the creation of another string.  The resulting string 
type (BIT or CHARACTER) depends on the data characteristics of the strings being concatenated.

Bit-string Concatenation:

        :   '01001'B  ||  '0110'B   yields   '010010110'B   :
        :                                                   :

Character-string Concatenation:

        :   'chara' || 'cter string'  yields  'character string'   :
        :                                                          :

Operands in concatenation operations may not be subscripted.
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PRIORITY OF OPERATORS  

The evaluation of an expression specifying several operations is performed by establishing operator 
priorities, as depicted in the following table:

        Priority
        level                 Operator(s)
        --------              ----------------------------------

        1                     prefix +,  prefix -,  ^

        2                     *,  /

        3                     infix +,  infix -

        4                     ||

        5                     <,  ^<,  <=,  =,  ^=,  >=,  >,  ^>

        6                     &

        7                     |

General Operator Priority Rules:

A) Highest priority level (level 1) operations are performed first.

B) If two or more prefix operators (includes the not (^) symbol) appear on an operand, they are 
applied on a right to left basis.

C) If two or more infix operators of the same priority level appear in the expression, they are 
applied on a left to right basis.

D) The priority of operators within an expression can be altered by the use of parentheses; any 
operations enclosed in parentheses are performed first.  Within parentheses, rules A) through C) 
apply.  When two or more sets of parentheses appear in an expression, treatment is as follows: 
nested sets are evaluated beginning with the innermost and working outward; non-nested sets are 
evaluated on a left to right basis.

E) Relational operations may be enclosed in parentheses when used in an IF statement (See 
Chapter 3: IF Statements).

Example:

         :   total = price * (quant + spares) / share;   :
         :                                               :

The expression quant + spares will be evaluated first, then the result will be multiplied by price. The 
result of that multiplication will then be divided by share.
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ASSIGNMENT STATEMENTS  

Unlike other types of statements, the Assignment statement does not have a keyword.  Instead, the equal 
sign (=), as an assignment operator, denotes assignment.   The Assignment statement serves to store 
(assign) the value of a variable, literal, constant or expression into the storage location of the specified 
variable.

Simple Assignment  
        _                 _   _                 _
        | variable        | = | variable        |  ;
        | pseudo-variable |   | pseudo-variable |
        | subscripted     |   | subscripted     |
        |   variable      |   |   variable      |
        |   array element |   | array element   |
        -                 -   | expression      |
                              | constant        |
                              | subscripted-    |
                              |   constant      |
                              | literal         |
                              | programmer-     |
                              |   declared-     |
                              |   function-call |
                              -                 -
        :    fare = 149.95;          :
        :    fare = 149.95 + tax;    :
        :                            :

Multiple Assignment  
  _              _                                 _               _
 |variable       | ( ,variable         (,...) )  = |variable       | ;
 |pseudo-variable| ( ,pseudo-variable  (    ) )    |pseudo-variable|
 |subscripted-   | ( ,subscripted-     (    ) )    |subscripted-   |
 |  variable     | (     variable      (    ) )    |  variable     |
 |array element  | ( ,array element    (    ) )    |array element  |
 |               | (                          )    |expression     |
 -               -                                 |constant       |
                                                   |subscripted-   |
                                                   |  constant     |
                                                   |literal        |
                                                   |programmer-    |
                                                   |  declared-    |
                                                   |  function-call|
                                                   |               |
                                                   -               -
        :    a, b, c = 3;    :
        :                    :

This is equivalent to:

        :       c = 3;       :
        :       b = 3;       :
        :       a = 3;       :
        :                    :

Data Conversion, Truncation and Padding  

There are two basic types of assignment statements: Arithmetic and Character.
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Arithmetic assignment implies a conversion, if necessary, to the data type of the receiving field and then an 
alignment on the decimal point of the receiving field.  Arithmetic operations, using either mixed data types or 
DECIMAL data having different assumed decimal points, cause expensive conversions.  The following 
example illustrates this point:

        :    DCL  a  BIN;            :
        :    DCL  b  BIN;            :
        :    DCL  c  DEC(5);         :
        :    a  =  c  *  b  +  5;    :
        :                            :

In the example above, b will be converted to DECIMAL and multiplied by c.  The BINARY literal 5 will then be 
converted to DECIMAL and added to the result of the preceding multiplication.  This final result will then be 
converted to BINARY and stored in a. 

Since c had no fractions, perhaps it could have been declared as BIN (31) instead of DEC (5). This 
would have made the expression much more efficient.

The correct sign bit is always stored. If, as a result of the alignment of the decimal point, the integer portion 
is too large, the most significant bits are stripped away. If the fractional portion is too large, the least 
significant bits are discarded.  If the receiving field is larger, there is an extension of the sending field with 
digits that will not alter its algebraic value. In the chart below, the term 'arithmetic move' means assigning a 
value after any necessary truncation, extension or alignment to a decimal point. The same arithmetic value 
is always retained.

The programmer should exercise care when moving BIT-string data to BINARY fields to ensure that the 
data does not overflow the number portion of the field and set the sign bit.  For example, a BIT(16) field 
being moved to a BIN(15) field: the high order bit of the BINARY field could be set to 1, thereby making the 
value a negative number.   Unless the input data is controlled, it is safer to use BIN(31) than BIN(15) in 
such situations.

Character assignment results in alignment of the left end of the sending and receiving fields and a byte by 
byte assignment.  If the sending field is longer, it is truncated; if it is shorter, it is extended with blanks.

Structure Assignment  

General Format:

        structure   (,structure   (,...) ) = structure  ;
                    (             (    ) )
                    (                    )

The only valid use of structure in assignment statements is structure-to-structure assignment.  The 
''receiving'' and/or ''sending'' structure may be a minor or a major structure.  Structures cannot be compared, 
concatenated, added, etc.  A structure may only appear in an assignment statement by itself. The address of 
a structure may be obtained, or a structure may be scanned, through the use of the built-in functions ALPHA, 
NUMERIC, ADDR, and INDEX.   There is no such thing as a literal structure.  A structure assignment is not 
performed on an element-by-element basis, but as a single move over the length of the whole structure 
without conversion.  If the length of the structure on the left of the assignment statement is less than the 
length of the structure on the right, movement of data stops when the smaller is full.  Conversely, when the 
leftmost structure is larger, the remainder of the leftmost structure is blank-filled.  The result of the following 
assignment would be to move 22 bytes from input into output.

        :   DCL 1 output BASED (outptr),   :
        :         2 num BIN(15),           :
        :         2 task CHAR(20);         :
        :                                  :
        :   DCL 1 input BASED (inptr),     :
        :         2 calc BIN(15),          :
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        :         2 inname CHAR(25);       :
        :                                  :
        :   output = input;                :
        :                                  :

General Rule For Structure Assignments: In structure assignments, each variable in the receiving field 
must represent a structure of arithmetic or string data types.
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Figure 3.5 is a table summary of data type usage in assignment statements.  Data types for receiving fields 
are listed vertically; types for sending fields, horizontally.  Actions for each combination are performed in the 
sequence indicated.
___________________________________________________________________________
|       |               RIGHT   OF   EQUAL   SIGN                         |
|  data |                                                                 |
|  type | STR   CS    NCS     ECS   BS     DEC     FLT   BIN    PTR   LAB |
|-------|---------------------------------------------------------------- |
|   STR |  1,2   -     -       -    -       -       -     -      -    -   |
|       |                                                                 |
|   CS  |  -     1,2   -       -    -       -       -     -      -    -   |
|L      |                                                                 |
|E  NCS |  -     -     13,3    -    4,5,13, 13,6,3  -     5,13,  -    -   |
|F      |                           6,3                   6,3             |
|T      |                                                                 |
|   ECS |  -     -     10,13,  -    4,5,    13,7    -     5,13,  -    -   |
|O      |               7           13,7                  7               |
|F      |                                                                 |
|   BS  |  -     -     10,8,9, -    4,12,3  8,9,11, -     8,12,  -    -   |
|E      |              11,3                 12,3          3               |
|Q      |                                                                 |
|U  DEC |  -     -     10,13,3 -    4,5,13  13,3    @     5,13,  -    -   |
|A      |                           3                     3               |
|L      |                                                                 |
|   FLT |  -     -     -       -    @       @       14,1  @      -    -   |
|       |                                                                 |
|   BIN |  -     -     10,9,   -    4,3     9,11,3  @     3      1    -   |
|S      |              11,3                                               |
|I      |                                                                 |
|G  PTR |  -     -     -       -    -       -       -     1      1    -   |
|N      |                                                                 |
|   LAB |  -     -     -       -    -       -       -     -       -   1   |
|                                                                         |
|Key:      Dash (-) indicates illegal assignment.                         |
|                                                                         |
|          At sign (@) indicates Literal or Constant ONLY.                |
|                                                                         |
|          FLT  =  DEC FLOAT                                              |
|                                                                         |
|          1:  Character move.                                            |
|          2:  Blank fill receiving field on right or truncate            |
|              sending field on right, if necessary.                      |
|          3:  Arithmetic move.                                           |
|          4:  Extend on left with zeros to full word, if necessary.      |
|          5:  Convert to decimal.                                        |
|          6:  Unpack.                                                    |
|          7:  Edit in accordance with PICTURE specification.             |
|          8:  Take absolute value.                                       |
|          9:  Truncate to integer.                                       |
|         10:  Pack.                                                      |
|         11:  Convert to binary.                                         |
|         12:  Align on right.                                            |
|         13:  Align assumed decimal points.                              |
|         14:  Clear receiving field to hex zero if necessary.            |
|_________________________________________________________________________|

FIGURE 3.5 RESULTS OF ASSIGNMENTS.

Structures can only be assigned to structures. Assignment is by character move, blank fill on right. 
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When an assignment statement contains non-subscripted references to an array, only the first element is 
involved.

        :    DCL  ar(3) CHAR(2) ;    :
        :    DCL arr(4) CHAR(3) ;    :
        :    arr = ar ;              :

The above example is the equivalent of:

        :    arr(1) = ar(1) ;        :
        :                            :

In multiple assignments involving subscripted variables, subscripts are frozen prior to the assignment.  This 
means that in the sequence

        :   i = 2;              :
        :   array(i) = i = 3;   :
        :                       :

the value 3 would be assigned to array(2) and not to array(3). The final value of i, however, will be 3.

Character-string to character-string assignment  

When a character-string of a shorter length is assigned to another character-string of a greater length, the 
character move and blank fill operation is performed.  This operation assigns the smaller string to the larger 
string (character by character, and proceeding from left to right) until the smaller string has been assigned. 
The remaining unused bytes are filled with blanks.

        :    DCL emblem CHAR (12);    :
        :    Emblem = 'EAGLES';       :
        :                             :

The character-string emblem would appear in storage as a twelve-character field; six characters of assigned 
data suffixed with six blanks:

        (EAGLES      ).

Arithmetic to arithmetic   (*DEC, *NCS, *ECS, *BIN, *DEC FLOAT)      

Assignment of arithmetic types involves an arithmetic move.  If data types differ, the data on the right of the 
assignment symbol is converted to the attributes declared for the variable on the left.  Alignment is on the 
decimal point.  The exception to this rule is floating data, which uses a character move.

        :    DCL fare DEC (5,2);    :
        :    fare = 5000.206;       :
        :                           :

In the example, fare would appear in storage as 00020 (with an assumed decimal point fixing the value at .
20). Note that the high order digit and the low order digit were truncated to agree with the size and decimal 
point placement that was declared with fare.

If fare had been declared as *NCS, conversion would have been necessary in addition to the truncation 
illustrated above.

        :    DCL fare DEC FLOAT(16);    :
        :    fare = 5.000206E3;         :
        :                               :
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In the above example, fare would appear in storage as 44138834BC6A7EF9 with no truncation and the 
characteristic maintaining the decimal point.

        :    DCL fare DEC FLOAT(16);    :
        :    fare = 5000;               :
        :                               :
In this example, fare would appear in storage as 4413880000000000 with no truncation.  The literal 
would first be represented as a full word 00001388 and then converted to floating point.  This is a highly 
efficient method of assigning integers to floating data.

        :    DCL fare DEC FLOAT(16);    :
        :    fare = 5000.206;           :
        :                               :
In this example, fare would appear in storage as 44138834BC6A7EF9 (with no assumed decimal point). 
Note that unlike DEC no truncation would occur. Conversion would be necessary.

        :    DCL fare DEC (5,2);        :
        :    fare = 5.000206E3;         :
        :                               :
In this example, the literal would first be converted to floating point format as in the above example. Then it 
would be converted to the DECIMAL equivalent of 5000.20600000000. Finally, fare would appear in 
storage as 00020 (with an assumed decimal point fixing the value at .20). Note that the high order digit and 
the low order digit were truncated to agree with the size and decimal point placement that was declared with 
fare.  Because floating point numbers have a much larger range, they cause drastic truncation and 
conversions when assigned to DECIMAL.  This should be avoided whenever possible.

        :    DCL fare PIC '999V99';    :
        :    fare = 5000.206;          :
        :                              :
The literal 5000.206 would first be converted (via unpack) to Zoned arithmetic data and then aligned on the 
decimal point specified in the declaration of fare.  Again, fare would appear in storage as 00020 but it 
would be in Zoned format instead of Packed Decimal.

When a decimal point is not specified in the declaration, it is assumed to be to the right of the rightmost digit.
        :    DCL c DEC (7);      :
        :    DCL b PIC '999';    :
        :                        :
In the case of c, the decimal point is assumed to be to the right of a seven-digit, signed DECIMAL number. 
In the case of b, it is assumed to be to the right of a three-digit Zoned Decimal number.  Truncation required 
for assignment, then, would always be of the high order digits.

The following assignment also involves truncation:
        :    DCL e BIN (15);    :
        :    e = 131071;        :
        :                       :
The binary representation of the literal would be 00000000 00000001 11111111 11111111, or 17 
binary ones.  In this case, the two high order binary 'ones' of the value that is extracted from the 32-bit literal 
would be truncated and the value assigned to e would be equal to 32,767 DECIMAL, or 
01111111 11111111 binary (the maximum value for a positive half-word number).

The programmer is responsible for insuring that assignment statements and data declarations are properly 
matched to produce correct results. Whenever possible, it is a good idea to always DECLARE an area with 
no fewer significant digits than any data to be assigned to it (See Chapter 5, Precision).
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BIT  -string to   BIT  -string  

If a BIT-string is assigned to another BIT-string, alignment is on the right and the move is a bit-for-bit 
assignment, right to left.  Padding or truncation is performed on the left.

        :    DCL g BIT (7);       :
        :    DCL e BIT (6);       :
        :    g = '1100'B;         :
        :    e = '111111100'B;    :
        :                         :
In this example, g would appear in storage as 0001100 and e would appear as 111100.

Arithmetic to   BIT  -string  

This move results in the absolute value of the arithmetic data to the right of the assignment symbol being 
converted to a BIT-string.  For Numeric character-string values or for DECIMAL values, the number is 
truncated to yield integer values only.  Truncation or padding takes place on the left.

        :    DCL f BIT (12);    :
        :    f = -15.2;         :
        :                       :
The literal -15.2 would yield the absolute value of 15.2.  It would then be truncated to an integer 15, and f 
would appear in storage as 000000001111.

An example of the need for and the use of absolute values follows:

         :   ce1fm5 = pd1fch;   :
         :                      :
ce1fm5  is  declared as BIT(32). If pd1fch (assume that it's a forward chain field containing a file 
address) has been declared as BIT(32), then the assignment  will  achieve  the  intended  result.  If 
pd1fch has been declared BIN(31), however, the result in ce1fm5 will not necessarily be the intended 
one, and therefore the programmer should declare all fields which might contain file addresses as BIT(32).
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BIT  -string to arithmetic  

In this assignment the BIT-string is expanded to a full word, if necessary, by padding on the left with zeros 
before performing the arithmetic move.

        :    DCL h BIN;      :
        :    h = '1010'B;    :
        :                    :

The BINARY literal 1010 will be expanded to:

         00000000 00000000 00000000 00001010

or in hexadecimal:

                                   '00000009'x

The arithmetic move will align the data on the right (the decimal point is assumed to be at the right of the 
rightmost bit), and h will appear in storage as 00000000 00001010.

Assignment of Labels and Pointers  

A straight character move is used for assignments involving pointers or labels.  All pointers are four bytes in 
length; all labels are two bytes in length.  Since the moves would always involve areas of the same size, no 
operation other than an assignment is required.   Replacement would be on a byte-by-byte basis, from left to 
right.

GOTO   STATEMENTS      

The GOTO statement provides unconditional transfer of control to any labelled statement within the program, 
with the following exceptions: an internal procedure, an external procedure, or a programmer-declared 
function.

Statement Syntax:
        _       _   _                _
        | GOTO  |   | label constant |  ;
        | GO TO |   | label variable |
        |       |   |                |
        -       -   -                -

If a label constant is specified, control is transferred to the statement prefixed by the label.

If a label variable is used, control is transferred to the statement prefixed by the label assigned to the label 
variable.  A label variable will retain a value (label address) until another assignment is made into it.  Since 
different assignments may occur throughout the program, a 'GOTO label_variable;' might not always 
transfer control to the same statement.

        :    DCL switch BIN;                                  :
        :    DCL labvar LABEL;                                :
        :           ...                                       :
        :    testswitch: IF switch = 1 THEN labvar = lbl3;    :
        :                              ELSE labvar = lbl4;    :
        :                GOTO labvar;                         :
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        :           ...                                       :
        :          lbl3: a = b ;                              :
        :           ...                                       :
        :          lbl4: c = d ;                              :
        :                                                     :

Notes:

A GOTO statement should not transfer control from outside an iterative DO group to a statement within the 
loop.

Care should be taken to insure that a GOTO invocation does not result in a looping condition that would not 
terminate, the simplest example of which would be:

        :    badloop: GOTO badloop;    :
        :                              :

DO   STATEMENTS      

The DO statement heads a series of statements called a DO group.  A DO group consists of a DO statement 
followed by one or more statements then a terminating END statement.  The format of the DO statement 
indicates whether the DO group is non-iterative or iterative.  NOTE: The maximum number of any 
combination of DO statements in one program is 193.

Format of Non-iterative DO Statement

                   DO ;

Format of Iterative DO Statement

 DO   variable   =   specification   ;
      element

 Where specification is:
  _           _
  |arithmetic | (TO arithmetic  (BY arithmetic ) ) (WHILE arithmetic )  ;
  | expression| (    expression (    expression) ) (       expression)
  |logical    | (               (              ) ) (      logical    )
  | expression| (                                ) (       expression)
  |relational |                                    (      relational )
  | expression|                                    (       expression)
  |defined    |                                    (      defined    )
  | function  |                                    (       function  )
  -           -

Non-iterative   DO   Group      

Invocation of a non-iterative DO results in a single execution of the DO group. Non iterative DO groups are 
typically used in IF statements.

        :    IF   ...   THEN     :
        :    DO;                 :
        :    a = (b + c) / d;    :
        :    f = b - c;          :
        :    END;                :
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        :                        :

Iterative   DO   Group using   WHILE   Clause      

In this type of iterative DO, the repetitive execution of the DO group  (or DO loop) is controlled by the 
evaluation of the operand in the WHILE clause.  The execution will be repeated as long as the clause is true, 
i.e., the END statement effects a branch to the top of the loop whenever the WHILE clause is true. Once the 
WHILE clause is false, control is passed to the statement after the END statement of the loop.  It should be 
understood that the statements within the DO group must alter some value in such a way that the loop will 
eventually terminate.

        :          a = 0;              :
        :    loop: DO WHILE a < 10;    :
        :          c = b + c;          :
        :          a = a + 1;          :
        :          END loop;           :
        :                              :

Upon normal loop termination, program execution will continue with the next executable statement following 
the END statement.

Note:  In the statement ' DO WHILE x(i); ', the usage of a programmer-defined function x(i) implies the 
relational expression (test) 'x(i) = 1'.  Hence, the statement is interpreted as
 

 DO WHILE x(i) is true 

and a branch out of loop will occur when x(i) is false (or 0).

        :   DCL x Function;            :
        :   DCL i BIN;                 :
        :       DO WHILE x(i);         :
        :       END;                   :
        :   x:  PROC(i);
        :       RETURN(i&1);           :
        :       END;                   :
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Iterative   DO   Group using a control variable      

In this type of iterative DO, the loop is controlled by the control variables. The execution of the loop will be 
repeated until successive incrementing of the initial value results in a value equal to the final value. In the 
statement:

        :    DO  i  =  value_1  TO  value_2  BY  value_3;    :
        :                                                    :

The control variable i may not be subscripted.  value_1 and value_2 represent the initial value and final 
limit, respectively, for the control variable, and value_3 represents the increment or decrement for each 
iteration.

All values may be positive or negative.  If the BY clause is omitted, it defaults to BY +1.  If the BY clause is 
present then the TO clause must be present.  If the value in the BY clause is preceded by a prefix minus 
operator, it implies a 'backward running' loop. The initial value would be larger than the limit value, however, 
the value of the BY clause must be positive before negation by the prefix minus, in order for meaningful code 
to be generated.  This restriction is required in order to avoid an execution-time conflict between the 
generated loop control logic and a varying sign for the BY clause, on different invocations of the DO group.

Hence the sequences:
        :    one = 1;                   :
        :    DO i = 1 TO 10 BY one;     :
        :                               :

and
        :    one = 1;                   :
        :    DO i = 10 TO 1 BY -one;    :
        :                               :

will generate logical code, whereas the sequences:
        :    one = -1;                  :
        :    DO i = 1 TO 10 BY -one;    :
        :                               :

and
        :    one = -1;                  :
        :    DO i = 10 TO 1 BY one;     :
        :                               :

will not.

  :    incr: DO i = 1 TO 10 BY 1  ::  decr: DO i = 10 TO 1 BY -1    :
  :          WHILE a < b;         ::        WHILE a > b;            :
  :          a = a + 1;           ::        a = a + 1;              :
  :          c(i) = a + 3 * b;    ::        c(i) = a + 3 * b;       :
  :          END incr;            ::        END decr;               :
  :                               ::                                :

In the above examples, the DO group will be executed up to 10 times, or until the condition a < b becomes 
false.  Upon normal loop termination, program execution will continue with the next executable statement 
following the END statement.  In the DO loop named incr, the value of i after exiting the loop will be 11. 
Flowcharts for the above two examples follow in figure 3.6.
________________________________________________________________________
|                                                                      |
|       """""""""                           """""""""                  |
|        "  T  "                             "  T  "                   |
|         "   "                               "   "                    |
|          " "                                 " "                     |
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|           "                                   "                      |
|           |                                   |                      |
|        --------                            --------                  |
|       |  I=1   |                          |  I=10  |                 |
|        --------                            --------                  |
|           |                                   |                      |
|        --------                            --------                  |
|       <        >  YES                     <        >  YES            |
|      <  I>10 ?  >--------                <  I<1 ?   >--------        |
|       <        >         |                <        >         |       |
|        --------          |                 --------          |       |
|           |              |                    |              |       |
|       ---------          |                ---------          |       |
|      <         >  NO     |               <         >  NO     |       |
|     <   A<B ?   >--------|              <   A<B ?   >--------|       |
|      <         >         |               <         >         |       |
|       ---------          |                ---------          |       |
|           |          """""""""                |          """""""""   |
|     --------------    " END "           --------------    " END "    |
|    |  a=a+1       |    "   "           |  a=a+1       |    "   "     |
|    |  c(i)=a+3*b  |     " "            |  c(i)=a+3*b  |     " "      |
|     --------------       "              --------------       "       |
|           |                                   |                      |
|       ---------                           ---------                  |
|      |  I=I+1  |                         |  I=I-1  |                 |
|       ---------                           ---------                  |
|           |                                   |                      |
|       '''''''''                           '''''''''                  |
|        '  T  '                             '  T  '                   |
|         '   '                               '   '                    |
|          ' '                                 ' '                     |
|           '                                   '                      |
|                                                                      |
|______________________________________________________________________|
Figure 3.6 Do Loop Flow Chart

Notes:

Specifications are truncated to integer values and the sign is maintained.

In an iterative DO, control should not be transferred to any statement within the DO group from outside the DO 
group; transfer control only to the DO statement itself, otherwise, loop control values may not be properly set 
and the results will be unpredictable.  Control may be transferred from within a DO loop to its END statement 
in order to continue the loop.

A GOTO statement within an iterative DO group can serve to abnormally terminate the DO loop, by specifying 
a label outside the DO group.  It can also serve to prematurely advance to the next iteration of the loop by 
specifying a label on the corresponding END statement.

Any DO without a specific END statement will be 'closed' by the END (of the program) statement.

With regard to nested DO statements, the following hints are useful in improving program documentation and 
legibility:

A) Give labels to the DO statements 
B) Use the labels as operands on corresponding END statements to clearly specify the range of each DO

54



CHAPTER 3: EXECUTABLE STATEMENTS - RULES

C) Indent each DO group and use comments to explain logic.

    :       r = mspcnr2;                                           :
    :       c = mspnps2;                                           :
    :   k1: DO m = 1 TO r;    /* repeat loop thru # of rows */     :
    :   k2:   DO p = 1 TO c;  /* repeat loop thru # of columns */  :
    :         f = f + 1;                                           :
    :   k3:     DO t = 1 TO g;  /* repeat loop to # of legs */     :
    :           e = e + 1;                                         :
    :           pchsas(e) = mspsea1(f);                            :
    :           END k3;                                            :
    :         END k2;                                              :
    :       e = e + 1;                                             :
    :       f = f + 1;                                             :
    :       pchsas(e) = mspsea1(f);                                :
    :                         /* row ind 1-sea1(f) = ri11(f) */    :
    :       e = e + 1;                                             :
    :       f = f + 1;                                             :
    :       pchsas(e) = mspsea1(f);       /* move row ind #2 */    :
    :       END k1;                                                :
    :                                                              :

NOTE:  It is worth restating that there is a limit of 193 DO statements of all types allowed in a 
program.  
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IF   STATEMENTS      

The IF statement provides conditional transfer of control based on the result of relational evaluation(s).  The 
THEN logic path is taken if the comparison yields true; the ELSE logic path is taken if the comparison yields 
false.

Statement Syntax:
       _             _
    IF | logical     | THEN executable    ; ( ELSE executable ;  )
       |  expression |       statement(s)   (       statement(s) )
       | relational  |                      (                    )
       |  expression |
       |             |
       -             -

'test' has the form:
        _                       _
        | arithmetic variable   |
        | arithmetic literal    |
        | arithmetic constant   |
        | arithmetic expression |
        | logical expression    |
        | relational expression |
        |                       |
        -                       -

The  'executable statement' that follows the THEN may be any executable statement, with the exclusion of 
IF, PROC and Macros with parameters.

The 'executable statement' that follows the ELSE may be any executable statement, with the exclusion of 
PROC and Macros with parameters.

        :   prtctl:  lnctr =lnctr + 1;           :
        :            IF lnctr > 60 THEN          :
        :     page:     DO;                      :
        :               lnctr = 0;               :
        :               space = 7;               :
        :               END page;                :
        :            ELSE                        :
        :     line:  space = 1;                  :
        :            CALL print;                 :
        :                                        :

The print control coding above will test a line counter lnctr for end-of-page condition of 60 lines. If 60 lines 
have been printed, seven lines are spaced and lnctr is cleared, otherwise, 1 line is spaced.

The operators | (or) and & (and) can be used in two modes: either to separate different tests to be 
performed, or as normal logical operators.   When used as separators, a statement consisting of all & or | 
operators will generate more efficient code than a statement with both.  When used as logical operators, the 
expression(s) involved must be enclosed in parentheses.  This forces the logical operation(s) to be 
performed before any relational test(s).
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        :   labl2: IF (a & b) > (c + 2 | d) THEN a = 10;   :
        :                                                  :

implies only one test (greater than) to be performed.

The order of evaluation (and consequently, the result) of an expression can be changed through the use of 
parenthesis.  The expressions enclosed in parenthesis are evaluated first to a single value before they are 
considered in relation to surrounding operations.

   
Example:

      IF A + C = 0 & B > C | D = B - 4 then A = 10;

May be coded:

      IF (A + C = 0) & (B > C) | (D = B - 4)

         then A = 10;

The example immediately above will yield same result as first example but increases program clarity.

The most number of logical operators allowed in an IF statement is sixteen.

       :    IF ABC = 'X' |   -|             :
       :       ABC = 'Y' |    |             :
       :       ABC = 'Z' |    |  max of     :
       :           .          |    16       :
       :           .          |             :
       :       ABC = '1'     -|             :
       :     THEN ........                  :

The following 'nested-IF-statements' construction is allowed.

   SYNTAX:  IF <expression> THEN <expression>;
            ELSE IF <expression> THEN <expression>;
            ELSE IF <expression> THEN DO;
                 . . .
                 END;
            ELSE IF  etc. . . .
            ELSE <expression>;    <--- REQUIRED]]]
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Additional notes on nested IF constructs:

1) ELSE IF. . .THEN DO's may not contain IF or ELSE  statements.  The DO‘s may be indexed.
2) The ELSE <expression>;  is required.  
3) Final ELSE must close the block of nested ELSE IF’s. 
4) If the final ELSE is an ELSE DO then it may not contain IF or ELSE statements and may not be indexed.

    Example:

          DECLARE  1 AREC BASED(CE1CR1),
                   2  CODE     BIN(31),
                   2  ACTION   CHAR(12),
                   2  AREA     CHAR(5),
                   2  ERR      BIN(31);
          DECLARE  A   BIN(31);
          DECLARE  I   BIN(31);

    IF CODE = 1 THEN ACTION = 'ABC';

                ELSE IF CODE = 2
                        THEN ACTION = 'RETURN';

                        ELSE IF CODE = 3 THEN DO;
                                              ACTION = AREA;
                                              ENTRC INDY(ERR=#RAC);
                                              END;
                                         ELSE IF CODE = 4
                                              THEN ACTION = 'RESERVATION';
                                              ELSE GOTO ERROR1;
    A = A+CODE;
    BACKC;
  ERROR1:
     ERR = 0;
     BACKC;

Although the programmer cannot code IF _______ THEN IF, nested IF's can be accomplished by 
coding the nested IF within a non-iterative DO.
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CHAPTER 4: EXPANDED DATA DEFINITION RULES  

DATA ORGANIZATION  

Data  items  may be coded individually, as single data elements, or they may be grouped to form arrays or 
structures.

Arrays  

Logically related data items that have identical data attributes may be grouped to form an array.  Only the 
array itself is given an identifier.  An array is a collection of a maximum of 255 data elements.  Each 
individual element is identified by its relative position within the array.

An array, by definition, always contains a dimension attribute and is declared by coding the attribute 
(enclosed in parentheses) immediately following the data identifier in the DECLARE statement. The 
dimension attribute specifies the maximum number of items in the array.

General Format:  
   _         _
   | DCL     |  ( level )  identifier  (dimension)  data          ;
   | DECLARE |  (       )
   -         -

                               (0 < dimension <= 255))

        :    DECLARE citycode (100) CHAR(3);    :
        :    DCL labvar (10) LABEL;             :
        :    DCL x (15) BIN;                    :
        :                                       :

In the example, the first statement declares citycode to be an array of 100 elements, with each element a 
character-string 3 characters in length.  The second statement declares an array of 10 elements which are 
label variables, each one half word in length.  The third statement declares an array of 15 elements, each of 
which is a BINARY data item one half word in length.

Subscripts  

Within an array, data items are accessed by the use of subscripts which specify, (within parentheses), the 
data item's relative position in the array.  This subscript may be a literal, a variable or an expression. 
Subscripts must have one of the following general formats where n is a literal, v is a variable (constant), and 
where v must be of type *BIN, *BIT, *DEC or *NCS.

        (n)
        (v)
        (v + n)
        (v * n)
        (v * n + n)

note: Variations are permissible, such as:
      v - n,   n + v * n,   n + n * v,   v + n * n,
      n + v,   n - v * n,   n - n * v,   v - n * n,
      n - v,   n * v + n,   n * n + v,   v * n - n,
      n * v,   n * v - n,   n * n - v,
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When an array begins at a displacement of zero in storage or at a displacement less than one array entry 
length, and subscripts is a variable, then the subscript should be declared as *BIN.

     Example:
        :    DR95LT:  PROC;                  :
        :        DCL 01 hm1rcd(6),           :
        :               02 namein CHAR(20),  :
        :               02 addrin CHAR(20),  :
        :                      .......       :
        :        DCL j  BIT(8);              :
        :        DCL i  BIN;                 :
        :        DO j=1 to 5;                :
        :           hm1rcd(i) = hm1rcd(i+1); :
        :                      .......       :
        :                                    :

The data type of the literal must be BINARY.  The data type of the subscript-variable may be DECIMAL 
(which will be truncated to integer), Numeric character-string (also truncated to integer), BINARY, or BIT-
string.  Examples of subscripted variables for each of the arrays previously declared are given:

        :    varbl(5)                   :
        :    varbl(kounter)             :
        :    varbl(indx + 3)            :
        :    varbl(indx - 2)            :
        :    varbl(errornum * 2)        :
        :    varbl(errornum * 3 + 5)    :
        :    varbl(errornum * 4 - 6)    :
        :                               :

In the preceding example, kounter, indx, and errornum were coded as variables within the subscript 
expressions.  Each of these data items must have been declared with one of the data attributes acceptable 
for subscript variables:

        :    DCL kounter BIN;         :
        :    DCL indx PIC '99';       :
        :    DCL errornum DEC (2);    :
        :                             :

An array-to-array assignment without any element subscripts causes only the first element to be moved. 
References in a statement to an array without a subscript default to the first element.

It is possible to construct an array of label variables by including a dimension attribute in the DECLARE 
statement.  The GOTO statement would then contain a subscript, specifying which element in the array of 
label variables is requested:
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        :    DECLARE labvar(3) LABEL;    :
        :    DCL i BIN;                  :
        :    labvar(1) = label1;         :
        :    labvar(2) = label2;         :
        :    labvar(3) = label3;         :
        :             ...                :
        :    label1: a = b;              :
        :             ...                :
        :    label2: c = d;              :
        :             ...                :
        :    label3: e = f;              :
        :             ...                :
        :    GOTO labvar(i);             :
        :                                :

In this example, the 'GOTO labvar' statement transfers control to the statement whose label is label1 or 
label2 or label3 depending on the contents of i.  i should be set to 1, 2 or 3 prior to the execution of the 
GOTO statement.

Structures  

Structures are logical collections of named data items that need not be of the same data type or possess 
identical attributes, except that they must be of the same storage class.  The hierarchical relationship of the 
elements comprising the structure is specified by the use of level numbers that are coded immediately 
preceding the identifier.  The entire collection of data elements, called the major structure, must be coded 
with a level number of one. Minor structures (collections of elements contained within the major structure) 
are coded with level numbers greater than one.  A structure, by definition, must contain a major structure. 
There is no such thing as a literal structure.

General Format of a Structure:  
    _         _
    | DCL     |  level  identifier  (  (dimension)  )  attributes  ;
    | DECLARE |                     
    |         |
    -         -

                 (0 < level <= 255)

        :    DCL 1 myaddr,                   :
        :          2 street CHAR(20),        :
        :          2 city   CHAR(20),        :
        :          2 state  CHAR(10),        :
        :          2 zip    PIC '99999';     :
        :                                    :

In the above example the major structure myaddr is made up of four data elements, each of which may be 
referenced by use of its identifier.  Use of the major structure identifier in a statement would cause reference 
to all the elements contained within it.  Structures may be assigned (only to other structures), and can be 
compared. In the assignment of one whole structure to another whole structure, the assignment is to the 
whole length of the receiving field; padding with blanks will be performed if necessary (Refer to Chapter 3, 
Multiple Assignment for a review of padding if necessary)

It may be to the programmer's advantage to specify smaller logical collections of data elements that are 
contained within the major structure.  These collections, called minor structures, are given a minor structure 
identifier, with a level number greater than the level number of the structure in which they are contained. 
The elements contained within the minor structure must have level numbers greater than the minor 
structures.
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        :    DCL 1 employment_info,               :
        :          2 personal,                    :
        :            3 employee CHAR(30),         :
        :            3 mapcode,                   :
        :              4 street CHAR(20),         :
        :              4 city   CHAR(20),         :
        :              4 state  CHAR(10),         :
        :              4 zip    PIC'99999',       :
        :            3 title CHAR(30),            :
        :          2 salary,                      :
        :            3 rate         DEC(7,2),     :
        :            3 pay_to_date  DEC(7,2),     :
        :            3 fica_to_date DEC(7,2),     :
        :            3 deductions,                :
        :              4 charity DEC(5,2),        :
        :              4 other   DEC(5,2);        :
        :                                         :

In the above example the major and minor structures may be identified by the data identifiers which do not 
have data attributes coded in conjunction with them:  (employment_info,  mapcode,  salary  and 
deductions  in  the example above).  Items on each level of a structure may be elementary data items 
(data items that are coded with attributes other than 'level' and 'identifier') and/or structures.  The maximum 
number of levels is 255.

To DECLARE a structure and reference only a few elements in the structure, only those few elements need 
be detailed.  This would be accomplished by using the pseudo-identifier FILL.  FILL may be any data type 
and may have a dimension.  To illustrate this technique, assume that you are receiving the following record 
as input:

        :    DCL 1 aaa BASED(aaptr),        :
        :          2 booking,               :
        :            3 first  CHAR(10),     :
        :            3 middle CHAR(10),     :
        :            3 last   CHAR(10),     :
        :          2 flight,                :
        :            3 number PIC'9999',    :
        :            3 class  CHAR(2),      :
        :          2 date,                  :
        :            3 month CHAR(10),      :
        :            3 day   PIC'99',       :
        :            3 year  PIC'9999';     :
        :                                   :

Suppose that in the above example only the elements last and class were to be referenced.  Rather than 
code the DECLARE statement for the entire structure, as shown, the pseudo-element FILL could be used to 
DECLARE the non-referenced areas:

        :    DCL 1 aaa BASED(aaptr),    :
        :          2 FILL  CHAR(20),    :
        :          2 last  CHAR(10),    :
        :          2 FILL  CHAR(4),     :
        :          2 class CHAR(2);     :
        :                               :

No FILL is needed after the last essential element (class).
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Arrays Containing Structures  

An array of structures is formed by coding a dimension attribute immediately following the structure identifier:

        :    DCL 1 input(3),                 :
        :          2 team CHAR(30),          :
        :          2 wages,                  :
        :            3 normal   DEC(5,2),    :
        :            3 overtime DEC(5,2);    :
        :                                    :

Because the major structure input has a dimension attribute coded, the elements and minor structures 
contained within it are arrays and must be referenced by using subscripts.  This is a general rule which 
applies anytime a structure is arrayed.  In the example above, the array 'input' and the minor structure 'team' 
will have the same displacement.

An in-core representation of the above example:

   input(1)                input(2)                input(3)
     |                       |                       |
 |-------|               |-------|               |-------|
 |       |               |       |               |       |
 |       wages(1)        |       wages(2)        |       wages(3)
 |         |             |         |             |         |
 |     |-------|         |     |-------|         |     |-------|
 |     |       |         |     |       |         |     |       |
 team  normal  overtime  team  normal  overtime  team  normal  overtime
 (1)   (1)     (1)       (2)   (2)     (2)       (3)   (3)     (3)

If the programmer wished to access the field normal he would code a subscript following it.  For example: 
normal(1), normal(2), or normal(3),  depending  upon  which  element  he  desired.    All rules for 
subscripts, as outlined in arrays and subscripts, apply (See Subscripts, this chapter.)

Structures Containing Arrays  

If an element of a structure has a dimension attribute coded in conjunction with it, the element is an array 
and should be referenced by the use of a subscript. A non-subscripted reference will default to a subscript of 
one (1).

        :    DCL 1 personnel,              :
        :          2 sites(3) CHAR(30),    :
        :          2 totemp PIC'9999';     :
        :                                  :
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An in-core representation of the preceding example:

                     personnel
                         |
          |---------|---------|---------|
          |         |         |         |
          sites(1)  sites(2)  sites(3)  totemp

The nesting of arrays within structures is invalid, that is, only one level of each major or minor structure may 
have dimension attributes coded in conjunction with it.

        :    DCL 1 personnel,               :
        :          2 sites(3) CHAR(30),     :
        :          2 empinfo(100),          :
        :            3 rate CHAR(20),       :
        :            3 empno PIC'99999';    :
        :                                   :

The above is a valid example of a structure containing arrays because both of the arrays are on the second 
level.  It is not possible to code a dimension attribute in conjunction with one of the level three elements and 
still have a valid condition:

        :    DCL 1 personnel,                   :
        :          2 sites(3) CHAR(30),         :
        :          2 empinfo(100),              :
        :            3 rate(7) CHAR(20),        :
        :                                       :

The above example is invalid because empinfo and rate both have dimension attributes.

Factoring of Attributes  

If several data items have identical attributes, these attributes may be factored to eliminate unnecessary 
coding.  Factoring is specified by enclosing the identifiers of the identical data items within parentheses, 
separating the identifiers with commas and following this with the common data attribute(s). Given:

        :    DCL ctr1 BIN;    :
        :    DCL ctr2 BIN;    :
        :                     :

these declarations could be factored as follows:

        :    DCL (ctr1, ctr2) BIN;    :
        :                             :

When factoring is performed on elements of a structure, only one level of the structure may be factored:

        :    DCL 1 eb0eb ENTRYBLOCK,                               :
        :          2 ce1bad PTR,                                   :
        :          2 ce1wka,                                       :
        :            3 ebw000f,                                    :
        :              4 (ebw000,ebw001,ebw002,ebw003) CHAR(1);    :
        :                                                          :
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Only one level in the above example contains factoring. The following example illustrates an invalid factoring 
of attributes because of an attempt to factor more than one level:

        :    DCL 1 notes,                       :
        :          2 (high,low),                :
        :            3 (ones,fives,tens) BIN,   :
        :            3 denominations DEC(2),    :
        :          2 portraits CHAR(20);        :
        :                                       :

Factoring of attributes is invalid for arrays, as in the example:

        :     DCL (a,b,c) (10) BIN;   :
        :                             :

Another method of coding DECLARE statements and eliminating unnecessary code is illustrated in the 
following examples:

        :    DCL a BIN ALIGNED;    :
        :    DCL b DEC(5,2);       :
        :    DCL c CHAR(16);       :
        :                          :

With a single DCL keyword, these unrelated data items could be coded more conveniently:

        :    DCL a BIN ALIGNED,    :
        :        b DEC(5,2),       :
        :        c CHAR(16);       :
        :                          :

Any number of unrelated data items might be coded in the preceding manner.  Each item and its 
corresponding attributes is separated from the other items by the use of commas.  The entire DECLARE 
statement is terminated by a semicolon.

ALIGNED   and   PACKED   Attributes      

The attributes ALIGNED and PACKED are used to align or position data.  The ALIGNED attribute can result in 
more efficient code but less efficient use of space, while the PACKED attribute can result in more compact 
data allocation but less efficient code.  The ALIGNED and PACKED attributes may be declared at any 
structure level and apply to all subdivisions (lower levels) of that structure level except where a given data 
element in the structure has an overriding attribute.   Data items declared without the PACKED or ALIGNED 
attribute default to the attribute of the next higher structure level in which they appear, as just mentioned, or 
if they are not part of a structure they default to PACKED.
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General Format of   ALIGNED   and   PACKED   Data:      

       _         _
       | DCL     |  identifier  data type  ( PACKED  )  ;
       | DECLARE |              attribute  ( ALIGNED )
       -         -

        :   DCL  1  major            ALIGNED,     :
        :          2  maj_a  CHAR(1),             :
        :          2  maj_b  CHAR(2),             :
        :          2  min_c,                      :
        :             3  min_d  BIN  ALIGNED ;    ;
        :                                         ;

In the above example min_c and min_d are both aligned. Rules for alignment of PACKED data and 
ALIGNED data are illustrated in figure 4.1

Alignment is precedental with the following highest to lowest order:
________________________________________________________________________
|                                                                      |
|Class of Data:       |  PACKED data is        |  ALIGNED data is      |
|                     |    aligned at next:    |    aligned at next:   |
|---------------------|------------------------|-----------------------|
|                     |                        |                       |
|Major Structures:    |                        |                       |
|    CONSTANT Storage |  Byte                  |  Byte                 |
|    Other            |  Double Word           |  Double Word          |
|                     |                        |                       |
|Minor Structures:    |                        |                       |
|    Bit              |  Bit                   |  Byte                 |
|    Other            |  Byte                  |  (If it contains      |
|                     |                        |  BIN(31) or PTR data):|
|                     |                        |    Full Word          |
|                     |                        |  (If it contains      |
|                     |                        |  BIN or LAB data):    |
|                     |                        |    Half Word          |
|                     |                        |  Else:                |
|                     |                        |    Byte       **      |
|                     |                        |                       |
|Array Elements:      |                        |                       |
|    BIT              |  Byte                  |  Byte                 |
|                     |  (Overrides treatment  |                       |
|                     |   of BIT, Elementary,) |                       |
|                     |                        |                       |
|Elementary Data:     |                        |                       |
|    BIT              |  Bit                   |  Byte                 |
|    BIN(15) or LAB   |  Byte                  |  Half Word            |
|    BIN(31) or PTR   |  Byte                  |  Full Word            |
|    Other            |  Byte                  |  Byte                 |
|                                                                      |
|**  If the first element of a minor structure requires alignment on a |
|    half or a full word boundary then the minor structure itself is   |
|    aligned on a half or full word boundary.                          |
|                                                                      |
|______________________________________________________________________|
Figure 4.1 Packed and Aligned Data

In a structured array, bytes of padding may be added so that the size of each element will be a multiple of 
four if the structure contains ALIGNED BINARY(31) or POINTER data; a multiple of two if the structure 
contains ALIGNED BINARY(15) or LABEL data.

66



CHAPTER 4: EXPANDED DATA DEFINITION RULES

        :   DCL 1 aaa (3) ALIGNED,    :
        :         2 b BIN (15),       :
        :         2 c CHAR (1);       :
        :                             :

        location      array
        assigned      member
        --------      ------
           0          aaa(1)
           0            b(1)
           2            c(1)
           3              -  padding
           4          aaa(2)
           4            b(2)
           6            c(2)
           7              -  padding
           8          aaa(3)
           8            b(3)
          10            c(3)
          11              -  padding

The padding is necessary to make each entry of array aaa an even number of bytes.  This causes each 
ALIGNED item to be properly aligned in each element of the array.

In the following example min_g will be byte aligned:

        :   2  minor            ALIGNED,     :
        :     3  min_e  BIN,                 ;
        :     3  min_f  BIT(4),              :
        :     3  min_g  BIT(4);              :
        :                                    :

If it is to be in the same byte as min_f, min_g must be PACKED.

        :   3  min_g  BIT(4)  PACKED ;   :
        :                                :

STORAGE ALLOCATION  

Data items are allocated storage within the system so that they may be referenced during program 
execution.   This storage allocation may be static, before the execution of the program, or dynamic, during 
execution of the program.  Some allocated storage can be freed upon the explicit request of the 
programmer, and some upon encountering a macro  containing  an  implicit release, e.g., ENTNC, EXITC, 
BACKC or ENTDC.
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There are four storage classes, each of which has a corresponding keyword:

        Storage class         Keyword                  Allocation
        -------------         -----------------        --------------
        AUTOMATIC             AUTO / AUTOMATIC         dynamic
        BASED                 BASED                    static/dynamic
        ENTRYBLOCK            ENTRYBLOCK               static
        CONSTANT              CONSTANT                 static

Data items, arrays and major structures may all have storage class attributes specified in their DECLARE 
statements, in which case the elements of all will be of the specified storage class. If a storage class is not 
coded in the DECLARE statement for a data item, array or major structure, then the storage class defaults to 
AUTOMATIC.

AUTOMATIC   Storage      

When a SABRETALK program is activated, a block of storage will be allocated automatically.   It is this 
block, called the Automatic Storage Block, which provides the program with its re-entrant capability because 
it becomes  "attached to" the ECB.  All data items, arrays or major structures declared with the AUTOMATIC 
storage class attribute will reside in this core block.  The core block will remain allocated as long as the 
program remains active.  The AUTOMATIC storage block will be freed upon execution of a BACKC,  EXITC, 
ENTNC or ENTDC macro.  It will not be released for macros that do not cause the program block to be 
released, e.g., DLAYC, ENTRC or WAITC macros.

The size of the AUTOMATIC core block allocated will vary depending upon the requirements of the particular 
program segment.  The Compiler will determine the program's requirements based on data items declared 
AUTOMATIC by the programmer as well as areas required by the Compiler for data conversions, etc. The 
Compiler will then obtain the appropriate sized block which will be 128, 381, 1055 or 4095 bytes.

General Format:  
    _         _
    | DCL     |  identifier  data type  ( AUTO      ) ;
    | DECLARE |              attribute  ( AUTOMATIC )
    -         -

    :    DCL inptr PTR AUTO;                                       :
    :    DCL farebase DEC(5,2);   /* this  data  item  defaults    :
    :                                to  AUTOMATIC  because  no    :
    :                                storage   class  attribute    :
    :                                is coded.               */    :
    :    DECLARE labvar LABEL AUTOMATIC;                           :
    :                                                              :

ENTRYBLOCK   Storage      

An Entry Control Block (ECB) is allocated to each active entry in the TPF system.  In order to reference data 
which resides in this block, the programmer must include the ENTRYBLOCK storage class attribute in the 
data item's DECLARE statement.  Normally the programmer does not have the need to code the 
ENTRYBLOCK.

General Format:  
        _         _
        | DCL     |   identifier   data type   ENTRYBLOCK   ;
        | DECLARE |                attribute
        -         -
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        :    DCL 1 eboeb ENTRYBLOCK,                               :
        :          2 ce1chw PTR,                                   :
        :          2 ce1bad PTR,                                   :
        :          2 ce1wka,                                       :
        :            3 ebw000f,                                    :
        :              4 (ebw000,ebw001,ebw002,ebw003) CHAR(1),    :
        :            3 ebw004f,                                    :
        :              4 (ebw004,ebw005,ebw006,ebw007) CHAR(1),    :
        :            3 ebw008f,                                    :
        :              4 (ebw008,ebw009,ebw010,ebw011) CHAR(1),    :
        :            3 ebw012f,                                    :
        :              4 (ebw012,ebw013,ebw014,ebw015) CHAR(1),    :
        :                                                          :

CONSTANT   Storage      

Use of the CONSTANT storage class attribute specifies that the data item will be allocated storage statically, 
prior to execution of the program, and that this storage will remain allocated within the program for the 
duration of program execution.

The programmer gives an identifier the CONSTANT storage class when the value in the field will not change. 
The CONST statement is used to specify the constant value in the field.

CONST   Statements      

CONSTANT storage is initialized by the use of the CONST statement.  It is good programming practice to code 
the CONST statement immediately following the DECLARE statement for the data item.  Each data item 
declared with the CONSTANT storage class attribute may have only one associated CONST statement.

Data items declared as CONSTANTS will reside (as will literals), in the same core block as the program.

General Format:
        _         _
        | DCL     |   identifier   data type    CONSTANT   ;
        | DECLARE |                attribute
        -         -

          CONST     identifier   ,   literal   ;

        :    DCL error_message_1 CHAR(21) CONSTANT;             :
        :    CONST error_message_1, 'invalid input message';    :
        :    DCL farebase DEC(5,2) CONSTANT;                    :
        :    CONST farebase, 189.95;                            :
        :                                                       :
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Literals coded in conjunction with the CONST statement may be of the following data types:

A) DECIMAL
B) BINARY
C) BIT-string
D) hexadecimal string
E) character-string
F) DECIMAL FLOAT

The literal need not be of the same data type as the data type attribute specified in the DECLARE statement. 
Always initialize the entire field specified in the DECLARE CONSTANT statement.  With DEC data items use 
the correct number of digits in the literal of the CONST statement, with placement of the decimal point exactly 
as specified by the DEC in the DECLARE statement.

Storage for a BIN(15) CONSTANT statement will  be  changed  internally  to BIN(31)  if the literal in the 
CONST statement is BINARY.  If the programmer wishes to ensure that only two bytes are used, he should 
initialize the BIN(15) constant with a two-byte hex literal.

If a structure is declared CONSTANT and is initialized by several CONST statements at a level greater than 1, 
they must be initialized in logical ascending sequence or the results will be unpredictable.  Structures 
declared as CONSTANT will be aligned on a full word.  This is done to conserve program storage.

        :    DCL 1 record CONSTANT,      :
        :          2 team CHAR(9),       :
        :          2 stamp,              :
        :            3 num PIC'9999',    :
        :            3 str CHAR(9);      :
        :    CONST team, 'favorites';    :
        :    CONST num,  '1234';         :
        :    CONST str,  'sedgewick';    :
        :                                :

Storage for BIT CONSTANT statement will be changed internally to a byte.  If BIT fields are declared within 
a structure then the entire structure must be initialized with one CONST statement.

The following is incorrect:

        :  DCL 1 K1 PACKED CONSTANT,           :
        :        2 W1      BIT(1),             :
        :        2 X1      BIT(1),             :
        :        2 Y1      BIT(6),             :
        :        2 Z1      BIN;                :
        :  CONST W1,'1'B,CONST X1,'0'B;        :
        :  CONST Y1,'111111'B;                 :

The following is correct:

        :  DCL 1 K1 PACKED CONSTANT,           :
        :        2 W0,                         :
        :          3 W1    BIT(1),             :
        :          3 X1    BIT(1),             :
        :          3 Y1    BIT(6),             :
        :        2 Z1      BIN;                :
        :  CONST W0,'10111111'b;               :

A system-equate cannot be used to initialize a field that is defined CONSTANT, for example, the following is 
illegal:
                  CONSTANT num,#pndri;
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Constants can be arrayed, however, the entire array must be initialized in a single CONSTANT statement.

        :  DCL arr(2) BIN(31) CONSTANT;        :
        :  CONST arr, '0000000100000002'X ;    :
        :                                      :

The following are all incorrect:

        :  CONST arr, 1,2 ;                    :
        :  CONST arr(1), 1 ;                   :
        :  CONST arr(2), 2 ;                   :
        :                                      :

Constants may be referenced as individual elements of an array of constants.

        :   DCL months(12) CHAR(3) CONSTANT;                        :
        :   CONST months, 'janfebmaraprmayjunjulaugsepoctnovdec';   :
        :                                                           :
        :   IF months(i) = inmonth THEN GOTO match;                 :
        :                                                           :

The literal field may be no greater in size than the limit for the type of literal and only one literal per CONST 
statement is allowed.

BASED   Storage      

BASED storage is used primarily, but not exclusively, for data blocks that are attached to the ECB. The 
allocation and manipulation of TPF core blocks is controlled by the programmer through the use of the get-
core, find, file, release-core, etc. type macros.  It is the responsibility of the programmer to initialize the 
pointer for BASED storage so that it contains the address of the data block he wishes to reference after 
storage allocation has been accomplished.  One method of initializing the pointer with the address of the 
storage area is to obtain it from the core block reference word of the Entry Control Block (ECB) by use of an 
Assignment statement. Note that the pointer name in the BASED attribute is implicitly declared, i.e., the 
programmer should not code a separate declare for the pointer.

General Format:  
    _         _
    | DCL     |   identifier   data type   BASED   (pointer)   ;
    | DECLARE |                attribute
    -         -

        :    DECLARE 1 input (5) BASED (pointer1),    :
        :              2 shop CHAR(30),               :
        :              2 roster CHAR(50),             :
        :              2 phone CHAR(8),               :
        :              2 data CHAR(123);              :
        :    GETCC d1,l2;                             :
        :    pointer1 = ce1cr1;                       :
        :                                             :

After initializing the pointer, as illustrated, all references to data items based on this pointer will be qualified 
by the address the pointer contains. In other words, the compiler will generate instructions with the pointer 
address as base, and use the relative location of the data item in the structure as displacement. After pointer 
initialization, the data items in the structure input may be referenced.

         :   shop = stringl;   :
         :   .                 :
         :   RELCC d1;         :
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         :                     :

Once the block of storage has been released, for example, by the use of a release-core type macro, data 
items in the released block must not be referenced.  The programmer may request a new core block, not 
necessarily on the same data level, and again initialize the pointer.  After this has been accomplished, the 
BASED data items, now residing in the new core block, may be referenced.  Another method is to declare the 
core address reference word as the pointer to the structure. The compiler recognizes this pointer as ECB 
based and will produce the necessary code to initialize the pointer.

Explicit Pointer Usage  

Pointers are variables containing addresses that refer to data items.  The data attribute POINTER or PTR is 
used to DECLARE a pointer explicitly as follows:

General Format:  
        _         _                _         _
        | DCL     |   identifier   | PTR     |  ;
        | DECLARE |                | POINTER |
        -         -                -         -

        :    DECLARE recptr POINTER;     :
        :    DCL input PTR;              :
        :                                :

One full word of storage is allocated in AUTOMATIC storage for the pointer.

When pointers are declared in this manner, data items will not be automatically based upon them.  The 
programmer must use the pointer qualification composite  (->) to specify which data item should be based 
on the pointer. The Compiler will then generate the instructions to complete the required operation, using the 
pointer specified as the base for the data item and the relative location of the data item as the displacement. 
A pointer used to qualify a reference to a data item must reside in AUTOMATIC storage.

        :    DCL outptr PTR;              :
        :    DCL 1 input BASED(inptr),    :
        :         2 cost CHAR(30),        :
        :         2 home CHAR(30),        :
        :         2 file CHAR(68);        :
        :    GETCC d6,l0;                 :
        :    outptr = ce1cr6;             :
        :    outptr -> home = home;       :
        :                                 :

In the preceding example, the last statement illustrates both explicit and implicit pointer qualification.  On the 
right hand side of the Assignment statement the data item home is referenced in the implicit manner.  The 
Compiler will generate instructions using the address contained in inptr as the base for this reference and 
the displacement will be determined by the location of home in the structure, (base + 30).   The receiving 
field of the assignment specifies explicit pointer qualification, causing the Compiler to override the normal 
base of home and use the address contained in outptr as the base for this reference.  Displacement from 
this base is again determined by the location of home in the structure.
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General Rules for the Use of Pointers:  

1) A pointer  can be  initialized  to  contain  an address  in  the following ways:

a) By use of a pointer-to-pointer Assignment statement. (e.g., outptr = ce1cr3;)
b) By use of a START statement or macro in which is specified that the contents of a 
register be stored into the pointer.
c) By use of the ADDR built-in function, which can be used to obtain the address of a 
data item, array, structure, or an element within an array or structure (e.g., aptr = 
ADDR(data);)
d)The  pointer  being  an  input  parameter in  a  programmer-declared function or an internal 
procedure.

2) Pointer qualifiers may not be subscripted, as in:  
x = rptr(i) -> z;

3) Pointers may not be further qualified by other pointers, as in: 
a = rptr -> aptr -> b;

4) Pointers may be considered as address constants and may have BINARY literals or 
variables added to or subtracted from them. The result of such an addition or subtraction may be 
assigned to a pointer, as in:
strptr = strptr + #itemln;

5) Data based on a pointer must not be referenced until the pointer is properly initialized, 
except in the case of ECB based pointers.

6) Once the storage allocated to a BASED data item has been released, that data item must not 
be referenced.

7) Whenever a pointer is received as a parameter in a macro, or in a procedure, it should be 
tested to insure that it is not zero.

8) A maximum of 92 pointers, implicitly or explicitly declared, may be used in the program.

DEFINED   ATTRIBUTE AND DEFINED STORAGE      

The DEFINED attribute allows the programmer to DECLARE a data item that will occupy all or part of the 
storage allocated to another data item called the base-identifier.  The declaration is not a method of 
allocating storage, rather it is a way of re-defining existing storage so that the storage class remains the 
same but the attributes and/or identifiers may change. The specification of a base-identifier in the DEFINED 
attribute is mandatory.  The starting address of the DEFINED data item will be the same as the starting 
address of any other data item whose name is used as the DEFINED base-identifier.

General Format:  
  _         _                            _         _
  | DCL     |   identifier   data type   | DEF     |   base-       ;
  | DECLARE |                attribute   | DEFINED |   identifier
  -         -                            -         -

        :   DCL flightcs CHAR(4);                    :
        :   DCL fltncs PIC'9999' DEFINED flightcs;   :
        :                                            :
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The programmer can use this attribute to treat a given quantity as two different data types (in the example, 
as character-string and Numeric character-string), or to reuse an area of storage in a different manner at 
some later time.  In the above example, the actual data in the field would remain the same, while the 
Assembler Language instructions generated would be for a character-string field or a Numeric character-
string field, depending upon the identifier used.  The DEFINED data item fltncs will have the same starting 
address and will occupy the same area as the base-identifier, flightcs.  When these four bytes are 
referred to by the identifier fltncs, they will be treated as a Numeric character-string field.  If the identifier 
flightcs is used, the field will be treated as if it contained character-string data.  

The practicality of defining a field in this manner becomes evident when the programmer compares or 
assigns zoned numeric literals to the field.  Character-string literals, such as '1234' (which contain numbers), 
may only be compared or assigned to fields declared as character-strings, but character-string fields may 
not be coded in arithmetic expressions.  Using the preceding DECLARE statements the programmer could 
compare or assign a character-string literal to flightcs and then use the identifier fltncs in an arithmetic 
expression.

        :   IF flightcs = '1234' THEN fltncs = fltncs + 1.;   :
        :                        ELSE flightcs = '0000';      :
        :                                                     :

Note:  The preceding situation also could be handled through the use of the NSTR built-in function which is 
covered in Chapter 5, NSTR

The following example illustrates use of an area of storage in a different manner at a later time.

        :   DCL 1 input BASED(inptr),    :
        :         2 cheese CHAR(25),     :
        :         2 age PIC'999';        :
        :   DCL rate DEC(5,2) DEF age;   :
        :   rate = 100.25;               :
        :                                :

Originally, input contains whatever values were assigned to cheese and age. Later, as a result of the 
assignment of a value to rate (which occupies the same area of storage as age), input contains the 
values in cheese and rate, with rate occupying (and therefore destroying the previous contents of) the 
same storage area that age occupied.

General Rules for   DEFINED   Storage:      

1) The attributes of the DEFINED data item may not be inconsistent with the attributes allowable to the 
storage class of the data item whose name is used as the base-identifier.  For example, if the base 
identifier belongs to the CONSTANT class of storage, then a data item that is a DEFINED variable 
would represent an inconsistency.

2) The length of the data item should not exceed the length of the base-identifier unless the storage 
class of the fields is ENTRYBLOCK or BASED. When the length is greater than the base-identifier, the 
field immediately following the base-identifier will be overlaid if an assignment is made to the data 
item.

            :    DCL 1 input BASED(a1),          :
            :          2 empnum PIC'99999',      :
            :          2 rate DEC(5,2);          :
            :    DCL part CHAR(7) DEF empnum;    :
            :    part = 'ABCDEF' ;               :
            :                                    :
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In  the  above example, part will be allocated the same five bytes allocated empnum plus the first 
two bytes allocated to rate. The assignment of a value to part will alter all of empnum and the first 
two bytes of rate.

3) If the DEFINED is included in the original DECLARE statement for a structure, the DEFINED 
items/structure must be at the bottom of the structure. This is because the compiler cannot 
specifically recognize the end of a DEFINED structure and therefore continues to treat any 
declarative statements that follow the DEFINED, as part of the DEFINED.

            :    DCL 1 rec,                        :
            :          2 post CHAR(12),            :
            :          2 box,                      :
            :            3 addrs CHAR(20),         :
            :            3 phone PIC'9999999',     :
            :          2 misc DEFINED addrs ,      :
            :            3 sub1 CHAR(10) ,         :
            :            3 sub2 CHAR(10) ;         :
            :                                      :

Any number of DEFINED statements can be coded in sequence, at the end of the structure.

4) (See restrictions of DEFINED items in %INCLUDEAF files, this chapter)

INCLUSION STATEMENTS  

%INCLUDEAF   Statement      

The %INCLUDEAF statement is a statement which gives the programmer the ability to retrieve (non-
executable) DECLARE statements in pre-compiled form from the %INCLUDEAF library and have them 
inserted into his program.

When the %INCLUDEAF statement is encountered during compilation, the precompiled declares are 
retrieved from the %INCLUDEAF library and only those declares referenced by the program are made known 
to the program.  This has the effect of decreasing compile time and saving core requirements.  (See Chapter 
7 ICAFNO/YES OPTIONS for further information)

General Format:  

        %INCLUDEAF   membername   ( ,membername   (,...) )  ;

        :    %INCLUDEAF MI0MI;           :
        :    %INCLUDEAF EB0EB, WA0AA;    :

MI0MI, EB0EB and WA0AA would reflect the identifiers of particular sets of declarations on file.

General Rules for %INCLUDEAF Statements:

1) Details for loading members to the %INCLUDEAF library are found in the SABRETALK 
Installation and Maintenance Guide.

2) Only (non-executable) DECLARE statements may be inserted in one's program by use of 
%INCLUDEAF.
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3) DECLARE statements in a %INCLUDEAF member may not have a storage class attribute of 
AUTOMATIC or CONSTANT.

4) If more than one set of %INCLUDEAF library members is requested, the member identifiers 
can be coded in one %INCLUDEAF statement, separated by commas. The maximum number of 
%INCLUDEAF members that can be requested by a given program is 24.

5) %INCLUDEAF members may contain more than one structure if the structure does not 
contain DEFINED items. Any structure containing DEFINED items must be placed in a separate 
%INCLUDEAF member.

6) If a specified %INCLUDEAF member is not in the %INCLUDEAF library, the compiler will not 
search the %INCLUDE library. 

Since the Entry Control Block (ECB) is the primary control medium in a TPF environment, its description is 
usually found catalogued in the %INCLUDE and/or %INCLUDEAF libraries. In addition, the primary application 
data records in a given TPF system are usually found in the %INCLUDEAF and/or the %INCLUDE libraries.

%INCLUDE   Statement      

The %INCLUDE statement is a statement which gives the programmer the ability to retrieve source 
statements from the %INCLUDE library and have them inserted into his program at the point where the 
statement is coded.    These source statements may be executable statements or (non-executable) 
DECLARE statements.  (See Chapter 7 ICAFNO/YES OPTIONS for further information)

General Format:  

          %INCLUDE   membername   ( ,membername   (,...) )  ;
                                  (               (    ) )
                                  (                      )

        :    %INCLUDE error;           :
        :    %INCLUDE eb0eb, wa0aa;    :

General Rules for   %INCLUDE   Statements:      

1) %INCLUDE members may not contain %INCLUDEAF statements or %INCLUDE statements.

2) Details for loading members to the %INCLUDE library are found in the SABRETALK 
Installation and Maintenance Guide.

3) If an internal PROCEDURE is to be inserted by use of the %INCLUDE statement, the 
%INCLUDE statement should be coded outside the logical flow of the program.

4) If more than one set of %INCLUDE library members is requested, the member names, 
separated by commas, can be coded in one %INCLUDE statement.

NOTE:  If member names are coded as part of one statement, be aware that if a member is not found on file, 
then subsequent member(s) will not be searched for on file.
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DATA STATEMENT STRUCTURE SUMMARY  

Figure 4.2 illustrates a summary of Explicit Data Statement Structure by Data Type
|-------------------------------
| Statement Type
|    |----------------------------------
|    | Variable(V), Literal(L), Constant(C)
|    |   |-------------------------------------
|    |   | Keywords (Statement)
|    |   |          |---------------------------------
|    |   |          | Level Number (Attribute)
|    |   |          |   |------------------------------------
|    |   |          |   | Identifier (Attribute)
|    |   |          |   |   |---------------------------------------
|    |   |          |   |   | Dimension (Attribute)
|    |   |          |   |   |   |-------------------------------------
|    |   |          |   |   |   | Keyword (Data Attribute) / Separator
|    |   |          |   |   |   |           |-------------------------
|    |   |          |   |   |   |           | Size/Content(Attributes).
|    |   |          |   |   |   |           |       |-----------------
|    |   |          |   |   |   |           |       | Alignmnt(Attrib).
|    |   |          |   |   |   |           |       |         |--------
|    |   |          |   |   |   |           |       |    a    | STORAGE
+----+---+----------+---+---+---+-----------+-------+---------+ .CLASS:
|DEC |V/L|(DCL    ) |   |   |   | (DEC    ) |(c(,d))|(PACKED )| . . . .
|    |   |(DECLARE) |   |   |   | (DECIMAL) |       |(ALIGNED)| . . . .
|BIN |V/L|(DCL    ) |   |   |   | (BIN   )  |  (e)  |(PACKED )| . . . .
|    |   |(DECLARE) |   |   |   | (BINARY)  |       |(ALIGNED)| . . . .
|BIT |V/L|(DCL    ) |   |   |   |  BIT      |  (f)  |(PACKED )| . . . .
|    |   |(DECLARE) |   |   |   |           |       |(ALIGNED)| . . . .
|CS  |V/L|(DCL    ) |   |   |   |(CHAR     )|  (g)  |(PACKED )| . . . .
|    |   |(DECLARE) |   |   |   |(CHARACTER)|       |(ALIGNED)| . . . .
|NCS | V |(DCL    ) |   |   |   | (PIC    ) | 9 V   |(PACKED )| . . . .
|    |   |(DECLARE) |   |   |   | (PICTURE) |       |(ALIGNED)| . . . .
|ECS | V |(DCL    ) |   |   |   | (PIC    ) | 9 V Z |(PACKED )| . . . .
|    |   |(DECLARE) |   |   |   | (PICTURE) | * $ S |(ALIGNED)| . . . .
|    |   |          |   |   |   |           | + -   |         | . . . .
|    |   |          |   |   |   |           | CR DB |         | . . . .
|LAB |V/L|(DCL    ) |   |   |   | (LAB  )   |       |(PACKED )| . . . .
|    |   |(DECLARE) |   |   |   | (LABEL)   |       |(ALIGNED)| . . . .
|PTR | V |(DCL    ) |   |   |   | (PTR    ) |       |(PACKED )| . . . .
|    |   |(DECLARE) |   |   |   | (POINTER) |       |(ALIGNED)| . . . .
|FUNC| L |(DCL    ) |   |   |   | FUNCTION  |       |         / . . . .
|    |   |(DECLARE) |   |   |   |           |       |        /. . . . .
|CONS| C | CONST    |   |   |   | ,         |   h   |       / . . . . .
|INCL|   |%INCLUDE  |   |   |   |           |       |      /. . . . . .
|INCA|   |%INCLUDEAF|   |   |   |           |   i   |     / . . . . . .
|                                                        /. . . . . . .
|                                    |------------------/ . . . . . . .
|                                    |. ( (AUTO      )        b     ) .
|                                    |. ( (AUTOMATIC )              ) .
|                                    |. (                           ) .
|                                    |. (  ENTRYBLOCK               ) .
|                                    |. (                           ) .
|                                    |. (  CONSTANT           j     ) .
|                                    |. (                           ) .
|                                    |. (  BASED       pointer      ) .
|                                    |. (                identifier ) .
|                                    |. (                           ) .
|                                    |. ( (DEF    )    previously   ) .
|                                    |. ( (DEFINED)     declared    ) .
|                                    |. (                identifier ) .
|                                    |. . . . . . . . . . . . . . . . .

     Key:
       a)  PACKED is an alignment default.
       b)  AUTOMATIC is a storage default.
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       c)  The parentheses around 'c' are necessary,
           Number of decimal digits:      Max = 15        Min = 1
       d)  The parentheses around 'd' (and 'd') are optional,
           Position of decimal point from low order digit:
                        Default = 0       Max = 15        Min = 0
       e)  15 or 31 :   Default = 15
       f)  Number of bits:                Max = 32
       g)  Number of characters:          Max = 4087
       h)  Literal of type:
                            Decimal                9.3
                            Binary                 189
                            Bit-string            '010'B
                            Character-string      'M N'
                            Hexadecimal-String    'A3F'X
       i)  %INCLUDEAF may only be used with:
                      ENTRYBLOCK
                      BASED
       j)  Number of constant characters: Max = 256

Figure 4.2 Explicit Data Statement Structure By Data Type.
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CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES  

PRECISION  

The following rules specify the expected precision (p) and scale (q) that will result from arithmetic operations. 
The notations are uniquely defined for use in the arithmetic algorithms that follow:

p   represents the total number of digits in the result.
q   represents the number of fractional digits in the result.
p1  represents the total number of digits in the first operand.
q1  represents the number of fractional digits in the first operand.
p2  represents the total number of digits in the second operand.
q2  represents the number of fractional digits in the second operand.

The  'result' of an arithmetic operation refers to the value obtained after an operation has been completed.  If 
this value is to be further operated on in the same statement, it is termed an 'intermediate result'.

        :   g = b + c;   :
        :                :

The result of b+c is a final result that will be assigned to g.

        :   g = b + c + d;   :
        :                    :

The result of b+c is now an intermediate result that will be added to d, giving a final result that will be 
assigned to g.

Decimal Arithmetic

The following rules pertain to DECIMAL arithmetic operations on operands, which have been declared or 
converted to DEC(p,q).  If one of the operands is BINARY, conversion is as follows: BIN(15) to 
DEC(5,0), BIN(31) to DEC(11,0). The largest allowable DECIMAL precision is fifteen (15) digits.

Arithmetic Operations  

The following formulas are used to determine the precision and scale of the intermediate result of arithmetic 
operations:

Addition and Subtraction  

        p = 1 + max (p1 - q1, p2 - q2) + max (q1, q2)
        q = max (q1, q2)

        :   DCL p5v4 DEC(5,4);   :
        :       p7v3 DEC(7,3);   :
        :                        :

        In the expression p5v4 + p7v3 the intermediate result will have a precision (p,q) of (9,4):

        p = 1 + 4 + 4 = 9
        q = 4
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Multiplication  

        p = p1 + p2 + 1
        q = q1 + q2

        In the expression p5v4 * p7v3 the intermediate result will have a precision (p,q) of (13,7):

        p = 5 + 7 + 1 = 13
        q = 4 + 3 = 7

Division  

        p = 15
        q = 15 - ( (p1 - q1) + q2)

        In the expression p5v4 / p7v3 the intermediate result will have a precision (p,q) of (15,11):

        p = 15
        q = 15 - ( (5 - 4) + 3) = 11

Precision of   MOD   Operations on Decimal Data      

The MOD function, frequently termed a 'remainder after division' has its own formula for computing 
precision. After a MOD operation the precision (p,q) is:

        p = MIN (15, p2 - q2 + MAX (q1, q2) )
        q = MAX (q1, q2)

        In the expression MOD(p5v4, p7v3 , the intermediate result will have a precision (p,q) of (8,4):

        p = MIN (15, (7 - 3 + MAX (4, 3) ) = 8
        q = MAX (4, 3) = 4

Results of Arithmetic Operations on   BINARY   Numbers      

All BINARY arithmetic operations involve the use of a full word, 32 bits, regardless of the declared size 
of the operands - BIN(15) - such that all intermediate results are BIN(31).

Truncation  

Arithmetic operations take place only after all necessary conversions have been performed. Since the 
maximum size of a DECIMAL field is fifteen digits, truncation is necessary if this limit is exceeded. Digits 
truncated may or may not be significant digits. The method of truncation employed is based upon whether 
the result is intermediate or final.  When truncation is associated with a final result, the result is aligned on 
the decimal point of the receiving field and excess high order and low order digits are lost.  With regard to 
intermediate results, truncation may occur after an intermediate result has been obtained and before the 
next operation takes place.  Truncation of low order fractional digits occurs first.  While truncation usually 
affects low order fractional digits, high order digits may be truncated if the size of the intermediate result 
exceeds the largest allowable precision for the data type.

Consider the following multiplication of four numbers, three of which are DEC(5,2) and a fourth which is 
DEC(7,2).  The receiving field is DEC(15,0):
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        (5,2) * (5,2) * (5,2) * (7,2)

The rules for determining the size of each intermediate result are those for DECIMAL multiplication.

Stage 1:  (5,2) * (5,2) yields (11,4)

The intermediate result obtained at this stage falls within the limit of the 15 DECIMAL digits.

Stage 2:  (11,4) * (5,2) yields (17,6)

In order to decrease the size of this intermediate result to within the maximum allowable, two of the low 
order fractional digits are truncated to yield a result whose specification is (15,4).

Stage 3:  (15,4) * (7,2) yields (23,6)

Truncation of the final result is achieved by aligning the decimal point of the final result (23,6) with that of the 
receiving field (15,0).  Therefore, the 2 high order digits and the six low order fractional digits are truncated. 
This could mean a loss of significance, depending upon the actual values originally in the fields.

FUNCTIONS  

There are two types of functions: Built-in functions and Programmer-declared functions.  Built-in functions 
are a part of the compiler; the programmer writes programmer-declared functions.  Both types are invoked 
with statements of similar format. The parameters being passed are coded immediately following the 
function label, separated by commas and enclosed in parentheses.  No function invocations, other than the 
pseudo-variable built-in functions (BSTR, CSTR and NSTR) are allowed as parameter assignments in TPF 
macro statements.

Built-in functions are a set of pre-defined functions that are an intrinsic part of SABRETALK.  These include: 

(1) Arithmetic  functions  which  return characteristics  about  arithmetic  data,  
(2) string functions which return characteristics about a string or some shifted version of a string 
or  which allow  some  attributes  of the string to be temporarily over-ridden, 
(3) an address function which  returns  an  address,  
(4) a  case  function  which produces  conditional branches.   

Built-in functions are not to be declared.  The built-in function names are SABRETALK keywords, and may 
not be used by programmers as identifiers or labels.

Programmer-declared functions are sets of statements, invoked by the use of the function label, the label 
usually used as part of a sending field or receiving field in an assignment statement. Programmer-declared 
functions operate on the data passed to them and return a value to the invoking statement.

Built-in Functions  

The pseudo-variable built-in functions BSTR, CSTR, and NSTR are the only functions that may be coded as 
the receiving field of an assignment statement or in the register loading/storing portions of a macro or START 
statement.
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A list of the built-in functions, by categories, follows:

Arithmetic
        Label          Function
        -----          --------------
        ABS            absolute value
        MAX            maximum
        MIN            minimum
        MOD            modulo
        SIGN           algebraic sign
        ROUND          rounds decimal data

String
        Label          Function
        -------        ---------------
        ALPHA          alphabetic scan
        NUMERIC        non-alphabetic scan
        INDEX          indexed scan
        SHL            shift left
        SHR            shift right
        BSTR           bit-string
        CSTR           character-string
        NSTR           numeric character-string
        VSTR           variable-length string
        LSTR           find length of a data field

Address
        Name           Function
        ----           --------
        ADDR           address

Case
        Name           Function
        ----           --------
        CASE           case

Arithmetic functions return results that depend upon the precision of the parameters.  If a parameter is an 
expression, the precision of the result of the expression is used.

ABS   Built-in Function      

         ABS (x)

The above returns the absolute value of x.

General Rules for ABS Built-in Functions:

1) x is a required parameter, which must be an arithmetic, logical or relational expression.

2) x may be subscripted and/or pointer qualified:

        :   DCL num BIN(31),   :
        :       val BIN;       :
        :   num = -13;         :
        :   val = ABS (num);   :
        :                      :

Result of the above: val = +13.
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MAX   Built-in Function      

        MAX   (x,y   (,p   (,...) )   )
                     (     (    ) )
                     (            )

The  above  returns  the  value of whichever parameter contains the greatest value.

General Rules for MAX Built-in Functions:

1) The data types may be dissimilar in which case conversions will be performed.

2) x and y are required parameters which must be arithmetic, logical or relational expressions.

3) x and y may be subscripted and/or pointer qualified.

4) p is an optional parameter or optional parameters (there may be any number of parameters) 
which must be arithmetic, logical or relational expression.

5) p may be subscripted and/or pointer qualified.

6) Precision of result returned will be (n,m), where m is obtained from the parameter with the 
most fractional digits.  n is equal to k+m where k is obtained from the parameter with the most 
integer digits. The precision (n,m) would be large enough to contain all possible significant digits in 
the result.

        :   DCL day_rate   DEC(7,5),                      :
        :       month_rate DEC(3,1),                      :
        :       trial_rate DEC(9,4),                      :
        :       val        DEC(11,5);                     :
        :   day_rate   = 99.9;                            :
        :   month_rate =   .3;                            :
        :   trial_rate = 98.;                             :
        :   val = MAX (day_rate,month_rate,trial_rate);   :
        :                                                 :

val, above, will become 99.9,  precision returned is (10,5).

MIN   Built-in Function      

        MIN   (x,y   (,p   (,...) )   )
                     (     (    ) )
                     (            )

The above returns the value of whichever parameter contains the least value.

General Rules for the MIN Built-in Function:

1) The data types may be dissimilar in which case conversions will be performed.

2) x and y are required parameters which must be arithmetic, logical or relational expressions.

83



CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

3) x and y may be subscripted and/or pointer qualified.

4) p is an optional parameter or optional parameters (there may be any number of parameters) 
which must be arithmetic, logical or relational expression.

5) p may be subscripted and/or pointer qualified.

6) Precision of result returned will be (n,m), where m is obtained from the parameter with the 
most fractional digits.  n is equal to k+m where k is obtained from the parameter with the most 
integer digits. The precision (n,m) would be large enough to contain all possible significant digits in 
the result.

        :   DCL new_price   DEC(11,1),                       :
        :       old_price   DEC(5,5),                        :
        :       quote_price DEC(1),                          :
        :       val DEC(15,5);                               :
        :   new_price  = 1.3;                                :
        :   old_price  =  .99;                               :
        :   quote_price= 9.;                                 :
        :   val = MIN (new_price, old_price, quote_price);   :
        :                                                    :

        val, above, will become .99,  precision returned is (15,5).

MOD   Built-in Function      

        MOD (x,y)

The above returns the remainder from the division of x by y.

General Rules for the MOD Built-in Function:

1) x and y are required parameters which must be arithmetic, logical or relational expressions.

2) x and y may be subscripted and/or pointer qualified.

3) Fractional digits of the remainder will be truncated.

4) If the data types of the parameters are dissimilar, a conversion will be performed according to the 
rules for conversions in arithmetic expressions.

        :   DCL (bundle,newspaper) BIN(31);   :
        :   DCL extra BIN;                    :
        :   bundle = 47;                      :
        :   newspaper = 5;                    :
        :   extra = MOD (bundle,newspaper);   :
        :                                     :

        The above will return, in extra, the value 2 as a remainder.
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ROUND   Built-in Function      

    ROUND(X,Y);

This function rounds the DECIMAL value X to the Yth decimal place by adding 5 to the Y+1 decimal place 
and truncating the result to Y decimal places.

General Rules for the ROUND Built-in Function:

1) The ROUND function may be used anywhere a DECIMAL data type may be used.

2) X may be a DECIMAL variable, literal, constant, or any arithmetic expression whose final result is 
DECIMAL.

3) Y is the place value to round to.  It must be a BINARY literal or constant.

4) Y must be 0 or greater.  A value of 0 causes the DECIMAL to be rounded to an Integer.

5) If X does not contain Y+1 decimal places a warning will be issued, since no actual rounding can 
occur.

        :                                          :
        :   DCL VARIABLE      DEC(7,5);            :
        :   DCL ANSWER        DEC(5,2);            :
        :   VARIABLE = 23.56789;                   :
        :   ANSWER = ROUND(VARIABLE * 0.0625,2)    :
        :                                          :

In the above, ANSWER will have the result of the product of VARIABLE * 0.625 rounded to two (2) 
decimal places.

    Examples:
          DECLARE  A       DEC(11,5);
          DECLARE  B       DEC(11,4);
          DECLARE  C       BIN(31) CONSTANT;
          CONST    C,      3;

     1)        A = ROUND(B,2);
                               MVO   $TEMPDBL(6,R7),B$(5,R7)
                               MVN   $TEMPDBL+5(1,R7),B$+5(R7)
                               AP    $TEMPDBL(6,R7),=XL001'5C'
                               ZAP   $TEMP001(16,R7),$TEMPDBL(6,R7)
                               MP    $TEMP001(16,R7),=XL002'100C'
                               ZAP   A$(6,R7),$TEMP001+10(6,R7)
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     2)        B = ROUND((A*0.625+B)/2,C);
                               ZAP   $TEMP001(9,R7),=XL003'00625F'
                               MP    $TEMP001(9,R7),A$(6,R7)
                               MVC   $TEMPDBL(8,R7),$TEMP001(R7)
                               MVN   $TEMPDBL+7(1,R7),$TEMP001+8(R7)
                               ZAP   $TEMP002(9,R7),B$(6,R7)
                               MP    $TEMP002(9,R7),=XL002'100C'
                               AP    $TEMP002(9,R7),$TEMPDBL(8,R7)
                               MVC   $TEMP003(8,R7),$TEMP002(R7)
                               MVN   $TEMP003+7(1,R7),$TEMP002+8(R7)
                               LA    R1,0002
                               CVD   R1,$TEMP004(R7)
                               ZAP   $TEMP005(16,R7),$TEMP003(8,R7)
                               DP    $TEMP005(16,R7),$TEMP004+2(6,R7)
                               MVC   $TEMP006(8,R7),$TEMP005+2(R7)
                               MVC   $TEMP007(8,R7),$TEMP006(R7)
                               AP    $TEMP007(8,R7),=XL001'5C'
                               MVC   B$(6,R7),$TEMP007+2(R7)

SIGN   Built-in Function      

        SIGN (x)

This function analyzes x and determines its algebraic sign.  If x is greater than zero, the value returned is a 
positive binary one.  If x is zero, zero is returned and if x is less than zero, a negative binary one is returned.

General Rules for the SIGN Built-in Function:

1) x is a required parameter that must be an arithmetic, logical or relational expression.

2) x may be subscripted and/or pointer qualified.

3) x may be of any arithmetic data type (NCS, DEC, BIN) except BIT.

        :   DCL trial_balance DEC(3,2),     :
        :       audit BIN;                  :
        :   trial_balance = -7.43;          :
        :   audit = SIGN (trial_balance);   :
        In the above, audit becomes a minus one (-1).

ALPHA   Built-in Function      

        ALPHA (a)

The ALPHA built-in function is defined by the installation, usually to mean 'find the location of the first 
alphabetic character'. The definition of the function is predicated upon the characteristics of the table 
accessed by the function.  The name of the table accessed by the compiler is a compiler option (See 
Chapter 7, for additional compiler options information.)

The function scans left to right the string of characters provided as the parameter.  It returns a binary value 
equal to the position of the first character encountered  (for which the accessed table indicated  ''stop scan''). 
If the first character in the string meets the criteria, a binary one (1) is returned.  If the scan finds no 
character meeting the criteria, a zero (0) is returned.
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General Rules for the ALPHA Built-in Function:

1) a is a required parameter which may not be an expression, meaning it can not contain an operator.

2) a may be subscripted and/or pointer qualified.

3) a is treated as a ''string'' of characters, i.e., a single character or a series of consecutive characters.

In the following example, assume that the table associated with the ALPHA function is set up to 'stop scan' 
on alphabetic characters (A through Z).

        :   DCL list CHAR(30),        :
        :       val BIN;              :
        :   list = '9300 nw 36 st';   :
        :   val = ALPHA (list);       :
        :                             :

In the above, val becomes a BINARY 6.

NUMERIC   Built-in Function      

        NUMERIC (a)

The NUMERIC built-in function is defined by the installation, usually to mean  'find the location of the first non-
alphabetic character'. The definition of the function is predicated upon the characteristics of the table 
accessed by the function.  The name of the table accessed by the compiler is a compiler option (See 
Chapter 7, for additional compiler options information.)

The function scans left to right the string of characters provided as the parameter.  It returns a binary value 
equal to the position of the first character encountered  (for which the accessed table indicated  ''stop scan''). 
If the first character in the string meets the criteria, a binary one (1) is returned.  If the scan finds no 
character meeting the criteria, a zero (0) is returned.

General Rules for the NUMERIC Built-in Function:

1) a is a required parameter which may not be an expression.

2) a may be subscripted and/or pointer qualified.

3) a is treated as a ''string'' of characters.

In the following example assume that the table associated with the NUMERIC function is set up to 'stop scan' 
on non-alphabetic characters (not A through Z).

        :   DCL cost CHAR(12),       :
        :       val BIN;             :
        :   cost = 'pending test';   :
        :   val = NUMERIC (cost);    :
        :                            :

In the above, val becomes a BINARY 8.
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INDEX   Built-in function      

        INDEX   (a,b   (,o)  )
                       (  )

The INDEX function causes a search of a specified ''string'' (a) for a specified ''string'' (b).  b is compared to 
the first n characters of a, where n is the length of b.  The comparison is repeated every o characters until a 
match is found or the end of string a is encountered.  If the b configuration is found in a, the starting location 
of string b within string a is returned.  If b is not contained within a, then the value returned is a binary zero 
(0). o has a maximum of 69.

General Rules for the INDEX Built-in Function:

1) a and b  are required parameters which must be one of the following: a variable, a BSTR, a CSTR, an 
NSTR, a subscripted variable, a structure, a character-string literal or a BIT-string.  If BSTR, CSTR or 
NSTR built-in functions are used, the 3rd parameter of the BSTR, CSTR or NSTR must be a literal. (See 
number 5.)

2) If a or b is a BIT-string, it must be byte aligned and a byte multiple in length.

3) a and b may be pointer qualified.

4) a and b are treated as ''strings'' of characters.

5) b must be of shorter length (not equal or greater) than a.  In order to be sure that the lengths are 
correct, if BSTR, CSTR or NSTR are used, the length parameter (3rd parameter) of the BSTR, CSTR or 
NSTR must be a literal,

6) o is an optional parameter which, if coded, must be a BINARY literal.

7) If o is not coded, it defaults to one (1).

        :   DCL text CHAR(10),           :
        :       key CHAR(2),             :
        :       val BIN;                 :
        :   text = 'abcgopmlzd';         :
        :   key  = 'pm';                 :
        :   val  = INDEX (text,key);     :
        :   val  = INDEX (text,key,2);   :
        :                                :

The above statement: val = INDEX (text,key); would result in val becoming 6.

The above statement: val = INDEX (text,key,2); would result in val becoming 0.

        :   DCL 1 rcd,                          :
        :         2 odd (2) CHAR (200),         :
        :         2 even (2) CHAR(200);         :
        :   DCL match (3) CHAR(200);            :
        :   DCL flg       BIN (31);             :
        :   flg = INDEX (rcd,match(2),60) ;     :
        :                                       :
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In the above example a structure is searched to find a match with a subscripted variable. Any 
comparison of the second element of match would be to the first element of odd or to the first 
element of even.

SHL   Built-in Function      

        SHL (x, y)

The x parameter is converted to a 32 bit BIT-string, if necessary, and is logically shifted y bits to the left. 
There is no arithmetic evaluation of logically shifted x.  Zeroes are introduced in the vacated bit positions on 
the right.

General Rules for the SHL Built-in Function:

1) x and y are required parameters which must be arithmetic, logical or relational expressions.

2) x and y may be subscripted and/or pointer qualified.

3) If, when converted to BIT-string, x is less than 32 bits in length, zero bits are added on the left.  x 
may be a character, a character-string, an arithmetic or logical expression or a built-in function.

4) If x is a character-string, it must not be greater than 4 bytes in length.

5) y should have a value of 0 through 32.

6) If y is 32, the result will be all zeroes regardless of the value of x.

7) If parameters are of *DEC or *NCS data types, fractional digits will be truncated when the conversion 
to BIT-string takes place.

8) All data types are treated as unsigned BIT-string values.

        :   DCL daw BIN,         :
        :       val BIN;         :
        :   daw = 6;             :
        :   val = SHL (daw,3);   :
        :                        :

        In the above, val becomes a BIT-string 00110000, (value 48.)

SHR   Built-in Function      

         SHR (x, y)

The x parameter is converted to a 32 bit BIT-string, if necessary, and is logically shifted y bits to the right. 
Zeroes are introduced in the vacated logically bit positions on the left.

General Rules for the SHR Built-in Function:

1) x and y  are  required parameters  which  must  be  arithmetic, logical or relational expressions.

2) x and y may be subscripted and/or pointer qualified.

3) If, when converted to BIT-string, x is less than 32 bits in length, zero bits are added on the left.  x 
may be a character, a  character-string,  an  arithmetic  or  logical  expression  or  a built-in function.
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4) If x is a character-string, it must not be greater than 4 bytes in length.

5) y should have a value of 0 through 32.

6) If y is 32, the result will be all zeroes regardless of the value of x.

7) If parameters are of *DEC or *NCS data types, fractional digits will be truncated when the conversion 
to BIT-string takes place.

8) All data types are treated as unsigned BIT-string values.

        :   DCL doe BIN,         :
        :       val BIN;         :
        :   doe = 48;            :
        :   val = SHR (doe,3);   :
        :                        :

        In the above, val becomes a BIT-string 00000110, (value 6.)

BSTR   (pseudo-variable) Built-in Function      

The BSTR, CSTR and NSTR functions can be used to request explicitly that a field is used in a manner that 
may differ from the data declaration.

        BSTR   (a   (,o1   (,o2)   )   )
                    (      (   )   )
                    (              )

The use of BSTR causes a to be treated as a BIT-string, regardless of how it was declared.  o1 specifies the 
first bit position, from the left, to be considered.    If not included, it defaults to one (1).  o2 specifies the 
length of the field, in bits.  If not included, it is assumed to define the rest of field a (from the first bit 
considered to the rightmost bit, inclusive, in the field).

General Rules for the BSTR Built-in Function:

1) a is a required parameter which must be a constant, a variable or a structure.

2) a cannot be subscripted but may be pointer qualified.

3) o1 and o2 are optional parameters that must be BINARY literals.

4) If o1 is greater than the declared size of a, then o2 must be included.

5) If o1 is included and o2 is omitted, then o1 must be less than or equal to the declared (default) size of 
a.

6) If o1 is omitted, o2 must also be omitted.

7) o2, if included, must have a value of 1 through 32.

        :   DCL cub CHAR(2),        :
        :       num BIT(4),         :
        :       val BIT(2);         :
        :   cub = 'sa';             :
        :   num = BSTR (cub,4,4);   :
        :   val = BSTR (num,2,2);   :
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        :                           :

The above statement: num = BSTR (cub,4,4);  would result in num becoming a BIT-string 0001.

The above statement: val = BSTR (num,2,2);  would result in val  becoming  a BIT-string 00.

In the above example, the use of BSTR to isolate bits of a field is demonstrated. The following example 
demonstrates the use of BSTR to treat a field as if it had the BIT attribute.

       :   BSTR (EBW000,1,8) = '80'x;   :
       :                                :

In this example the declared data-type of EBW000, which is CHAR(1), is being temporarily overridden. 
Since a hex 80 is to be moved into EBW000, EBW000 must be given a data-type compatible with the 
assignment.

CSTR   (pseudo-variable) Built-in Function      

        CSTR   (a   (,e   (,o )   )   )
                    (,v1  (,v2)   )

The use of CSTR causes a to be treated as a character-string, regardless of how it was declared.  e or v1 
specifies the first byte position from the left to be considered.  If not included, it defaults to one (1), (the first 
byte of a).  o or v2 specifies the length of the field, in bytes.  If not included, it is assumed to define the rest 
of field a (from the first byte considered, to the rightmost byte, inclusive, in the field).

General Rules for the CSTR Built-in Function:

1) a is a required parameter which must be a constant, a variable or a structure.

2) a cannot be subscripted but may be pointer qualified.

3) e must be a literal if o is not included.  If o is included, e may not be subscripted or may not be a 
pseudo-variable.  It may be a literal, a constant, a variable, a structure, an expression or a function 
call.

4) o is an optional parameter that must be a BINARY literal.

5) If e is specified and o is omitted, e must be less than or equal to the declared (default) size of a. (If o 
is not omitted, there is no restriction on the size of e.)

6) If e is omitted, o must also be omitted.

7) o, if included, must have a value of 1 through 4087.

        :   DCL suffix BIT(16),             :
        :       val CHAR(2);                :
        :   suffix = '0110010111100010'B;   :
        :   val = CSTR (suffix,2);          :
        :   CSTR(val,2) = CSTR (val,1,1);   :
        :                                   :

The above statement: val = CSTR (suffix,2); would result in val becoming the character-
string 'S ' ('S' and a blank).

The above statement: CSTR(val,2) = CSTR(val,1,1); would result in val becoming the 
character-string 'SS'.
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8) v1 is a variable starting point that must be declared as BINARY.

9) v2 is a variable length that must be declared as BINARY.

10) v1 and v2 can only be used in assignment statements.

11) v2 can only be used on the right side of assignment statements.

12) EXCEPTION: Within an IF statement V1 and V2 may be used only on the left side of the equal sign. 
Nesting with other built-in functions is not allowed.

     EXAMPLES:

        :   INIT          = CSTR(NAME,STPNT,VARLTH);     :
        :   CSTR(name,10) = CSTR(INIT,STPNT,VARLTH);     :
        :   CSTR(name,10) = CSTR(INIT,4,VARLTH);         :

NSTR   (pseudo-variable) Built-in Function      

        NSTR   (a   (,e   (,o)   )   )
                    (     (  )   )
                    (            )

The use of NSTR causes a to be treated as a Numeric character-string with an implied decimal point to the 
right of the field, regardless of how it was declared.  The function disregards the sign. e specifies the first 
byte  position, from the left, to be considered:  if not included, it defaults to one (1).  o specifies the length of 
the field, in bytes.   If o is not included, a default value is assumed that defines the rest of field (from the first 
byte considered, to the rightmost byte, inclusive, in the field).

General Rules for the NSTR Built-in Function:

1) a is a required parameter which must be a constant, a variable or a structure.

2) a cannot be subscripted but may be pointer qualified.

3) e is an optional parameter and represents the most general of operands which can be a literal, a 
constant, a variable, a structure, an array element, an expression or a function call.  EXCEPTION: if o 
is omitted, e must be a literal.  The format of the expression e must conform to the rules governing 
subscripts (See Chapter 4, Subscripts), with the exception that variables may not be pseudo-
variables.

4) o is an optional parameter that must be a BINARY literal.

5) If e is specified and o is omitted, e must be less than or equal to the declared (default) size of a. (If o 
is not omitted, there is no restriction on the size of e.)

6) If e is omitted, o must also be omitted.

7) o, if included, must have a value of 1 through 256.
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Example:

        :   DCL  cur CHAR (6),      :
        :        val PIC  '999';    :
        :   cur = '123456';         :
        :   val = NSTR(cur,3,3);    :
        :                           :

As a result, val would become 345.  The internal representation of val (in hexadecimal notation) would be 
F3F4F5.

        :   DCL amt CHAR(5);       :
        :   DCL decamt DEC(5,2);   :
        :   decamt = NSTR (amt);   :

In the above example, unless amt contains data in zoned DECIMAL format, the statement

            decamt = NSTR (amt);

will not be meaningful at execution time. The execution of the statement will be as in *DEC = *NCS 
assignment statements, i.e., the data in amt will be packed first, then the decimal points will be aligned, and 
the data moved.  If amt contained the hex value F0F0F2F4F1, then the result of the assignment would be 
that decamt contains 00241F. The following is probably not meaningful:

        :   DCL bitamt BIT(16);    :
        :   DCL decamt DEC(5,2);   :
        :   bitamt = '4e60'x;      :
        :   decamt = NSTR (amt);   :

VSTR   Built-in Function      

        VSTR   (a, e1, e2)

The VSTR function differs from the pseudo-variables BSTR, CSTR and NSTR in that the size of the field to be 
considered may be variable.  In other words, parameter e2 need not be a literal. Additionally, all the 
parameters of the VSTR function are required.  There are no defaults, as in the pseudo-variable functions.

A VSTR function specification must appear, by itself, as the sending field  (right hand side) of an Assignment 
statement.

The field a will be treated as the data type it was originally declared when the rules of assignment are 
applied.   However, all calculations are performed on a byte basis, and the assignment is performed as a 
straight byte for byte move without data conversions of any kind. e1 specifies the first position, from the left, 
to be considered. e2 specifies the length of the field, in bytes.

The VSTR function should only be used when the size of the move is variable and no data conversion is 
required.  Use of the pseudo-variable functions results in the generation of more efficient BAL code when the 
size of the move is not variable.
        _                  _
        | element variable |  =   VSTR function  ;
        | pseudo-variable  |
        | structure        |
        | array element    |
        -                  -
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        :    DCL msg CHAR(150),        :
        :        pge BIN,              :
        :        val CHAR(200);        :
        :    pge = 125;                :
        :    val = VSTR(msg,1,pge);    :

        In the above example, the leftmost 125 characters of msg are moved into the leftmost 125 bytes of val. 
The rest of val is not affected.

General Rules for the VSTR Built-in Function:

1) a is a required parameter that may be any data type: a literal, a constant, a variable, a structure, an 
expression or a function call.

2) a cannot be subscripted, but may be pointer qualified.

3) e1 is a required parameter that must be an expression and may be subscripted. It should yield a 
result whose value is 0 through 256.  The expression must conform to the rules governing subscripts 
(See Chapter 4, Subscripts), with the exception that a variable may not be a pseudo-variable.

4) e2 is a required parameter and must be a literal, a variable that may be subscripted or an expression.

5) e2 should yield a value of 0 through 256.

6) If the value of e2 is negative, the result is unpredictable.

7) If the value of e2 is zero, no data will be moved.

8) Overflow will result if the receiving field is shorter than the length of the move specified by e2.

9) The receiving field will not be filled with blanks if it is larger than the sending (VSTR) field.

        :   DCL header CHAR(10),             :
        :       length BIN,                  :
        :       slot2 CHAR(10),              :
        :       slot3 CHAR(10);              :
        :   slot2 = VSTR(header,1,length);   :
        :                                    :

       In the above example, if the value of length is greater than 10, then field slot3 will be overlaid during 
execution.  There are two ways to avoid this:

A) An additional field may be declared following slot2 so that any overflow will not overlay slot3.

B) Rewrite the assignment as follows:

        :   slot2 = VSTR(header,1,MIN(length,10));   :
        :                                            :

This way, if length is greater than 10 it will not be used and field slot3 will not be overlaid.

Other tests may be necessary such as preventing a zero or negative value from being used in VSTR as the 
e2 parameter.  If such a number is used, it could result in a very long move that would overlay areas 
following the receiving field.
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ADDR   Built-in Function      

        ADDR (a)

This function returns a pointer to the data item a. (Refer to Chapter 4 for a description of pointers).

General Rules for the ADDR Built-in Function:

1) a must be an identifier, either an element variable or a constant. It may be subscripted and/or pointer 
qualified.

2) a may not be an expression.

        :   %INCLUDEAF eboeb;              :
        :   DCL 1 input BASED (inptr),     :
        :         2 task CHAR(30),         :
        :         2 charter CHAR(30),      :
        :         2 flds (20) BIN(15);     :
        :   DCL aptr POINTER;              :
        :   GETCC d2,l1;                   :
        :   inptr = ce1cr1;                :
        :   aptr = ADDR (flds(1));         :
        :                                  :

The above will result in the address of flds being stored into the POINTER called aptr.

Notes:

1) If the address of a field is to be obtained using relative addressing, the following method is 
satisfactory:

        :   fldptr = ADDR (flds) + displacement;    :
        :                                           :

2) This function may not be used to obtain the address of a statement label, as in:

        :   mylab: sal = wge + bon;   :
        :          ...                :
        :   val = ADDR (mylab);       :
        :          ...                :

3) It (and all other non-pseudo variable built-in functions) also cannot be used for register value storing 
in a TPF macro statement or a user macro statement. The following is not allowed:

        :   ENTRC Z009(#RG1=ADDR(fld));   :
        :                                 :

An alternative coding method is as follows:

        :   otherfld = ADDR(fld);        :
        :   ENTRC Z009(#RG1=otherfld);   :
        :                                :

CASE   Built-in Function      

        CASE (x,y)

The above causes a branch based on the value of x.
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General Rules for the CASE Built-in Function:

1) CASE may only be used in an IF - THEN DO  statement.

2) x must be a BINARY variable.

3) y must be an BINARY literal.

4) The  IF - THEN DO  statement must be followed  by at least a number of either GOTO statements; or 
CALL and/or ENTER statements indicated by parameter y.

5) If x is less then 1 or x is greater than parameter y, a branch to the last GOTO, CALL or ENTER routine 
will occur.

6) GOTO statements and CALL statements may NOT be mixed in a single CASE expression.

7) GOTO statements and ENTER statements may NOT be mixed in a single CASE expression.

8) CALL and ENTER may be freely mixed within a single CASE expression.

9) ENTRC is ONLY valid as the last statement in CASE as indicated by y.  ENTNC and ENTDC may be 
used anywhere within CASE.

10) Parameters may NOT be passed in the called procedures or in ENTER(s) within a CASE expression. 
CALL PROCEDURE1(B);  or  ENTNC (#rg1=var);  will generate an error message.

        :   DCL (CHOICE)   BIN(31);           :
        :   CHOICE = 3;                       :
        :   IF CASE(CHOICE,5) THEN DO;        :
        :       GOTO ROUTINE1;                :
        :       GOTO ROUTINE2;                :
        :       GOTO ROUTINE3;                :
        :       GOTO ROUTINE4;                :
        :       GOTO ROUTINE5;                :
        :    END;                             :
        :                                     :

        The above will cause a branch to ROUTINE3.

        :   DCL (CHOICE)        BIN(31);      :
        :   CHOICE = 3;                       :
        :   IF CASE(CHOICE,5) THEN DO;        :
        :       CALL ROUTINE1;                :
        :       CALL ROUTINE2;                :
        :       CALL ROUTINE3;                :
        :       CALL ROUTINE4;                :
        :       CALL ROUTINE5;                :
        :    END;                             :
        :                                     :

The above will cause a branch to the CALL to ROUTINE3 and on returning from ROUTINE3 will branch to the 
END of the CASE statement.
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        :   DCL (CHOICE)        BIN(31);      :
        :   CHOICE = 3;                       :
        :   IF CASE(CHOICE,5) THEN DO;        :
        :       ENTDC  PROG1;                 :
        :       CALL   ROUTINE2;              :
        :       ENTNC  PROG3;                 :
        :       CALL   ROUTINE4;              :
        :       ENTRC  PROG5;                 :
        :    END;                             :
        :                                     :

The above will cause a branch to the ENTNC to PROG3.  Since this is a no return enter, no branch to the 
END of the CASE statement is necessary.

  Examples:
  _________

          DECLARE  (A,B)   BIN(31);
          DECLARE  CHOICE  BIN(31);
  1)  IF CASE(A,6) THEN DO;
                     L     R15,A$(R7)
                     LTR   R15,R15
                     BNH   *+12
                     CL    R15,=XL004'00000006'
                     BNH   *+8
                     LA    R15,0006
                     BCTR  R15,R0
                     SLL   R15,2
                     B     *+4(R15)
         GOTO ROUTINE1;
                     B     ROUTINE1
         GOTO ROUTINE2;
                     B     ROUTINE2
         GOTO ROUTINE3;
                     B     ROUTINE3
         GOTO ROUTINE4;
                     B     ROUTINE4
         GOTO ROUTINE5;
                     B     ROUTINE5
         GOTO ERROR_RT;
                     B     ERROR$RT
      END;

 2)   IF CASE(A,5) THEN DO;
                     L     R15,A$(R7)
                     LTR   R15,R15
                     BNH   *+12
                     CL    R15,=XL004'00000005'
                     BNH   *+8
                     LA    R15,0005
                     BCTR  R15,R0
                     SLL   R15,3
                     B     *+4(R15)
         CALL ROUTINE1;
                     BAS   R15,ROUTINE1
                     B     $GEN0001
         CALL ROUTINE2;
                     BAS   R15,ROUTINE2
                     B     $GEN0001
         CALL ROUTINE3;
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                     BAS   R15,ROUTINE3
                     B     $GEN0001
         CALL ROUTINE4;
                     BAS   R15,ROUTINE4
                     B     $GEN0001
         CALL ROUTINE5;
                     BAS   R15,ROUTINE5
    END;
           $GEN0001  DS    0H

 3)   IF CASE(CHOICE,5) THEN DO;
                    L     R15,CHOICE$(R7)
                    LTR   R15,R15
                    BNH   *+12
                    CL    R15,=XL004'00000005'
                    BNH   *+8
                    LA    R15,0005
                    BCTR  R15,R0
                    SLL   R15,3
                    B     *+4(R15)
         ENTDC  PROG1;
                    ENTDC PROG1
         CALL   ROUTINE2;
                    BAS   R15,ROUTINE2
                    B     $GEN0001
         ENTNC  PROG3;
                    ENTNC PROG3
         CALL   ROUTINE4;
                    BAS   R15,ROUTINE4
                    B     $GEN0001
         ENTRC  PROG5;
                    ENTRC PROG5
      END;
                    $GEN0001  DS    0H

         EXITC;
                    EXITC

       ROUTINE2: PROC;
          ROUTINE2  DS    0H
                    ST    R15,$SAV0001(R7)
          ENTRC PROG2 (#R1=A,B=#R2);
                    L     R1,A$(R7)
                    ENTRC PROG2
                    ST    R2,B$(R7)
          RETURN;
                    L     R14,$SAV0001(R7)
                    BR    R14
       END ROUTINE2;

The table in figure 5.1 depicts the relationships between the (previously discussed) built-in functions if 
nesting them is under consideration.  Nesting, here, refers to the use of a function specification in its entirety, 
as a parameter of another function.   Outer functions are read by row, inner functions are read by column.
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LSTR   Built-in Function      

              a  =  LSTR     (b  (,c))

This function returns the length of a data field.

General Rules for the LSTR Built-in Function:

1) a is a receiving field which must be declared as either BINARY or BIT.

2) b is a data field, a required parameter that must be a variable or an array. b may NOT be declared 
as BIT.

3) c is an optional parameter which can be a variable or a constant, and is used as follows:

• Starting point, which may be either a variable or a constant, if b is a structure. If the variable 
is an identifier in the structure of the data field then it represents the displacement from where 
the calculation of the length is made. If the variable is not in the structure of the data field then 
its content will used to calculate the length.

• Index, which must be a constant.  If b is an array and:
- at level 01 then the default is the size of the entire array. 
- at a sub-structure then the default is the size of an entry of the 
array.

• If b is a field of a sub-structure in an array then the optional parameter must be omitted.

 Example:
    :         DECLARE (J,K)        BIN;                       :
    :         DECLARE 01 GAME (4),                            :
    :                 02 NAME      CHARACTER (10),            :
    :                 02 ADDRESS   CHARACTER (10);            :
    :         DECLARE 01 ONPUT,                               :
    :                 02 ON1,                                 :
    :                 03 ON2 (3),                             :
    :                 04 ONE       CHARACTER (4),             :
    :                 04 TWO       CHARACTER (8),             :
    :                 03 ON3       CHARACTER (9);             :
    :         DECLARE 01 KAME,                                :
    :                 02 KAM       CHARACTER ( 4),            :
    :                 02 LAM       CHARACTER ( 6),            :
    :                 02 ADDR      CHARACTER (10);            :
    :  /*  data field is a structure                   */     :
    :         K     = LSTR (KAME);                            :
    :                 LA    R15,0020                          :
    :                 STH   R15,K$(R7)                        :
    :  /*  data field is a substructure                */     :
    :         K     = LSTR (ON1);                             :
    :                 LA    R15,0045                          :
    :                 STH   R15,K$(R7)                        :
    :  /*  and c is a constant                         */     :
    :         K     = LSTR (KAME,2);                          :
    :                 LA    R15,0018                          :
    :                 STH   R15,K$(R7)                        :
    :  /*  variable c is in a structure of data field    */   :
    :         K     = LSTR (KAME,LAM);                        :
    :                 LA    R15,0016                          :
    :                 STH   R15,K$(R7)                        :
    :  /*  variable c is not in a structure of data field*/   :
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    :         K     = LSTR (KAME,J);                          :
    :                 LA    R15,0020                          :
    :                 LH    R14,$J(R7)                        :
    :                 CR    R15,R14                           :
    :                 BL    $GEN0001                          :
    :                 SR    R15,R14                           :
    :                 STH   R15,$K(R7)                        :
    :                 $GEN0001   DS  0H                       :
    :  /*  Default is a size of an entire array        */     :
    :  /*  because GAME is a level 01                  */     :
    :         K     = LSTR (GAME);                            :
    :                 LA    R15,0080                          :
    :                 STH   R15,$K(R7)                        :
    :  /*  level is not 01 then the default is the     */     :
    :  /*  length of an entry                          */     :
    :         K     = LSTR (ON2);                             :
    :                 LA    R15,0012                          :
    :                 STH   R15,$K(R7)                        :
    :  /*  length of an entry in an array.             */     :
    :         K     = LSTR (GAME,1);                          :
    :                 LA    R15,0020                          :
    :                 STH   R15,$K(R7)                        :
    :  /*  length of an entry in an array, same as above*/    :
    :  /*  a field of a sub-structure in an array       */    :
    :         K     = LSTR (NAME)                             :
    :                 LA    R15,0010                          :
    :                 STH   R15,$K(R7)                        :
    :         K     = LSTR (ONE);                             :
    :                 LA    R15,0004                          :
    :                 STH   R15,$K(R7)                        :

BSTM   Built-in Function      

             a   =  BSTM     (b , c)

This function returns a condition code.

General Rules for the BSTM Built-in Function:

1) a is the result field, which must be declared as BIN or BIT, and will receive a condition code 
setting as follows:

                    0     if all the tested bits are off (or zero).
                    1     if some of the tested bits are on, some off (or mixed).
                    3     if all the tested bits are on (or one).

2) b, the tested identifier, is a required parameter that must be a variable.  If the length of the 
tested identifier is more than a byte, then the first byte is compared as the default. The 
Programmer may use the ADDR built-in function to allocate a particular byte as shown in 
example 3 below.

3) c, the immediate byte, is used as a mask for selecting the bits to be tested. 
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Example:
               DECLARE B            DEC(7,2),
                      C            CHAR(4),
                      J            BIN(31);

 1)   FLAG = BSTM((ADDR(B)+2),'10010111'B);
                       LA    R15,B$(R7)
                       A     R15,=XL004'00000002'
                       SR    R14,R14
                       TM    0(R15),X'97'
                       BZ    $GEN0011
                       LA    R14,1
                       BM    $GEN0011
                       LA    R14,3
             $GEN00011 DS    0H
                       STH   R14,FLAG$(R7)

 2)    FLAG = BSTM(C,'100101'B);
                       SR    R15,R15
                       TM    C$(R7),X'25'
                       BZ    $GEN0007
                       LA    R15,1
                       BM    $GEN0007
                       LA    R15,3
             $GEN0007  DS    0H
                       STH   R14,FLAG$(R7)
 
3)  FLAG = BSTM((ADDR(C)+3),'00001101'B);
                       LA    R15,C$(R7)
                       A     R15,=XL004'00000003'
                       SR    R14,R14
                       TM    0(R15),X'0D'
                       BZ    $GEN0012
                       LA    R14,1
                       BM    $GEN0012
                       LA    R14,3
             $GEN0012  DS    0H
                       STH   R14,FLAG$(R7)

 4)  IF BSTM(J,'100101'B) = 1 THEN GO TO NEXT0001;
                       SR    R15,R15
                       TM    J$(R7),X'25'
                       BZ    $GEN0013
                       LA    R15,1
                       BM    $GEN0013
                       LA    R15,3
                      $GEN0013  DS    0H
                       C     R15,=XL004'00000001'
                       BE    NEXT0001

NOTE:  If the BSTM is used in an assignment statement, the result field may be tested in a separate IF 
statement. If the BSTM is used in an IF statement, and the result will be used in a test evaluation, see 
example 4.
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_____________________________________________________________________________
|.                                 N                                         |
| .                                U                                         |
|o . i                         A   M   I                                    R|
| u . n                    S   L   E   N          B   C   N   V   A   B  C  O|
|  t . n   A   M   M   M   I   P   R   D   S  S   S   S   S   S   D   S  A  U|
|   e . e  B   A   I   O   G   H   I   E   H  H   T   T   T   T   D   T  S  N|
|    r . r S   X   N   D   N   A   C   X   L  R   R   R   R   R   R   M  E  D|
| ----- . -------------------------------------------------------------------|
|       |                                                                    |
|   ABS |  1   1   1   1   1   1   1   1   1  1   1   -   1   -   1   -  -  1|
|       |                                                                    |
|   MAX |  1   1   1   1   1   1   1   1   1  1   1   -   1   -   1   -  -  1|
|       |                                                                    |
|   MIN |  1   1   1   1   1   1   1   1   1  1   1   -   1   -   1   -  -  1|
|       |                                                                    |
|   MOD |  1   1   1   1   1   1   1   1   1  1   1   -   1   -   1   -  -  1|
|       |                                                                    |
|  SIGN |  1   1   1   1   1   1   1   1   1  1   -   -   1   -   1   -  -  1|
|       |                                                                    |
| ALPHA |  -   -   -   -   -   -   -   -   -  -   1   1   1   -   -   -  -  -|
|       |                                                                    |
|NUMERIC|  -   -   -   -   -   -   -   -   -  -   1   1   1   -   -   -  -  -|
|       |                                                                    |
| INDEX |  -   -   -   -   -   -   -   -   -  -   2   2   2   -   -   -  -  -|
|       |                                         3   3   3                  |
|       |                                                                    |
|   SHL |  1   1   1   1   1   1   1   1   1  1   1   2   1   -   1   -  -  -|
|       |                                                                    |
|   SHR |  1   1   1   1   1   1   1   1   1  1   1   2   1   -   1   -  -  -|
|       |                                                                    |
|  BSTR |  -   -   -   -   -   -   -   -   -  -   -   -   -   -   -   -  -  -|
|       |                                                                    |
|  CSTR |  -   -   -   -   -   -   -   -   -  -   -   -   -   -   -   -  -  -|
|       |                                                                    |
|  NSTR |  -   -   -   -   -   -   -   -   -  -   -   -   -   -   -   -  -  -|
|       |                                                                    |
|  VSTR |  4   4   4   4   4   4   4   4   4  4   4   -   4   -   4   -  -  -|
|       |                                                                    |
|  ADDR |  -   -   -   -   -   -   -   -   -  -   1   1   1   -   -   -  -  -|
|       |                                                                    |
|  LSTR |  -   -   -   -   -   -   -   -   -  -   -   -   -   -   -   -  -  -|
|       |                                                                   -|
|  BSTM |  -   -   -   -   -   -   -   -   -  -   -   -   -   -   2   -  -  -|
|       |                                                                   -|
|  CASE |  -   -   -   -   -   -   -   -   -  -   -   -   -   -   -   -  -  -|
|       |                                                                    |
| ROUND |  1   1   1   1   -   -   -   -   -  -   -   -   -   -   -   -  -  1|
|       |                                                                    |
|      Key:                                                                  |
|          Dash indicates illegal combination of data types.                 |
|          1  -  Permitted.                                                  |
|                (As any parameter, if function accepts more than one.)      |
|          2  -  Permitted as first parameter.                               |
|          3  -  Permitted as second parameter.                              |
|          4  -  Permitted as third parameter.                               |
Figure 5.1 Nesting of Built-in Functions.
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PROGRAMMER-DECLARED FUNCTIONS  

A  programmer  may  specify  that an identifier denote a programmer-declared function by coding the 
identifier in a DECLARE statement with the attribute FUNCTION.

General Format:  
        _         _
        | DCL     |  identifier   FUNCTION   ;
        | DECLARE |
        -         -

        :   DCL  sqroot  FUNCTION;   :
        :                            :

The programmer may then code, elsewhere in his program, a PROCEDURE statement using this identifier as 
the PROCEDURE label:

        :   sqroot: PROC (a);   :
        :                       :

The PROCEDURE statement contains a list for all parameters that may be passed to the programmer-
declared function by the invocation.

The programmer terminates the declared function logically with a parameterized RETURN statement and 
then physically with an END statement.

An example of the use of a programmer-declared function:

        :   DCL      sqroot FUNCTION;         :
        :            ...                      :
        :            result = sqroot(item);   :
        :            ...                      :
        :   sqroot:  PROC(invalue);           :
        :            ...                      :
        :            RETURN(outvalue);        :
        :            END;                     :
        :            ...                      :

In this example the function sqroot is invoked to compute the square root of item.

General Rules for Programmer-declared Functions

1) There is no restriction on the number of parameters that may be passed to a programmer-declared 
function.  However, at least one parameter must be specified when the function is invoked.

2) A parameter may be one of the following:

• variable
• structure

3) A parameter may not be subscripted nor pointer qualified.

4) Normal exit is through one RETURN statement with one mandatory parameter, enclosed in 
parentheses, coded after it.  It is possible to exit by use of a GOTO statement, but the value computed 
in the function will be lost, and the execution of the statement that contained the corresponding 
function invocation reference is discontinued.
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5) Programmer-declared functions may be invoked by stand-alone sending fields in assignment 
statements, or by operands in expressions of any type.

6) Programmer-declared functions are invoked by coding the function name with the parameters to be 
passed, enclosed in parentheses, immediately following.

7) A maximum of 32 programmer-declared functions are permitted in a program.

8) A programmer-declared function may refer to all data names in the program without giving separate 
data declarations.

9) Entry to a  programmer-declared  function  does  not  cause allocation of another block of 
AUTOMATIC storage.

10) The (mandatory) value returned is in a register. If the RETURN statement parameter is an arithmetic 
data type other than BINARY, a conversion to BINARY will take place and data may be lost.

11) The  END  statement  terminating the  function  may not have an operand following it.

PROCEDURES  

A PROCEDURE is a group of statements headed by a PROCEDURE statement and terminated by an end 
statement. There are two types of procedures: Internal and External.  (Programmer-declared functions are 
headed by a PROCEDURE statement and terminated by an END statement, however, programmer-declared 
functions are classified as functions rather than procedures).

General Format of   PROCEDURE   statements:      

    For Internal Procedures:
                _           _
        label:  | PROC      |  ( ( parameter list ) )  ;
                | PROCEDURE |  (                    )
                -           -  (                    )

    For External Procedures:
                _           _
        label:  | PROC      |  ;
                | PROCEDURE |
                -           -

NOTE: Each parameter may be an unsubscripted variable or a structure name, but may not be a pseudo-
variable.
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Internal Procedures  

Optional internal procedures may be coded within the external procedure.  Each one must have a 
PROCEDURE and END statement, just as external procedures.  A list of parameters may be coded in the 
PROCEDURE statement heading the internal PROCEDURE.

General Format of the PROC statement:
                   _           _
 intrnl_proc_lbl:  | PROC      |  (  (arg1 (,arg2,...argn)  )  )  ;
                   | PROCEDURE |  (                            )
                   -           -  (                            )

The logical end of an internal PROCEDURE is denoted by a RETURN statement.

General Format of the RETURN statement:

                   RETURN  ;

The physical end is denoted by an END statement.

General Format of the END statement:

                   END  ( internal_proc_label )  ;
                        (                     )

Example of an internal procedure:

      intproc1:  PROC(pay,rate,date) ;
                 ...
                 RETURN ;
                 END ;

Upon execution of a RETURN statement, control will be transferred to the statement following the CALL 
statement that invoked the internal PROCEDURE.

An internal PROCEDURE is invoked by coding the label prefixing its PROCEDURE statement in a CALL 
statement.  If a list of corresponding parameters is to be passed, it must be enclosed in parentheses 
immediately following the coded label.  The CALL and PROCEDURE parameters must have similar or identical 
data types,  that is:

         CALL PARAMETER    |    PROCEDURE PARAMETER
         ------------------|-----------------------
         CHAR              |    CHAR
         BIN/DEC/BIT       |    BIN/DEC/BIT
         LAB               |    LAB

Format of the CALL statement:

    CALL  internal_proc_label  (  (arg1 (,arg2,...argm)  )  )  ;
                               (                            )

Example of a CALL statement:

                 CALL intproc1( pay2,rate,date2) ;

General Rules for Internal Procedures:

1) An internal PROCEDURE may invoke another internal PROCEDURE.
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2) An internal PROCEDURE may not be recursive, i.e., should not invoke itself, directly or indirectly.

3) The compiler does not generate a branch around an internal PROCEDURE; it has to be placed outside 
the logic flow of the main program.

4) There may be more than one RETURN statement per internal PROCEDURE.

5) Exit from an internal PROCEDURE should be through the use of a RETURN statement.

6) The RETURN statement logically ending an internal PROCEDURE may not have a parameter coded 
with it.

7) An internal PROCEDURE can only be referenced through a CALL statement.

8) Entry to an internal PROCEDURE does not cause allocation of another AUTOMATIC storage block.

9) An internal PROCEDURE may refer to all data names in the program without giving separate data 
declarations.

10) A maximum of 50 internal procedures may be coded in a program.

11) An internal PROCEDURE may not be physically nested within another in the source program, 
although an internal PROCEDURE may contain CALL’s to other internal procedures in the program.

12) Each internal PROCEDURE must have a corresponding END statement.

13) Parameters in the internal PROCEDURE should be short to conserve storage and increase program 
efficiency. 

14) The parameter for a CALL of an internal PROCEDURE statement can be used to develop values, 
unlike the parameter of the PROCEDURE statement that merely specifies a field into which the value is 
placed.

The parameters of the PROCEDURE are limited to structured variables that may not be signed, subscripted or 
pointer-qualified.  The parameters of the PROCEDURE CALL have a less limited format and may be

• structured, arrayed, signed, subscripted, concatenated, or pointer-qualified
• variables,  constants, literals, built-in functions, pseudo-variables, or programmer-declared 
functions
• arithmetic,  relational,  or logical expressions

They may NOT be system-equate names.

It is a good idea to use pointers when passing large fields, rather than the fields themselves.  This can be 
illustrated by the following:

        :   /*  poor method  */      :
        :   DCL xstring CHAR(150);   :
        :   DCL ystring CHAR(150);   :
        :   CALL subr (xstring);     :
        :        ...                 :
        :   subr: PROC (ystring);    :
        :        ...                 :
        :   RETURN;                  :
        :   END subr;                :
        :                            :
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This requires 150 characters for ystring and will result in a long move for each execution of the CALL.  An 
alternate method would be:

        :   /*  better method  */              :
        :   DCL xstring CHAR(150);             :
        :   DCL ystring CHAR(150) BASED (p);   :
        :   CALL subr (ADDR(xstring));         :
        :        ...                           :
        :   subr: PROC (p);                    :
        :        ...                           :
        :   RETURN;                            :
        :   END subr;                          :
        :                                      :

This results in the address of xstring being stored in p.  subr may now reference  ystring.    It will, in 
fact, be referencing xstring through the pointer p.

External Procedures  

The PROCEDURE statement must be the first physical statement in the program.  The entire program 
constitutes an external procedure.  The program name serves as the label on the PROCEDURE statement for 
the external procedure.  This label should conform to local programming standards for program names. 
External procedures are activated in the same manner as any other program segment in TPF, that is, 
through the use of an enter-type macro.

The external PROCEDURE is physically terminated by an END statement (See End Statement, this chapter) 
Parameters can be passed to the external PROCEDURE by the use of register-loading statements coded in 
conjunction with the invoking ENTER-type macro.  The START statement must be used in the external 
PROCEDURE receiving the parameters to share the values passed in the registers.  The optional parameter 
list following the PROCEDURE statement, as illustrated at the beginning of this section, is to be used only with 
internal procedures.  If parameters are being passed via registers to the external PROCEDURE, the START 
statement (See START Statement, this chapter) should be the first executable statement in the program, 
following the PROCEDURE statement.  DECLARE statements are non-executable and may, therefore, 
precede the START statement, if desired.  External procedures may invoke other external procedures or 
Assembler Language programs in the system by the use of an ENTER-type macro.  There is no restriction 
placed upon activating an Assembler Language program from a SABRETALK program or vice versa.

MACROS  

Macros (names of macro requests) can be classified as:

A) TPF macros (supplied by IBM).
B) SABRETALK Macros (START, GLOBX, etc.).
C) Application macros (CSERA, TDLYC, etc.).
D) Special macros (TPFDF, ETC.)
E) User macros.

The TPF system contains a set of macros that, at execution, handle work such as:

• Main storage management.
• Input / output functions.
• Queuing of work to be done.
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Most of these macros are coded in the same way under SABRETALK and under TPF.  However, macros 
which presume that parameters are set up in registers, or will return control with information in registers, 
must be coded as part of a macro statement that will indicate the corresponding identifiers in the 
SABRETALK program.  Parameters may be passed in any register allocated for applications under TPF. 
They may be referred to by number (0, 1, 2, R0, R1, R2, etc) or by the TPF system equates (RAC, RG1, 
RGA, etc.).  Parameters to be passed to registers are coded first, followed by parameters received from 
registers.

It should be noted that the contents of the macro table and the status of every macro, is determined by each 
installation.  The table is established by the user when the Compiler system is installed.  Thereafter, it is 
maintained via the SABRETALK utility UPDATMAC.  Programmers should be provided with a list of macros 
that are supported by the Compiler at their work site.

General Format of Macro Statements:  

To Load Registers:

  macro (arg1,arg2,...,arg20) (optional register loading, )  ;
        (                   ) (storing: see Section 12.5.1)
        (                   ) (                           )

    (where arg = macro argument)

Each argument will be an identifier. One argument may specify a statement label to be used as an error-out 
address.

        :    ENTRC program_name(#R0=parm_1,#R3=parm_2,     :
        :                       #R4=parm_3,                :
        :                       parm_4=#R2,parm_5=#5) ;    :
        :                                                  :

This example shows how a macro statement is used to enter a TPF program segment that expects 
parameters in #R0, #R3 and #R4, and that returns parameters in #R2 and #R5. Although SABRETALK 
provides the facility, parameters need not be passed in registers; they may also be passed in the ECB or in 
blocks attached to the ECB.

General Rules for Macro Statements  

1) Any macro statement that passes parameters through the ECB (Entry Control Block) can have these 
parameters set up by the program before the execution of the macro statement. (The ADDR built-in 
function is unacceptable as a macro parameter).

An example:

        :   level = ADDR(ce1fa2);      :
        :   ENTRC FACE(#R0=ordno,      :
        :              #R6=#ss1ri,     :
        :              #R7=level,      :
        :              rtncod=#R0);    :
        :                              :

2) All parameters passed via register loading on the macro statement are coded first, followed by all 
parameters being stored on the macro statement.

3) A maximum of twenty (20) macro arguments is allowed.
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4) There is no limit to the number of parameters passed (or loaded into registers) and/or returned (or 
stored from registers). Non-pseudo variable built-in functions cannot be used for obtaining register 
values within a TPF macro statement or a user macro statement. The following is not allowed:

        :   ENTRC Z009(#R1=ADDR(fld));    :
        :                                 :

An alternative coding method is as follows:

        :   otherfld = ADDR(fld);        :
        :   ENTRC Z009(#R1=otherfld);    :
        :                                :

5) SABRETALK does not support the GLOBZ macro.  When referencing global fields it is necessary to 
code the GLOBX macro or GLOBW macro as shown in the following macro statement:

        :   DCL @fnc00 BIN(31) BASED(fonptr);  :
        :   GLOBX @fnc00(fonptr=#R15);         :
        :                                      :

This macro statement will conditionally generate a set of Assembler Language instructions (including 
the GLOBZ macro) in its expansion. The following is the expansion of the GLOBX statement:

        :   GLOBZ REGR=#R15(FLD=@fnc00)  :
        :                 (          )   :
        :   LA    R15,@fnc00             :
        :   DROP  R15                    :
        :   ST    R15,fonptr$(R7)        :
        :                                :

As shown in the above examples, the register specified in the GLOBX statement must be RDB (R15). 
The identifier (in this case, called fonptr) must be defined by the programmer in a DECLARE 
statement as shown by the following:

        :  DCL 1 fonitms(8) BASED(fonptr),   :
        :      2 foncor POINTER,             :
        :      2 fonfil BIT(32);             :
        :                                    :

NOTES:

A) If the GLOBAL identifier is 8 characters including the @ sign there will be a conflict of identifiers 
at assemble time.  To circumvent this situation the following coding technique is recommended:

     DCL @GLOBLSW   BIT(8) BASED(GLBPTR);

     DCL SW         BIT(8) DEF @GLOBLSW;

     GLOBX @GLOBLSW (GLBPTR = #R15);
     IF X > SW THEN.......;

As shown above SW will have the same base address as @GLOBLSW.

B) Values outside the global area can no longer be referenced after using the GLMOD macro 
(where the protection key is altered).

6) Generally, register contents passed as parameters contain BINARY data or address data. If the data 
type of the field being loaded is arithmetic then the data will be converted to BINARY. If the data type 
is character-string of four characters or less then the character move and blank-fill operations are 
performed.
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7) If a macro requires processing by the compiler but has keyword parameters, enclose each keyword 
parameter in single quotes:

        :   ROUTC 'list=R2','lev=d2'(#R2=listptr);     :
        :        ...                                   :
        :   SERRC 'R,009600,,cp,,'(#R2=myptr);         :
        :   GFSCC DB',,'CR;                            :
        :                                              :

The compiler eliminates the single quotes from the unformatted output statement that is passed to 
the assembler:

        :   l      R2,listptr$(R7)      :
        :   ROUTC  list=#R2,LEV=d2      :
        :   GFSCC  DB,,CR;              :
        :                               :

It should be noted that although the macro is syntax-checked, the items within the single quotes are 
passed unchecked.

8) All TPF macros are reserved words.  They may not be used for any purpose except to perform the 
intended operation associated with that word.

9) Macro arguments are passed through the syntax checker; therefore, arguments that do not conform 
to grammar rules will produce syntax errors:

        :   SERRC R,'12ABCD'   :
        :                      :

In the above macro (SERRC) statement, the second positional argument must specify an error 
message number, consisting only of the hexadecimal numerics 0 through 9 and A through F

10) SABRETALK has a facility to allow macro arguments to bypass syntax checking.  This facility should 
only be used for macro statements that do not require any processing by the compiler (such as those 
that do not manipulate registers or check for error exits). When an installation's macro table is set up, 
macros are pre-defined as syntax-checked or not. The programmer has no control over this through a 
compile.

In effect, the macro statement will be sent through the compiler and the arguments added only when 
the Assembler Language instructions are generated.  Programmers must note that when using non-
syntax checked macros that everything will be taken as a parameter until the semicolon delimiter is 
found. This facility can be used when an installation writes new system macros that do not conform to 
the TPF  positional standard.  This should not be interpreted as support for application macros.

To use this facility with a macro, the macro  must be added to a special macro table by executing the 
utility UPDATMAC.

11) The TPF macro GLMOD may be used by applications programs that need to modify data in a 
protected global area. The storage protection key in the current PSW for the application program 
concerned will be changed to match that of the global area. The storage protection key must be 
restored after core modification, generally through the use of the FILKW macro. Between issuing 
GLMOD and FILKW, the applications program must not issue any ENTER / WAIT type macros, nor 
should it store data in working storage (AUTOMATIC, BASED or ENTRYBLOCK (ECB) ).

In order to avert a program interrupt (protection exception), care must be exercised that the 
statement(s) used to modify the protected area do not reference data that requires either alignment or 
conversion. Both instances necessitate the use of AUTOMATIC storage.
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An Example of the Use of the GLMOD Macro:

 Statement #   Statement
 -----------   -------------------------------------

  1            DCL dec5v0 DEC(5) ;
  2            DCL temp1 BIN(31) ALIGNED ;
  3            DCL global1 BIN(31) BASED (gbl1ptr) ;
  4            GLOBX global1(gbl1ptr=#R15);
        ...
  11           GLMOD ;
  12           global1 = dec5v0 ; /* pgm protection exception */
                                  /* occurs here              */
  13           FILKW R ;

An alternate coding technique:

  20           temp1 = dec5v0 ;
  21           GLMOD ;
  22           global1 = temp1 ;
  23           FILKW R ;

The Assembler language coding produced for the statements above would be:

 Statement #   BAL coding
 -----------   ------------------------------------
    12         ZAP   $TEMPDBL(8,R7),DEC5V0$(3,R7)
               CVB   R14,$TEMPDBL(R7)
               ST    R14,GLOBAL1(R6)

    20         ZAP   $TEMPDBL(8,R7),DEC5V0$(3,R7)
               CVB   R14,$TEMPDBL(R7)
               ST    R14,TEMP1$(R7)

    22         MVC   GLOBAL1$(4,R6),TEMP1$(R7)

REGISTER LOADING AND STORING  

In order to interface with TPF segments and other program segments in the system, it is sometimes 
necessary to pass data via registers.   The loading and storing of registers using values declared in 
SABRETALK programs is accomplished in conjunction with the START statement or with a TPF macro 
statement.

A) To load registers:
                                              _          _

 TPF macro name   argument(s)  ( ( #reg = | variable | ) )  ;
                               (          | constant | ) )
                               (          | literal  |   )
                               (          -          -   )
                               (                         )

B) To store registers:

     TPF macro name   argument(s)  ( ( variable = #reg ) )     ;
                                   (                     )

Edited character-strings cannot be referenced in register loading and unloading. The only built-in 
functions that may be used are the pseudo-variable built-in functions BSTR, CSTR, and NSTR.
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C) To load and store registers:
                                 _          _

 TPF     argument(s)   ( ( #reg= | variable | , variable =#reg ) )  ;
 macro                 (         | constant |                    )
 name                  (         | literal  |                    )
                       (         -          -                    )

reg specifies the register to be loaded or stored and may be either the physical register number or its 
corresponding system-equate.

The following registers are available for use:

        Physical           System
        number             equate
        --------           ---------
           0               RAC / RG0 / R0
           1               RG1 / R1
           2               RGA / RG2 / R2
           3               RGB / RG3 / R3
           4               RGC / RG4 / R3
           5               RGD / RG5 / R5
           6               RGE / RG6 / R6
           7               RGF / RG7 / R7
          14               RDA / R14
          15               RDB / R15

Examples:

        :   START (fare=#R0,cptr=#R7);                   :
        :   VAL = BSTR(CMSN,9,8);                        :
        :   ENTRC ssb2(#R7=BSTR(VAL));                   :
        :   ENTRC ssb4(#R1=aptr,#R2=cmsw,#R0=k,          :
        :              #R3=htod,#R4=cptr,#R5=mtod);      :
        :   ENTRC ssb3(#R1=answ,cmsw=#R0,sw=#R5);        :
        :   BACKC (#R5=cmsw,#R0=k);                      :
        :                                                :

System Equates in Macro Statements  

The number, or hash, sign (#) is also used as the first character of all system-equates:

        :   v = #PNDRI;   :
        :                 :

The above will cause the value equated to #PNDRI to be stored in v.  A # as part of a system-equate and 
as part of a register parameter may be used in the same statement:

        :   ENTRC face (#R0 = ordno, #R6 = #SSIREC,    :
        :               #R7 = address, error = #R0);   :
        :                                              :

The compiler resolves system-equates and treats them as fullword BINARY literals.

112



CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES

General Rules for Loading and Storing  

1) In a START statement registers only may be stored.

2) Registers 14 and 15, per TPF standards, may not be used to pass data between programs.  They are 
used only with certain macros (such as CREDC, GLOBX, etc.) where they are expected to contain 
loaded parameters or return values.

3) Subscripting and pointer qualification is allowed for variables to be loaded or stored.

4) Variables may be of the following data types:  *NCS, *DEC, *BIN, *BIT and *PTR.  If the data type is 
*NCS or *DEC, the value in the variable will be converted to BINARY: data may be lost either because 
the entire value will not fit in a register, or because fractional data will be lost on conversion of *NCS 
or *DEC data to BINARY. In such cases, the data should be passed via the ECB.

5) Character-string variables may be loaded into registers if they are not more than four characters in 
length.

Sample Application Supported Macros  

Each Installation, according to its needs, will support certain macros. The following are sample Application 
supported macros.

Name Function      
BACKC Return control to the previous program block that last issued an ENTR in association with this 

ECB. Release the automatic storage block associated with the program issuing the BACKC.
CINFC Allow the application program to read from or write to low, protected core storage and update 

Control Program Keypoint records. The use of the CINFC macro in SABRETALK is limited to 
requesting an update of the file copy of Control Program keypoint records, or to obtaining the 
address of an interface point that contains data.

CONKC Provide access to a table of system configuration-dependent constants thereby allowing the 
program's logic to vary, depending on the configuration. The CONKC macro requires a register 
as its third parameter. The code required by TPF must be followed by the register assignment 
for SABRETALK For example:

CONKC  arg1,arg2,#R0(myarg=#R0);

CRASC Send a message to the 1052.

CREDC Create an independent ECB for deferred processing.

CREIC Create, for processing, an independent Entry Control Block with the same priority as a new 
input message.

CREMC Create an independent ECB for immediate processing.

CRETC Create an independent ECB and activate a program at a specified later interval of time.

CREXC Create an independent ECB for low priority deferred processing.

*CRUSA Release core block level(s) if attached, or test core block level(s) for states. Address(es) for 
return of control may be specified.

CSERA Direct the System Error Routine to take a selective core dump. (CIT and CAC systems).

DEFRC Defer processing of an ECB until the systems' activity is sufficiently low to allow for the 
completion of this low priority task.

DLAYC Delay the processing of the current ECB.

ENTDC Enter a program and release all program blocks and AUTOMATIC storage blocks currently held 
by the ECB.

ENTNC Enter a program and release the current active program block and the associated AUTOMATIC 
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Name Function      
storage block.

ENTRC Enter a program with expected return. 

EXITC Release the ECB, all associated working storage, AUTOMATIC storage blocks, and program 
blocks, thus terminating the life of the entry in the system.

FILEC Write a record to file from core storage. 

FILKW Write a keypoint record to file from core storage and retain the core block containing the 
records' image.

FILNC Write a record to file from core storage and retain the core block containing the records' image.

FILSC Write a record, from core storage, to either the prime or duplicate file record.

FILUC Write a record to file from core storage and 'unhold' the record address.

FINDC Read a record from file into core storage. 

FINHC Read a record from file into core storage and 'hold' the record address.

FINSC Read either the prime or duplicate record from file into core storage.

FINWC Read a record from file into core storage and return control to the operational program when all 
operations which cause CE1IOC to be incremented, are complete for the ECB.

FIWHC Read a record from file into core storage, 'hold' the record address and return control to the 
operational program when CE1IOC is zero.

FLGFC Write a record from core storage to the next available record in the appropriate data set of the 
Users' Real-time Disk General File.

FLIPC Interchange the control information (FARW and CBRW) of two levels.

GDSNC Initialize a user's File Address Reference Word with the data necessary to access a general 
data set or a Volume of a general data set.

GDSRC Convert a relative record number into a File Address (CCHR format) to access a general data 
set record.

GETCC Obtain a block of core storage.

GETFC Obtain an available file storage record address from the specified short or long term pool.

GFSCC Initiate the Get File Storage (GFS) function which is used to start and stop GFS activity logging, 
to update the core and file images of all File Pool Keypoint Records, and to start and stop the 
tagging of long term pool addresses returned to the GFS program via the RELFC macro. 

GIVLC 1. Detach a message from a specified level and activate a new ECB with the specified 
message block attached to level zero of the new ECB. 

2. Or send a message via a link with a response expected.
GLMOD Change the storage protection key in the current PSW, for the application program, to match 

that of the Global Area, or core resident data records or core resident tables. 
GLOBW Define global fields in global areas 1 and 3.

GLOBX Define global fields in global area 1.

GLOBY Define global fields in global area 4.

GLOUC Prepare the keypoint records for update of the file- resident copy.

KEYCC  Allow for modification of a protected core storage area by an application program by changing 
the storage protection key in the current PSW.

KEYRC Restore the current PSW protection key to its normal value.

KEYUC Prepare the keypoint records for update of the file resident copy.

LMONC Allow an application program to change the operating state of the CPU from supervisor to 
problem state. 

MONTC Allow an application program to change the operating state of the CPU from problem to 
supervisor state. 

RCRFC Release a block of core storage and return a file address to the appropriate pool.

RCUNC Release a block of core storage and 'unhold' a file record address.

RELCC Release a block of core storage. 

RELFC Return a file address to the appropriate pool. 
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Name Function      
ROUTC Route a data message to a terminal or to an application.

SENDC Send a message to a terminal.

SERRC Direct the System Error Routine to take a selective core dump and send a message to CRAS.

TASNC Assign the previously reserved general tape (TRSV) to the ECB issuing the macro.

TBSPC Backspace a general tape a specified number of physical records and 'wait' until all operations 
that cause CE1IOC to be incremented are complete for this ECB.

TCLSC Close a general tape. 

TDFRC Suspend processing of this ECB for a specified time.

TDLYC Suspend processing of this ECB for a specified time.

TDTAC Address a general tape and write from or read into a core storage area.

TOPNC Open a general tape.

TOURC Write a record from a core storage block to a real-time tape.

TOUTC Write a record from core storage to a real-time tape.

TPRDC Read the next record from a general tape, into core storage.

TREWC Rewind a general tape and 'wait' until all input operations, including this request, are complete 
for this ECB.

TRSVC Reserve a general tape and retain its current positioning until some future ECB takes control 
with an assign (TASN).

TWRTC Write a record from core storage to a general tape.

UNFRC 'Unhold' a file storage record address.

WAITC Defer processing of this entry until CE1IOC is zero.

WRTDC Write a Critical Data Record from a core block to a user's primary real-time output tape and to 
the next available record in the appropriate data set of the user's General File.

• Macro parameters are not syntax checked by the compiler.
• For information on Special and User macros see Appendix B

PROCEDURE   STATEMENTS      

The PROCEDURE statement designates the beginning of an external PROCEDURE, internal PROCEDURE, or 
programmer-declared function.  When coded at the beginning of an internal PROCEDURE or programmer-
declared function, an optional parameter list may be coded specifying the data being received.  External 
procedures are invoked by coding the PROCEDURE label in an enter-type macro, while internal procedures
and programmer-declared functions are invoked by coding their labels within the external PROCEDURE.

General Format:  

A) For external procedures:
                _           _
        label:  | PROC      |  ;
                | PROCEDURE |
                -           -
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B) For internal procedures or programmer declared functions:

                _           _
        label:  | PROC      |  (  (  parm1  (,parm2,...,parmn)  )  )   ;
                | PROCEDURE |  (            (                )     )
                -           -  (            (                )     )
                               (                                   )

(where each parm (parameter) is a variable or a structure)

        :   extproc: PROCEDURE;                :
        :   intproc: PROC (param1, param2) ;   :
        :                                      :

General Rules for   PROCEDURE   Statements:      

1) Identifiers used as parameters must be declared.

2) A parameter may be one of the following:

a) variable
b) structure
c) array

3) A parameter may not be subscripted nor pointer qualified.

4) When a PROCEDURE (or declared function) is invoked, the number of parameters passed to it must be 
equal to or less than the number of parameters it is to receive.  A one-to-one correspondence is 
established, on a left-to-right basis, between the parameters passed and those received.

5) The PROCEDURE statement that begins the program (external PROCEDURE) has no parameters.  The 
START statement is used to specify parameters the external PROCEDURE is to receive via registers.

6) The label on the external PROCEDURE statement should follow TPF programming standards.

START   STATEMENTS      

The START statement is used to store parameters passed in registers between programs (See Register 
Loading and Storing, this chapter).

If an external procedure is receiving parameters from the program invoking it (the invoking program may be 
a SABRETALK program or an Assembler Language program), the START statement should be coded as the 
first executable statement in the program. (DECLARE statements and the PROCEDURE statement heading the 
external PROCEDURE are non-executable statements.)  All parameters should be stored in a single START 
statement. If the external PROCEDURE is not receiving parameters from the invoking program, the START 
statement is not necessary.
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General Format:  

     START ( element variable=#reg (,element variable=#reg ) ... )   ;
                                   (                       )

           ( reg may be: R0,R1,R2,R3,R4,R5,R6,R7)

        :   START (inptr=#R0,kount=#R4,max=#R5) ;   :
        :                                           :

General Rules for   START   Statements:      

1) The START statement cannot be used for loading registers.

2) The START statement may be used for storing the contents of a register into a variable or 
pseudo-variable.

3) The registers that may be used for storing are #R0, #R1 #R2, #R3, #R4, #R5, #R6 and #R7.

END   STATEMENTS      

An END statement is used to physically terminate an internal procedure, an external procedure, a 
programmer-declared function, a DO group, and, at times, two or more of the above.

General Format:  

        END ( label ) ;
            (       )

        :   END cvbado;   :
        :   END error;    :
        :   END;          :
        :                 :

General Rules for   END   Statements:      

1) If a label operand follows the END, it cannot be an element of an array of label variables; that is, it 
cannot be subscripted.

2) If a label operand does not follow the END, the statement terminates the last previous unterminated 
internal PROCEDURE, programmer-declared FUNCTION or DO group. If the unlabeled END statement is 
located as the last source statement of the program then it terminates the external PROCEDURE.

3) If the END statement terminates a programmer-declared FUNCTION, it must not be followed by a label 
operand.

4) If a label operand follows the END, the statement terminates the internal PROCEDURE or DO group 
specified; it also terminates all unterminated DO groups physically within that DO group or 
PROCEDURE. If a label operand follows the END and it is located as the last source statement of the 
program, then it terminates the external PROCEDURE. The END statement label of an internal or of an 
external PROCEDURE must be the same as the label of its corresponding PROCEDURE statement.
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        :   sag1s1:   PROC;         :
        :             ...           :
        :             exitc;        :
        :             ...           :
        :   int1:     PROC (a,b);   :
        :             ...           :
        :             RETURN;       :
        :             END sag1s1;   :
        :                           :

The END statement above serves to terminate the internal PROCEDURE labelled int1 and the 
external PROCEDURE labelled sag1s1.  For the sake of program clarity each PROCEDURE, 
programmer-declared function or DO group should have its own END statement.

CALL   STATEMENTS      

The CALL statement is used to invoke internal procedures and causes a transfer of control to the specified 
procedure.  An optional parameter list may be coded in conjunction with the CALL statement making it 
possible to pass parameters to the internal procedure.

General Format:  

        CALL  internal_proc_label ( (arg1 (,arg2,...,argn) ) )  ;
                                  (       (              )   )
                                  (                          )

(where each arg (argument) is an expression or a structure)

        :   CALL wrapup;                      :
        :   CALL error (a);                   :
        :   CALL calc (a+1, CSTR(x,i-5,3));   :
        :                                     :

General Rules for   CALL   Statements:      

1) The internal PROCEDURE label represents the name of the PROCEDURE that is being invoked.

2) A CALL parameter may be one of the following:

a) literal
b) constant
c) variable
d) structure
e) array name (Note: first element only)
f) any type expression
g) any type function invocation

3) A parameter may be subscripted and/or pointer qualified.

4) The attributes of a parameter in a CALL statement should be compatible with that of its corresponding 
parameter in the PROCEDURE statement, i.e., they must obey the rules for legal assignments.

RETURN   STATEMENTS      

The RETURN statement is used to RETURN control from the logical end of internal procedures and 
programmer-declared functions.
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General Format:  

A) From an internal procedure:

          RETURN;

B) From a programmer-declared function:

          RETURN (parameter);

              :   RETURN;             :
              :   RETURN (a(i));      :
              :   RETURN (ADDR(x));   :
              :                       :

General Rules for the   RETURN   Statement:      

1) If a parameter is not specified, the RETURN statement must terminate an internal procedure.  When 
such a statement is executed, control is returned to the next sequential statement following the point 
of invocation.

2) If a parameter is specified, the RETURN statement must terminate a programmer-declared function. 
When such a statement is executed, control is returned to the function invoking statement; the value 
returned is the value of the parameter, which is used in the completion of the invoking statement.

3) A RETURN-statement parameter may be one of the following:

a) literal
b) constant
c) variable
d) structure
e) array name (Note: first element only)
f) any type expression
g) any type function invocation

4) A parameter may be subscripted and/or pointer qualified.

PROGRAM STRUCTURE  

The TPF system is composed of many individual programs, some written in SABRETALK and some written 
in Assembler Language. This section will describe the program-relative relationship of a SABRETALK 
program to various other programs or parts of programs.

Rules Governing Program Structure:  

A) A SABRETALK program consists of a main body (The MAIN procedure) and optional 
internal procedures.

B) The names of programmer-declared functions must be declared with the FUNCTION 
attribute.

C) A START statement must precede the executable statements if the program is receiving 
parameters via registers. A START statement is the only statement that can be used to receive 
parameters via registers from other program segments.
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D) The first statement in a program is a PROC (PROCEDURE) statement with no parameters.  Its 
label defines the name of the program.  The last statement in a program must be an END statement. 
These two statements serve to mark the beginning and end of a program.

E) Control can be given to another program through the use of a TPF macro such as ENTRC. 
Whenever control is received from another program via ENTRC, it can be given back through the 
use of the TPF macro, BACKC.

Using Procedures Compiled Within the Program  

Corresponding to the ENTRC and BACKC macros, which provide communication between programs, two 
statements are provided which allow the use of internal procedures compiled within the main body: the CALL 
statement and the RETURN statement.

Figure 5.3 Illustrates the general organization of a program.
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________________________________________________________________________
|PROCEDURE ---|  sub1x1:  PROC;                                        |
|statement     ---                                                     |
|              ---                                                     |
|             |           DCL 1 prog_temps ALIGNED,                    |
|             |                 2 (i, j, k, l) BIN,                    |
|             |                 2 (p, q, r, s) PTR,                    |
|             |                 2 a CHAR(10),                          |
|             |                 2 (b, x, z) BIN(31),                   |
|             |                 2 c BIN(15);                           |
|             |           DCL 1 record BASED(e) ALIGNED;               |
|             |                 2 link ptr,                            |
|             |                 2 key,                                 |
|DECLARE -----|                   3 sub_key_1 CHAR(5),                 |
|statements   |                   3 sub_key_2 BIN(31),                 |
|             |                   3 sub_key_3 CHAR(4),                 |
|             |                 2 counts,                              |
|             |                   3 total_sold BIN(31),                |
|             |                   3 dollar_amt DEC(11,2);              |
|             |           %INCLUDEAF EB0EB;                            |
|             |           DCL calc FUNCTION;                           |
|             |           DCL 1 inputs BASED(f),                       |
|             |                 2 text CHAR(30),                       |
|             |                 2 type BIT(8);                         |
|              ---                                                     |
|              --                                                      |
|START -------|           START (e=#R3); /* base of record in #3 */    |
|statement     ---        ...                                          |
|                         ...                                          |
|              ---                                                     |
|             |           ENTRC ssa6(#R4=q,f=#R3);                     |
|             |           ...                                          |
|             |           CALL look_up(sub_key_3);                     |
|main --------|           ...                                          |
|body         |           ...                                          |
|             |           x = j + calc(q, z - total_sold, 25);         |
|             |           ...                                          |
|             |           EXITC;                                       |
|              ---                                                     |
|             |  look_up: PROC(a);  /* internal PROCEDURE */           |
|             |           ...                                          |
|internal ----|           ...                                          |
|PROCEDURE    |           RETURN;  /* rtrn from internal PROCEDURE */  |
|             |           END look_up;                                 |
|              ---                                                     |
|             |  calc:    PROC(r, b, c);  /* declared function */      |
|             |           ...                                          |
|programmer---|           ...                                          |
|declared     |           RETURN(k + 1); /* return from programmer- */ |
|function     |                          /* declared function       */ |
|             |           END;                                         |
|              ---                                                     |
|             |           BACKC(#R5=k);                                |
|END ---------|           END sub1x1:   /* end of program */           |
|statement     ---                                                     |
|______________________________________________________________________|
Figure 5.3 General Organization of a SABRETALK Program.
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CHAPTER 6: ALTERNATIVE CODING METHODS  

EFFICIENT PERFORMANCE  

SABRETALK allows the programmer a high degree of flexibility to perform operations.  Various data types 
may be combined within statements with all necessary conversions, packing, and alignment handled by the 
compiler.

There are many methods to solve a given problem.  Some methods are more efficient than others are; that 
is, they accomplish the same result while using fewer resources.  In some instances, the programmer must 
consider the trade-offs that will result from using one method as opposed to another.  Use of the ALIGNED 
or PACKED attribute is an example of this. Use of the ALIGNED attribute may cause unused core between 
data items, but will result in more efficient code generation.  The PACKED attribute will optimize core usage 
but may result in code inefficiency due to misalignment of data items.  It is up to the individual programmer 
to decide which advantage is more favorable to his particular situation and code his program accordingly.

The following sections outline several areas where the programmer may be able to optimize his program.

DATA CONVERSION  

The variety of data types handled by SABRETALK allows the programmer to operate on data in several 
different methods or to mix various data types in expressions.  It is possible to create a situation where 
unnecessary conversions are required thereby causing a loss of efficiency due to the extra code generated.

When the programmer designs his program and is deciding on the data types for his input data, output data, 
and work areas, he will be free to use any data type he desires.  In certain instances he may be required to 
DECLARE his data to be a certain type due to overall system design.  Because of this, he should ask himself 
the following questions when declaring the remainder of his data:

1. Is a conversion implied?  Is the result of an operation assigned to a variable of a different 
data type?
2. Could the conversion be avoided?
3. If the conversion is within a loop, could it be moved outside of the loop?

The assembler language code generated by the compiler will be kept to a minimum if the following 
guidelines for the use of *NCS, *DEC, and *BS data are observed:
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Use of Numeric Character-String (*NCS) Data  

The programmer should recognize the inefficiencies that exist with the use of Numeric character-string data.

*NCS data items are always stored in character (Zoned Decimal) format, one character to a byte.  In Zoned 
format, bytes form a field of four-bit portions as shown:

       -------------------------------------------------
       !     !     !     !     !     !     !     !     !
       !  Z  !  N  !  Z  !  N  !  Z  !  N  ! Z/S !  N  !
       -------------------------------------------------

where N specifies a numeric code, Z specifies a zone code, Z/S specifies either a zone or a sign code. The 
value -234 (shown in hexadecimal) would appear as:

          F   0   F   2   F   3   D   4

where the hexadecimal 'F' is the standard zone code, the hexadecimal 'C' is the standard plus code, and the 
hexadecimal 'D' is the standard minus code.

Before arithmetic operations may be performed on *NCS data items, they must be converted to the Packed 
Decimal format.  In Packed format, bytes form a field of four-bit portions as shown:

       -------------------------------------------------
       !     !     !     !     !     !     !     !     !
       !  D  !  D  !  D  !  D  !  D  !  D  !  D  !  S  !
       -------------------------------------------------

where D signifies a decimal digit, S signifies a sign code.  The value  -234 (shown in hexadecimal) would 
appear as:

          0   0   0   0   2   3   4   D

If data items must be declared as *NCS to conform to input or output requirements, and if they will also be 
used in arithmetic calculations, they should be converted to another data type prior to the arithmetic 
operation.  They should not be converted back to *NCS until all arithmetic operations have been completed.

Use of Decimal Data  

If fractional values are unnecessary and arithmetic is to be performed, it is much more efficient (both in 
storage requirements and execution time) to DECLARE it as BINARY rather than DECIMAL.  Since arithmetic 
operations are frequently performed in DECIMAL, consideration should be given to declaring operands of 
arithmetic expressions as DECIMAL.

        :   DCL (a, d) BIN(15), b DEC(3,0);   :
        :   a = b * d + 5;                    :
        :                                     :

In the above example, the operation b*d will be performed first; d will be converted to DECIMAL, then the 
multiplication performed. The BINARY literal 5 will then be converted to DECIMAL and added to the 
intermediate result of b*d.  This final result will be in DECIMAL which will then be converted to BINARY for 
storage into a.

        :   DCL (a, d) BIN(15), b DEC(3,0), c(10) CHAR(4);   :
        :   c(2 * b) = 'a';                                  :
        :                                                    :
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In the above example, the literal 2 will be converted to DECIMAL and, after multiplication, the result 
converted back to BINARY.

Better code will result if all DECIMAL fields are declared with an odd number of digits.  This is because, on 
the IBM System/360, DECIMAL fields are stored in the packed decimal format and the sign occupies the last 
position of the last byte.  If possible, all DECIMAL variables should be declared with the same number of 
digits in the fractional portion, so as to further optimize the generated code.

Use of   BIT  -String Data      

Under the following circumstances, the use of BIT-strings in arithmetic expressions is as efficient as 
BINARY:

1) The length of the string is 8 bits and byte aligned.
2) The length of the string is 16 bits and halfword aligned.
3) The length of the string is 32 bits and fullword aligned.

Much more code is generated for BIT-strings where the length is not a multiple of 8.

AVOIDING POOR PROGRAMMING TECHNIQUES  

The results of a relational operation, either a one (1) or a zero  (0), may be used in many other types of 
statements besides the IF statement.  The value returned may be used in an arithmetic expression, an 
Assignment statement, a CALL statement, a RETURN statement, etc.

        :   CALL intproc( (a < b) + (c = d) + (e ^= f) );   :
        :                                                   :

In the preceding example, a value of 0, 1, 2 or 3 will be passed to the internal PROCEDURE depending upon 
how many of the relational (comparison) operations held true.

Compiler Restriction  

The compiler limit that is restrictive is the limit of 255 on dimensions.  In certain situations this limit can easily 
be circumvented.  The following circumvention is not to be used if the area is a core block attached to the 
ECB, whose limit (127,381,1055,etc.) may be violated.

If a dimension larger than 255 is required, the user can specify an area following the declared area. 
Indexing can then proceed through both areas.

        :   DCL a(200) CHAR(3);    :
        :   DCL a2(100) CHAR(3);   :
        :   DCL (i, j) BIN;        :
        :       ...                :
        :   j = 0;                 :
        :   DO i = 1 TO 300;       :
        :      IF a(i) = 'jfk'     :
        :        THEN j = j + 1;   :
        :   END;                   :
        :                          :

The preceding example will count the occurrences of the character-string 'jfk' in a 300-element array.  The 
declaration of a2 is really an extension of a.  Indexing will proceed through all 300 entries with no problem. 
When extending an array in this manner, the second declaration (a2 in the example) should immediately 
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follow the first.  Note that if a were in BASED storage (say a 1055-byte block), the same technique can be 
applied but the DCL for a2 is unnecessary.

        :   DCL a(200) CHAR(3) BASED(aptr) ;   :
        :   aptr = ce1cr2 ;                    :
        :   j = 0 ;                            :
        :   DO i = 1 TO 300 :                  :
        :      IF a(i) = 'jfk'                 :
        :        THEN j = j + 1 ;              :
        :   END ;                              :
        :                                      :

Other Techniques For Efficient Coding  

        :   /*  poor method  */               :
        :   IF frmtoday < -1 | frmtoday > 1   :
        :     THEN GOTO a;                    :
        :                                     :
        :   /*  better method  */             :
        :   IF ABS(frmtoday) > 1              :
        :     THEN GOTO a;                    :
        :                                     :

        :   /*  poor method  */     :
        :   IF seccode = 'd'        :
        :     THEN holdsw = '1'b;   :
        :   IF seccode = 's'        :
        :     THEN holdsw = '1'b;   :
        :   IF seccode = 'p'        :
        :     THEN holdsw = '1'b;   :
        :   IF seccode = 'c'        :
        :     THEN holdsw = '1'b;   :
        :                           :
        :   /*  better method  */   :
        :   IF seccode = 'd' |      :
        :      seccode = 's' |      :
        :      seccode = 'p' |      :
        :      seccode = 'c'        :
        :     THEN holdsw = '1'b;   :
        :                           :

In the example above, the second method proves to be more efficient both in generated code and execution 
time.  In the first set of statements, the BAL code to set holdsw  =  '1'b will be generated four times and 
all four IF statements will always be executed.
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        :   /*  poor method  */     :
        :   IF pchetc(c) > 1200     :
        :     THEN cmram = 'p';     :
        :   IF pchetc(c) = 1200     :
        :     THEN cmram = 'n';     :
        :   IF pchetc(c) = 2400     :
        :     THEN cmram = 'm';     :

        :   /*  better method  */   :
        :   bchetc = pchetc(c);     :
        :   IF bchetc > 1200        :
        :     THEN cmram = 'p';     :
        :   IF bchetc = 1200        :
        :     THEN cmram = 'n';     :
        :   IF bchetc = 2400        :
        :     THEN cmram = 'm';     :

In the example above, the second set of statements causes the Assembler Language code necessary to 
calculate the subscript to only be generated once.

In the following example the value place(race) is produced ten times as a result of unnecessary 
subscription within a loop:

           :          car = 0 ;                       :
           :   loop:  car = car + 1 ;                 :
           :          team(car) = place(race) ;       :
           :          IF car ^= 10 THEN GOTO loop ;   :
           :                                          :

Move this subscripted value 'place(race)' outside of the loop and many undesirable processing steps will be 
saved:

           :          points = place(race) ;          :
           :          car = 0 ;                       :
           :   loop:  car = car + 1 ;                 :
           :          team(car) = points ;            :
           :          IF car ^= 10 THEN GOTO loop ;   :
           :                                          :

A very efficient way to zero a structure that is less than 256 bytes in length is illustrated below:

        :   DCL 1 input BASED(inptr),            :
        :         2 team CHAR(30),               :
        :         2 habitat,                     :
        :           3 street CHAR(20),           :
        :           3 city CHAR(20),             :
        :           3 state CHAR(18),            :
        :           3 zip PIC'99999',            :
        :         2 age PIC'999',                :
        :         2 salary DEC(6,2);             :
        :                                        :
        :   BSTR(input,1,8) = '00'x;             :
        :   CSTR(input,2) = CSTR(input);         :
        :                                        :
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An area larger than 256 bytes may be initialized using the same general technique:

        :   dcl 1 struct BASED (sptr),                     :
        :         2  team CHAR(250),                       :
        :         2  city CHAR(250),                       :
        :         2  zip  CHAR(250),                       :
        :         2  age  CHAR(250);                       :
        :         2  key  CHAR(55);                        :
        :   BSTR(struct,1,8) = '00'x;                      :
        :   CSTR(struct,2)   = CSTR(struc);                :
        :                                                  :

Code generated:

        : *  BSTR(STRUCT,1,8) = '00'x;                         :
        :         MVI   STRUCT$+1(256,R5),X'00'                :
        : *  CSTR(STRUCT,2)   = CSTR(STRUC);                   :
        :         MVC   STRUCT$+1(256,R5),STRUCT$(R5)          :
        :         MVC   STRUCT$+257(256,R5),STRUCT$+256(R5)    :
        :         MVC   STRUCT$+513(256,R5),STRUCT$+512(R5)    :
        :         MVC   STRUCT$+769(256,R5),STRUCT$+768(R5)    :
        :         MVC   STRUCT$+1025(30,R5),STRUCT$+1024(R5)   :

Initializing a field  

Techniques for initializing a field are illustrated as follows:

        :   DCL msg CHAR(4);                                           :
        :                                                              :
        :   msg = '    '    ;  /*  initialize to blanks            */  :
        :   msg = '0000'    ;  /* init'lize to zoned decimal zeros */  :
        :   BSTR(msg) = '0'b;  /*  initialize to binary zeros      */  :
        :                                                              :

Testing and setting single-bit fields in the following manner is very efficient.

        :   DCL (a, b, c) BIT(1);   :
        :                           :

To set bits to zero or one:

        :   b = '0'b;   :
        :   b = '1'b;   :
        :               :
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To invert a bit:

        :   /*  poor method  */          :
        :   IF b = '1'b THEN b = '0'b;   :
        :                                :
        :   /*  better method  */        :
        :   b = ^b;                      :
        :                                :

To test bits:

     :   IF a = '1'b | b = '0'b | c ^= '1'b | d = '0'b THEN x = y;   :
     :                                                               :

Use of Logical Operations  

The following examples illustrate methods in which the logical  operations can be used advantageously:

Suppose one wants to place EBCDIC numeric zones (all one bits) into a two-character field, k.

    :   DCL k CHAR (2);                  :
    :   BSTR(k) = BSTR(k) | 'F0F0'X;     :

This operation causes the hex digit F (1111 in binary) to be inserted into the zones of field k.  The numeric 
portions of k are not altered.

Suppose one wants to test for odd or even in a value.  A function to test for odd could be as follows:

        :   DCL odd FUNCTION;   :
        :   DCL arg BIN(31);    :
        :   odd: PROC(arg1);    :
        :   RETURN(arg & 1);    :
        :   END;                :
        :                       :

The expression in the RETURN statement causes all bits of arg to be set to zero except the rightmost which 
is zero (false) if the number is even, but one (true) if the number is odd.  This function might be used as 
follows:

        :   IF odd(i + j) = 1 THEN GOTO x_odd;   :
        :                                        :

i and j are added and if the result returned by odd is one, the program will GOTO x_odd.

A different test for odd/even is:

        :   If MOD(x,2) = 1 THEN GOTO x_even;   :
        :                                       :

Bit Manipulation  

It is seldom necessary for the programmer to use bit manipulation like his assembler language counterpart, 
but occasions will arise.  By judicious use of &, |, ^, SHL and SHR, it is possible to manipulate bits to almost 
any degree.  In most cases this results in the generation of more suitable coding.
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To illustrate this, consider the following case:  there is a code word (codewd) which contains 32 conditions 
numbered 0 through 31.  Each bit in codewd stands for a condition.  If it is on, the bit is one, if it is off, the bit 
is zero.  At various times it will be necessary to set and test these bits.

First, let us examine how to test whether bits 26, 28 and 30 are on.

        :   IF (codewd & '101010'b) = '101010'b THEN x = y;   :
        :                                                     :

The & operation ''erases'' all but the relevant three bits. The result of this is compared to see if the three 
relevant bits are on.  If it is desired to set 'on' the nth-bit-from-the-right (where n=codex=0 to 31) of codewd,
the following can be used.

        :   codewd = codewd | SHL(1, codex);   :
        :                                      :

The SHL function positions the single bit specified in the first parameter at the appropriate position specified 
by codex.  The | operation then inserts this bit into codewd.  Several values could be set with one 
assignment. 

        :   codewd = codewd | SHL(1, codex) | SHL(1, codey);   :
        :                                                      :

If it is desired to test a particular bit on the basis of codex, the following can be used.

        :   IF SHR(codewd, codex) & 1 = 1 THEN GOTO sam;   :
        :                                                  :

The value codewd is shifted and then all but the low bit is eliminated by the &.  If the result is not zero, the 
program will go to sam.

Suppose it is decided to set a bit in codewd off on the basis of codex.

        :   codewd = codewd & (^SHL(1, codex));   :
        :                                         :

In this case the mask is created and positioned by the SHL.    However, we want to insert a zero and not a 
one.  All positions of the mask now contain ones except that to be set to zero.   The & operation will thus 
leave all bits except for that to be zeroed, set as they were.

A  higher level of complexity is to set a relevant bit in codewd to a value contained in the bit named x.

        :   codewd = (codewd & ^SHL(1, codex)) | SHL(x, codex);   :
        :                                                         :

This first causes the appropriate bit in codewd to be set to zero.  The bit x is then positioned by the second 
SHL and inserted into codewd with the | operation.  Note that x may contain zero or one.
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Several other notes on bit manipulation are relevant:

• It is possible to concatenate BIT-strings.

• Watch out for negative numbers.  For example, a SHL  of  a  positive  number will  result  in 
a negative number if the sign bit has a one in it after the shift.

• The effect of algebraic shifting can be obtained by multiplying or  dividing by a power of 2.

• The logical operators and the SHL/SHR functions can be used on data declared as BINARY 
or on expressions.

• If a BIT field is not aligned on a byte boundary, it may be better to move it to a work area 
before performing many calculations.  Then, when  processing is complete, move it back.

• Use  comments  to describe your program logic, data variables, and input and output fields.

• While it is legal to write an expression in an IF statement  with  no  relational  operator 
(See  Chapter 3, IF Statement), it often turns out that an explicit comparison with zero results in 
better code generated.

        :   /*  poor method  */     :
        :   IF ^a THEN GOTO c;      :
        :                           :

        :   /*  better method  */   :
        :   IF a = 0 THEN GOTO c;   :
        :                           :
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Figure 6.1 is an example of a SABRETALK program:

________________________________________________________________________
|    exa4d1:  PROC;                                                    |
|             %INCLUDEAF  eb0eb;                                       |
|                                                                      |
|             DCL  1  workarea,                                        |
|                     2  prntblk,                                      |
|                        3  header   CHAR(12),                         |
|                        3  text     CHAR(20),                         |
|                     2  message,                                      |
|                        3  id        DEC(3),                          |
|                        3  msgnbr    DEC(5,2),                        |
|                        3  msgcode1  BIT(8),                          |
|                        3  msgcode2  BIT(3),                          |
|                        3  msgcode3  BIT(29),                         |
|                        3  msg       CHAR(32);                        |
|                                                                      |
|             DCL  1  fltinfo         BASED(fptr),                     |
|                     2  fltno(2)     BIN(31),                         |
|                     2  fltin        BIN(15),                         |
|                     2  fltout       BIN,                             |
|                     2  flttbl(3)    CHAR(8);                         |
|             DCL  1  tbl1(8)         DEFINED tbl2,                    |
|                     2  seat         BIN(15),                         |
|                     2  meal         CHAR(3);                         |
|                                                                      |
|             DCL  tbl2(8)            BIN(15) ALIGNED CONSTANT;        |
|             DCL  (ptr1,ptr2) PTR    ALIGNED;                         |
|             DCL  find               BIN(31) ALIGNED;                 |
|             DCL  lblsw(3) LAB;                                       |
|             DCL  days               BIN;                             |
|             DCL  hours              BIN;                             |
|             DCL  minutes            BIN;                             |
|             DCL  seconds            BIN;                             |
|             DCL  (a,b,c,d,e,f)      BIN ALIGNED;                     |
|             DCL  (i,j,k)            BIN;                             |
|                                                                      |
|             CONST tbl2, '0001001000110100'B ;                        |
|                                                                      |
|    entry1:  START(fptr=#R2,f=#R3);                                   |
|             ptr2 = addrtbl2;                                         |
|             ENTRC exa5d1(#R3=ptr2,find=#5);                          |
|             CSTR(ebw021,1,4)=VSTR(ebw001,1,k);                       |
|             GOTO lbl4;                                               |
|   tg2:      IF find = 0 THEN GOTO err;                               |
|   err:      CSTR(ebw021,j)='john';                                   |
|   dun:      ENTNC exa6d1;                                            |
|   beginlbl: a=b+c-d*e/f;                                             |
|             lblsw(1)=fptr;                                           |
|             i,f=0;                   /* clear loop controls */       |
|             k='10100'B ;                                             |
|             d=16 ;                                                   |
|                                                                      |
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|             DO  I=1 TO 16 BY 3 WHILE K < A;                          |
|                 a=a+1;                                               |
|                 IF b > 7 THEN GOTO lbl4;                             |
|                 ELSE                                                 |
|                   DO  a=a-1;                                         |
|                       b=b+1;                                         |
|                   END ;                                              |
|                 IF c ^= d THEN                                       |
|                   DO  f=d+e;                                         |
|                       k=b+a;                                         |
|                   END ;                                              |
|                 ELSE a=k+i;                                          |
|             END ;                                                    |
|                                                                      |
|             c = '_         F8_       C_ D9_ A3'X ;                   |
|             msgnbr = i+k;                                            |
|   lbl4:     days = d-a;                                              |
|             msg = text || flttbl;                                    |
|             GOTO extproc;                                            |
|   dcldfunc: PROC(a);                                                 |
|             RETURN(c+3);                                             |
|             END ;                                                    |
|   intproc:  PROC(a);                                                 |
|           ......                                                     |
|             RETURN;                                                  |
|             END intproc;                                             |
|                                                                      |
|   extproc:  ENTRC ssa4d1(#R0=b);                                     |
|             BACKC(#R3=fptr);                                         |
|             END exa4d1;                                              |
|                                                                      |
|______________________________________________________________________|
Figure 6.1 Example of a SABRETALK program:
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CHAPTER 7: SABRETALK COMPILER OPTIONS  

The output of the compiler is determined by pre-established installation default parameters.  These defaults 
are initialized by the systems programmer but may be temporarily overridden by the programmer.

The compiler options established as defaults may be overridden temporarily by the programmer, for his 
compilation, through the use of the loader OPTIONS statement.

OPTIONS   STATEMENTS      

The format of the OPTIONS statement is as follows:

        Card column 1----|
                         |
                         V
                         OPTIONS=aaaaa(,bbbbbbb...)
                                      (           )

The OPTIONS keyword must begin in column one.  The next non-blank following the keyword must be an 
equal sign.  The next non-blank following the equal sign must be one or more compiler options, each of 
which is separated from the preceding one by a comma.  This statement may be coded through column
71.  In the event that all selected options will not fit on one statement, multiple OPTIONS statements must 
be used. Notice that there is no statement terminator (;) for compiler options. Imbedded blanks are not 
allowed.

        Card column 1----|
                         |
                         V
                         OPTIONS=INCLD,ICAFNO
                           or
                         OPTIONS=INCLD
                         OPTIONS=ICAFNO

All OPTIONS statements must immediately precede the PROCEDURE statement for the program.

        Card column 1----|
                         |
                         V
                         OPTIONS=NOCODE,ONL
                          abcda0: PROC;
                             ...
                          END abcda0;

Details on temporary overrides of compiler options, a list of compiler options and a description of each of the 
compiler options follows.  The programmer should be sure to check which of these options are installation 
defaults.
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Sample Options List: (* indicates suggested defaults)

      * ALIGN               NOALIGN
      * ALPHA
      * ANGB3               NOANGB3
      * BAL                 NOBAL
        CLEAR             * NOCLEAR
      * CODE                NOCODE
      * DECK                NODECK
      * DOLLAR              NODOLR
        GEN               * NOGEN
      * ICAFYES             ICAFNO
        INCLD             * NOINCLD
      * MAP                 NOMAP
      * MLEVEL0             MLEVEL1             MLEVEL2
      * NUMERIC
        OPT               * NOOPT
      * PRINT               NOPRINT
      * SPACE
        System Equate Identifiers    (* GTS)
        TERM              * NOTERM
      * XREF                NOXREF

ALIGN / NOALIGN  

The NOALIGN option will take advantage of the SYS/370 Byte-Oriented-Operand 
facility that permits storage operands of most unprivileged instructions to 
appear on any byte boundary.

If the data item is misaligned it will be flagged as thus, but the compiler 
will not attempt to align the item, nor will it produce the move instructions 
to aligned field (temporary field).

The programmer should be also be aware that when the NOALIGN option is in 
affect some performance degradation is possible when storage operands are not 
positioned at addresses that are integral multiples of the operand length. It 
is suggested that fields that appear as misaligned and frequently used should 
be aligned on integral boundaries.

ALPHA  

               _       _
        ALPHA=(|TBLADDR|,name)
               |TBL    |
               -       -

The ALPHA compiler option relates to the translate table the compiler 
references when generating code for the ALPHA built-in function.  It also 
indicates the manner in which the table is accessed.

name is required.  It indicates the identifier the compiler will use when 
generating code for the ALPHA function.  The compiler always generates the 
GLOBZ macro for the ALPHA function.   name is the identifier within the 
global area that either contains the address of the table or is the name 
of the table.  name is therefore always a global tag.

TBL and TBLADDR are mutually exclusive.  One of the two must be specified. 
TBL indicates to the compiler that the name specified is the name of the 
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table that is to be used when generating code for the ALPHA function. 
TBLADDR indicates to the compiler that the name specified is a global 
field containing the address of the table.

In the case where @trtal contains the table name:

        :   ALPHA=(TBL,@trtal)       :
        :                            :

In the case where @trtap contains the table address:

        :   ALPHA=(TBLADDR,@trtap)   :
        :                            :

ANGB3 / NOANGB3  

This is a system-dependent consideration and should not concern the 
applications programmer.    When the tables for ALPHA / NUMERIC built-in 
functions are relocated from the usual global area 1 to global area 3, and 
references to global area 3 are desired, then the ANGB3 option is required. 
With the ANGB3 option global macros are able to reference fields in either 
global area 1 and/or 3. This is because the compiler generates the GLOBZ with 
the fld= parameter when ANGB3 is specified.  The macro definition of GLOBZ 
used by the assembler must be the version that recognizes the fld= parameter 
and its values and which generates appropriate GL1 and GL3 addressability). 
The NOANGB3 option allows global references to fields in global area 1 only.

        :   GLOBX @u1day (dayptr = #R15);   :
        :                                   :
Code generated:
        :   GLOBZ REGR=R15,FLD=@u1day   :
        :   LA    R15,@u1day            :
        :   DROP  R15                   :
        :   ST    R15,dayptr$(R7)       :
        :                               :

        :   positn = ALPHA(field);   :
        :                            :
Code generated:
        :   GLOBZ REGR=R15,FLD=@trtal     :
        :   LA    R15,@trtal              :
        :   DROP  R15                     :
        :   SR    R1,R1                   :
        :   LA    R14,field$(R7)          :
        :   TRT   field$(20,R7),0(R15)    :
        :   BE    *+10                    :
        :   SR    R1,R14                  :
        :   LA    R1,1(,R1)               :
        :   STH   R1,positn$(R7)          :
        :                                 :

BAL / NOBAL  

 OPTIONS=KEY=password,BAL  where password is the directory protection key.  This option allows 
the programmer to code BAL statements within a SABRTALK program by placing an 'X' or '.' in card 
column one.  If OPTIONS=KEY=password,NOBAL where password is the directory protection key is in 
effect and an 'X' or '.' is coded in card column one the following error will be issued:

  SBT0042E      EMBEDDED  BAL  STATEMENTS NOT ALLOWED.
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CLEAR / NOCLEAR  

 OPTIONS=CLEAR=(xx)  where xx is the Hex pad byte.  Coding CLEAR=(00) is the same as Coding 
CLEAR with no options and will produce code to clear the user portion of the AUTOSTORAGE block to hex 
zero's.  Coding CLEAR=(40) will clear the AUTOSTORAGE block to blanks.

EXAMPLES:

   1)   CLEAR or CLEAR=(00)
              ALASC L0
              MVI   4(R7),X'00'
              MVC   5(113,R7),4(R7)

   1a)  CLEAR=(40)
              ALASC L0
              MVI   4(R7),X'40'
              MVC   5(113,R7),4(R7)

   2)   CLEAR or CLEAR=(00)
              ALASC L1
              MVI   4(R7),X'00'
              MVC   5(113,R7),4(R7)
              MVC   118(254,R7),117(R7)

   2a)  CLEAR=(40)
              ALASC L1
              MVI   4(R7),X'40'
              MVC   5(113,R7),4(R7)
              MVC   118(254,R7),117(R7)

   3)   CLEAR or CLEAR=(00)
              ALASC L2
              STM   R0,R1,4(R7)
              LA    R14,12(,R7)
              LA    R15,1034
              SLR   R1,R1
              MVCL  R14,R0
              LM    R0,R1,4(R7)
              XC    4(8,R7),4(R7)
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   3a)   CLEAR=(40)
              ALASC L2
              STM   R0,R1,4(R7)
              LA    R14,12(,R7)
              LA    R15,1034
              SLR   R1,R1
              ICM   R1,B'1000',=X'40'
              MVCL  R14,R0
              LM    R0,R1,4(R7)
              MVI   4(R7),X'40'
              MVC   5(7,R7),4(R7)

   4)   CLEAR OR CLEAR=(00)
              ALASC L4
              STM   R0,R1,4(R7)
              LA    R14,8(,R7)
              LA    R15,4075
              SLR   R1,R1
              MVCL  R14,R0
              LM    R0,R1,4(R7)
              XC    4(8,R7),4(R7)

   4A)   CLEAR=(40)
              ALASC L4
              STM   R0,R1,4(R7)
              LA    R14,8(,R7)
              LA    R15,4075
              SLR   R1,R1
              ICM   R1,B'1000',=X'40'
              MVCL  R14,R0
              LM    R0,R1,4(R7)
              MVI   4(R7),X'40'
              MVC   5(7,R7),4(R7)

CODE / NOCODE  

If CODE is specified, an Assembler Language source listing will be generated intermixed with the 
SABRETALK statement source listing.  These options are independent of the DECK / NODECK options.

DECK/NODECK  

If DECK is specified, the compiler will produce an Assembler Language source input data set unless a 
terminal type error occurs.   If other errors are noted during the compilation, this data set will still be 
created; however, the return code will describe the severity of the error.

        Return Code    Meaning
        -----------    -----------------------------
         0             Compilation successful
         4             Information message generated
         8             Warning message generated
        12             Error message generated
        16             NODECK option

The NODECK option always produces a return code of 16.
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DOLLAR / NODOLR  

If DOLLAR is specified, the compiler will append dollar signs to every variable less than eight characters 
in length.  The regular BEGIN macro will be generated.

If NODOLR is specified, dollar signs will not be appended and the BEGIN macro generated will be

        :   BEGIN ECB=NO,NAME=xxxx,VERSION=xx   :
        :                                       :

If the NODOLR option is invoked, the application programmers should be aware of system tags generated 
by the BEGIN and FINIS macros, tags (names) that may be duplicates of those generated by 
SABRETALK.  The programmer should also avoid using the standard tags generated by the compiler 
such as $LIT, $TEMPxxx, $GENxxxx.

In cases where the DOLLAR compiler option is in effect and the global tag @fnc00 is less than eight 
characters, the statement in the following example:

        :  DCL @fnc00 BIN(31) BASED fonptr ;   :
        :                                      :

will cause the assembler to generate: 

1) @fonc00$ for the field tag,  and  
2) LA  RDB,@fnc00  for  the expansion instruction. 

These are technically (and need to be) two different names.  If the global tag is eight characters or more 
however, no dollar sign is appended: the two names are identical and a "PREVIOUSLY DEFINED 
NAME" error diagnostic appears.

GEN / NOGEN  

This option is used to provide additional information when the BEGIN macro is encountered.  If GEN is 
specified, the Assembler Language source statement PRINT GEN will be added to the Assembler 
Language source input data set just before the BEGIN macro. (The programmer should be aware that 
the BEGIN macro generates a PRINT NOGEN as its last statement).  The default option NOGEN produces 
PRINT NOGEN.

ICAFYES / ICAFNO  

This option relates to the method by which data records referenced by %INCLUDE are accessed.  If a 
programmer codes a %INCLUDE statement, and the ICAFYES option is invoked, the compiler will first 
attempt to access the record from the %INCLUDEAF file.  If the record is on the %INCLUDEAF file, it will 
be used.  If not on the %INCLUDEAF file, the record located on the %INCLUDE file will be used.  If on 
neither file, an error would be generated. 

If the programmer codes a %INCLUDE statement and the ICAFNO option is invoked, the compiler will 
look for the record on the %INCLUDE file only.

INCLD / NOINCLD  

When INCLD is specified, a source listing of all statements read in from the %INCLUDE file will be 
generated.  These statements are always treated as user-coded compiler statements, regardless of the 
option specified.
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MAP / NOMAP  

When MAP is specified, the user will receive an Attribute File Map and a Register Usage Map for each 
compilation.  These maps describe the layout of storage and register assignments required by the 
program.

Attribute file map listings will have the following format:

               ATTRIBUTE---FILE---MAP

 LEVEL NAME  BASE  TYPE  HEX   LOC  SIZE DIM SSMULT DEC-DIG CARD#

 1     bbb$  AUTO  BIN   004   4:0     4   1                  2
 1     ccc$  AUTO  BIN   008   8:0     4   1                  2
 1     fea$  AUTO  DEC   00C  12:0     3   1         5.02    11
 1     aaa$  AUTO  CHAR  00F  15:0    20   1                 12
 1     b$    AUTO  BIN   023  35:0     2  10  2              15 misaligned
 1     i$    AUTO  BIN   037  55:0     2   1                 16 misaligned
 1     dd$   AUTO  ECS   039  57:0     4   1          .00    18
 1     ee$   ptr1$ STR          :0    20   1                 29
 1     ptr1$ AUTO  PTR   040  64:0     4   1
 1     ee1$        CHAR         :0    20   1                 30

An explanation of each column follows:

• LEVEL     the structural level of the named item.
• NAME      the name of the declared item.
• BASE      the storage class of the item.
• TYPE      the data type to which the item belongs.
• LOC       the byte location (displacement) of the item (in decimal), followed, when needed, by 
the decimal number of the bit (within byte) location.
• SIZE      the length of the item in bytes and,  where needed, in additional bits.
• DIM       for arrays, the number of items in the array (in decimal) - - otherwise the value 1.
• SSMULT    the number of bytes per array item in decimal.
• DEC-DIG   for DECIMAL data, the decimal number of integer digits, followed by the decimal 
number of fraction digits.
• CARD#     the sequence number of the card record in which the item appears.

Register Usage Map listings will have the following format:

                   REGISTER---USAGE---MAP

     BASE NAME       STORAGE ALLOCATED     REGISTER ASSIGNMENTS

     AUTOMATIC       544                   reg  7  R7
     CONSTANT                              reg  8  R8
     ENTRY BLOCK                           reg  9  R9
     CONTROL PGM                           reg 10  R10
     CONTROL PGM                           reg 11  R11
     CONTROL PGM                           reg 12  R12
     CONTROL PGM                           reg 13  R13
     rptr$           800                   reg  6  R6
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MLEVEL0 / MLEVEL1 / MLEVEL2  

If MLEVEL0 is specified, all error, warning and information messages will be listed in the diagnostic 
listing at the end of each compilation.
MELVEL1 - error and warning messages only.
MLEVEL2 - error messages only.

NUMERIC  
                _       _
        NUMERIC=(|TBLADDR|,name)
                 |TBL    |
                 -       -

The NUMERIC compiler option relates to the translate table the compiler 
references when generating code for the NUMERIC built-in function.  It also 
indicates the manner in which the table is accessed.

name is required.   It indicates the identifier the compiler will use when 
generating code for the NUMERIC function.  The compiler always generates the 
GLOBZ macro for the NUMERIC function.   name is the identifier within the 
global area that either contains the address of the table or is the name of 
the table.  name is therefore always a global tag.

TBL and TBLADDR are mutually exclusive.   One of the two must be present. 
TBL indicates to the compiler that the name specified is the name of the 
table that is to be used when generating code for the NUMERIC function. 
TBLADDR indicates to the compiler that the name specified is a global field 
containing the address of the table.

In the case where @trtno contains the table name:

        :   NUMERIC=(TBL,@trtno)       :
        :                              :

In the case where @trtad contains the table address:

        :   NUMERIC=(TBLADDR,@trtad)   :
        :                              :

OPT / NOOPT  

If the option OPT is invoked, the compiler will optimize the literal pool.  If NOOPT is invoked, the literal 
pool optimization pass is omitted.   If an error is encountered when the program is compiled, the NOOPT 
option is automatically invoked for that compile.

PRINT / NOPRINT  

The  PRINT / NOPRINT option is a general control parameter and will override the other print related 
options:  MAP, XREF, CODE, etc.  If PRINT is  specified,  output  will  be  provided in accordance with 
the other print related options.  If NOPRINT is specified, there will be no printed output produced,
regardless of the other options.
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System-Equate-Identifiers Options (  GTS  ,   ONL  , etc.)      

This option specifies a three-character code designating the group of system-equate tags that will be 
recognized when compiling the program.  An installation can specify up to four three-character tags that 
relate to the particular system-equate macros (valid within the BDAM file. The program may only refer to 
one SYSEQ at a time). The two indicated above are only examples.  The installation establishes the valid 
three-character tags by executing the utility RESETEQU. The default option is established by executing 
a PERM type run.  When an installation wishes to change any of the three character tags, within a 
particular system-equate, the utility UPDATEQU must be executed.

TERM / NOTERM  

The TERM option specifies that diagnostic messages, along with their corresponding source statements, 
are to be placed in the data set, or the device, described by the SYSTERM DD card in the JCL 
compilation request.   This option is similar to the Assembler option of the same name.

TRACE / NOTRACE  

The TRACE option gives SABRETALK code in the BAL listing.

XREF / NOXREF  

If  XREF is specified, a cross-reference listing will be provided specifying the statement number of those 
statements that define or use the symbols of a program.  An asterisk following a statement number 
denotes that  the  symbol was referenced as a receiving field in that statement.

                  CROSS--REFERENCE--LISTING

    SYMBOL      DEFN   REFERENCES

    array2$     138    245   287   287   288
    array3$     139    220   234   240   303   313
    flt_no$     150    432
    highchk$     77    123   127   129   254   254   255   261
                       266   267   269
    ndx4$        48    123*
    tag$         43    327

The  SYMBOL column  will  contain the alphabetized names of identifiers and labels that are essential in 
the  assembled  program.  Macro arguments and INCLUDEAF identifiers may also appear.

The DEFN column will contain the decimal number of the source statement that defines the symbol.  The 
names of macros and the word INCLUDEAF may appear as counterparts of SYMBOL entries.

The REFERENCES column will contain the decimal number(s) of statements wherein the symbol is 
referenced.
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Compiler Support of Variable Block Sizes:  

The compiler will accept user-defined size limits for the four storage block classes.    Specification of 
limits will be accomplished through the use of new compiler options.

  Option     Option                             Option
  Keyword    Meaning                            Syntax
  _______    _______                            ______

  KEY        PROTECTION KEY                     key=password
  ECB        ENTRY CONTROL BLOCK                ecb=size
  PSB        PROGRAM (CONSTANT) STORAGE BLOCK   psb=size
  BSB        BASED STORAGE BLOCK                bsb=size
  ASB        AUTOMATIC STORAGE BLOCK            asb=(name1,size1,
                                                     name2,size2, ...)

password:  a one to four character sequence (excluding  commas  and  blanks), controlled  by an 
installation's Compiler Support Group

size:      one to four decimal digits, whose value must  not exceed  4096 (4k)

name:      a one to eight character sequence which should be a valid argument for the  ALASC macro 
(compiler does not validate)

Option specifications must have no imbedded blanks, and must be separated by commas.

During compilation (EXEC) runs, the correct KEY=password specification is required in order to override 
default block sizes, and it must be coded prior to any block option.

Option overrides may be specified on a SABRETALK OPTIONS statement, or by a processor override 
statement available to your System Control Group.

       Example:
OPTIONS=KEY=ZZZ,PSB=4096

- must begin in column one (1)
- coded  prior  to  the  first program statement

All compiler options in effect (with the exception of KEY) are listed at ends of compilations.  The KEY will 
be listed at the ends of compiler PERM runs.

To provide full support for the PSB option, the compiler's core management philosophy has been 
revised.  Consequently, it is possible to compile most programs of 4K bytes within the typical region size 
of 220K, supplied by most SABRETALK users running under standard OS/MVT.

In the event that the available main storage for a compilation is exhausted, however, the following 
Terminal error message is issued:

SBT0186T  -  INSUFFICIENT CORE ALLOCATED FOR THIS COMPILATION.  RUN ABORTED.

This unfortunate and typically rare condition can be remedied by increasing the region size used for the 
compilation.

 Word of Caution:

These options should not be used indiscriminately.  It should be understood that they only provide 
compilation flexibility, and in no way insure that a resultant program will be compatible with attributes of 
a given TPF System.  At System One, for example, the TPF modifications required to support core-
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resident programs up to 4K bytes in size (PSB=4096), consisted of changes to the Loader, the Allocator, 
the Post Processor and the Control Program System Error routines.

Changing the Compiler Block Size Options:  

For KEY, code:
KEY=newpassword

For ECB, PSB and BSB, code:
ECB=newsize
PSB=newsize
BSB=newsize
(NOTE: maximum newsize for BSB is 4096)

For ASB:
To add an entry, code:

ASB=(newname,newsize)

To change the size of an existing entry, code:
ASB=(oldname,newsize)

To delete an entry (name and size), code:
ASB=(oldname,0)

NOTE:  No more than five (5) ASB entries may be active at one time.

Changes are accepted during compilation (EXEC) runs and during PERM runs.  It should be clear that 
'EXEC' changes are only in effect for the duration of the compilation, and PERM changes establish new 
permanent defaults.  Typically, PERM runs are only conducted by a Compiler Support Group, due to 
'write protection' provided for the compiler components.  The KEY password may only be changed during 
a PERM run, since during an EXEC run it is used to restrict access to the block size options, and must, 
therefore, match the established value.

Logically, the implementation of this enhancement does not alter the compiler's method of enforcing the 
block size limits.  What has changed is that previously hard-coded values are now dynamically 
assigned.  A brief explanation of block size evaluation follows:

For Automatic storage, the compiler attempts to find an argument for the ALASC macro (from all 
those stored with the Automatic Storage Block (ASB) option), which is associated with the smallest 
size equal to or greater than the byte count of all fields declared in Automatic storage.  Sizes 
specified in the ASB option should be 8 bytes less than the true sizes of the desired Automatic 
storage blocks, since the first 8 bytes in the blocks are for the TPF System usage.  For example, a 
size of 1047 describes a block of 1055 bytes.

For the Entry Control Block (ECB) and Based Storage Block (BSB), the total byte counts of all fields 
declared in these storage classes are compared, respectively, against the limits established with the 
ECB and BSB options.

For Program (Constant) storage, the byte count of compiler-generated Assembler Language 
instructions is compared against the limit established with the PSB option.  Such byte count is 
approximate because the compiler does not expand TPF macros and thus cannot take into account 
a macro expansion byte count.  It is therefore possible for a program size limit that was below the 
maximum during the compilation, to still be exceeded during assembly of the generated Assembler 
Language instructions.

In all cases, total byte counts are depicted in compiler output listings.  Exceeding block size limits in 
effect for a compilation causes appropriate Error messages to be issued, as follows: 
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SBT0155E  -  AUTOMATIC STORAGE SIZE LIMIT HAS BEEN EXCEEED.

SBT0157E  -  PROGRAM SIZE LIMIT HAS BEEN EXCEEDED.

SBT0159E  -  ENTRY BLOCK SIZE LIMIT HAS BEEN EXCEEDED.

SBT0161E  -  THE AREA POINTED TO BY THE POINTER EXCEEDS BASED STORAGE SIZE 
LIMIT.

NOTE: Because of the format flag in storage blocks, the maximum size allowed on a Based Storage 
Block (BSB) should be 4095.
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CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT  

SPECIAL NOTE: This chapter may be of limited use, as most examples involve 
using TSO for editing SABRETALK source code.

The purpose of this section is to familiarize programmers with the facilities available to them in an 
INTERACTIVE environment under control of an INTERACTIVE environment monitor (IEM), such as TSO, in 
the OS system. The assumption is made that the programmer is familiar with the general operation of an 
IBM INTERACTIVE environment.  For those who are not, the following IBM publications are recommended:

• IBM OS/VS2 PROGRAMMING LIBRARY: TSO (order number GC28-0629 )
• IBM OS/VS2 TSO TERMINAL USER'S GUIDE (order number GC28-0645 )
• IBM OS/VS2 TSO Command Language Reference (order number GC28-0646 )
• IBM Virtual Machine Facility / 370: CMS User's Guide (order number GC20-1819 )
• IBM Virtual Machine Facility / 370: Terminal User's Guide (order number GC20-1810 )
• IBM Virtual Machine Facility / 370: Quick Guide for Users (order number GX20-1926 )

Throughout this section, examples will have the following format:

• data typed by the user will appear in lower case

• SYSTEM REPLIES WILL APPEAR IN UPPER CASE

CREATING A PROGRAM  

With an INTERACTIVE monitor, programs are created, modified and saved in the EDIT mode.  The 
programmer initiates the EDIT mode by using the EDIT command in the command mode.  The format using 
TSO is:

        edit  name  sabr ( old ) ( noscan )
                         ( new ) ( scan   )
                         (     ) (        )

EDIT, name and SABR are required.  SABR tells the monitor that the program being edited is a 
SABRETALK program.  New is also required when the program does not exist.  The SCAN and NOSCAN 
options involve the syntax checking of the program's statements.  If it is desired that syntax errors be 
displayed after every statement, SCAN must be specified:

        edit  name  sabr new scan

If the programmer does not want such interruptions while building his program, he can accept the NOSCAN 
default:

        edit  name  sabr new

After  the  program has been built, notification of all syntax errors can be obtained by use of the SCAN 
subcommand of the EDIT mode.

After the EDIT command for a NEW program has been given, the INTERACTIVE monitor facilitates the 
building of the program by automatically supplying statement numbers before each statement.  This is 
known as the INPUT phase of the EDIT mode.  After the monitor supplies the line number, the cursor is 
positioned at what would correspond to card-column one on a coding form.  The programmer must 
remember that all SABRETALK statements must start in or after column two.  The spacebar must be 
depressed before starting a statement.
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The INPUT PHASE is terminated:

1) Implicitly when the syntax checker detects an error.  This occurs only when SCAN was specified.

2) Explicitly by entering a null (empty) line.

The INPUT phase can be re-initiated by typing the INPUT sub-command or by entering a null line.  After all 
statements have been typed, the programmer should return to EDIT mode, save his data set and END the 
EDIT phase.  He can then compile his program.  He may then re-enter EDIT to correct any errors not 
previously detected.  This cycle can continue until the program is ready to be executed.

The following simulation shows what program creation looks like in practice:

        READY
        edit myprog sabr new scan
        INPUT
        00010   myprog: PROC;
        00020           DCL (a,b) BIN;
        00030           a = b;
        00040           END myprog;
        00050
        EDIT
        save
        SAVED
        end
        READY

SYNTAX CHECKING  

This section describes the Syntax Checker.  Syntax checking is the process by which the system determines 
whether or not the source language statements in a given program are constructed properly.  It detects 
syntax errors that can be found by scanning one complete statement.   Diagnostic messages are generated 
for any errors of syntax that are detected.

This section also describes HELP information available for SABRETALK Functional descriptions and syntax 
of selected statements are available in EDIT mode, through the use of the HELP subcommand.

The Syntax Checker  

The syntax checker allows a programmer in an INTERACTIVE environment to make corrections as he is 
keying in his program at the terminal.  If a programmer makes a syntax mistake while entering his program, 
the syntax checker sends an error message to his terminal informing him of the error.  The programmer can 
then re-enter the statement in the correct format and continue writing his program.

A programmer may use a batch technique to place a newly written program into an installation's library.  If 
this library is available to the INTERACTIVE monitor, the program may be retrieved and scanned in its 
entirety for syntax errors.  The programmer can then correct invalid statements.  The result, whether the 
program was developed in a batch or an INTERACTIVE  environment, is a syntactically correct program that 
is ready to be compiled.

The compiler may then be invoked by keying in a command from the terminal.  This compile could uncover 
additional programmer errors.  These would be inter-statement type errors such as undefined labels, 
duplicate names, data type incompatibilities, etc.  If such errors are encountered, the programmer can 
correct his source from the terminal and compile the program again.  When a clean compile is received the 
program is ready for execution testing.
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The syntax checker performs single-statement validation as opposed to inter-statement checking.  Its 
purpose is to eliminate syntax errors from a program before it is submitted for compilation.  It is limited to the 
verification of punctuation, spelling of keywords, placement of keywords and operand in statements, etc. 
Inter-statement logic and meaning are evaluated when the program is compiled.

In the EDIT mode, notification of syntax errors is controlled by the SCAN/NOSCAN options and by the 
SCAN sub-command.

Syntax Checking New Statements  

The user can request that each line he enters from the terminal in INPUT mode be immediately scanned for 
syntax errors by specifying the SCAN option with the EDIT command or ON with the SCAN sub-command. 
Before the record is scanned it is put in the user's data set.  If a syntax error is found in a record just entered 
by the user, and an error message is displayed, the system will switch from INPUT to EDIT mode so that 
corrections can be made. The user returns to INPUT mode by entering a null line or the INPUT command.

Syntax Checking Old Statements  

The SCAN sub-command can be applied to existing statements by specifying the SCAN subcommand with 
no operands.  The entire program will be scanned for syntax errors.  The syntax checker will complete the 
scan then display all errors found during the scan.  The line number and an error message will be included 
for programmer reference.

Most errors halt syntax checking of a statement, that is, if more than one syntax error exists in a statement, 
only the first one will be reported.  However, some errors encountered in structured DECLARE statements do 
not terminate the syntax checker and multiple error messages for a single statement can be generated.

Structure Mode  

The syntax checker under an INTERACTIVE environment has flexibility that is not found in most other high-
level language syntax checkers.  It allows the programmer to code a structure a line at a time and have his 
input checked logically against the data already entered for the structure.  This is the only variation from the 
rule that every entry to the syntax checker must be a complete statement or statements.

In order to provide this flexibility certain rules have been established.  The programmer should acquaint 
himself with the logic of structure mode and the rules that apply before attempting a line-by-line scan of a 
structure.

Initializing Structure Mode  

The syntax checker builds internal lists that permit the structure to be checked a line at a time.  Each line of 
input can be compared against the data already entered to see if the rules of dimension and level have been 
violated.  The syntax checker determines that the programmer desires to build a structure when it receives a 
DECLARE statement followed by a comma instead of a semi-colon.

INPUT
00010     DCL 1 rec,

Once the checker is in structure mode, it will retain all of the internal lists built for the structure until the 
structure is completed or certain unrecoverable syntax errors are encountered.
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Completing the Structure  

The example given above initialized structure mode.  The programmer can now continue his structure a line 
at a time.

00020           2 date BIN,
00030           2 address CHAR(35);

Input line 30 above closes out the structure with a semi-colon.  At this point the syntax checker is no longer 
in structure mode.

Error Handling in Structure Mode  

Appropriate messages will be issued if errors are detected within the structure.  Errors uncovered in a 
structure fall into two categories:

1) Errors that do not affect the internal lists.  These errors are recoverable.

2) Syntax  or  logic  errors  that  negate  the  validity of the internal lists.  These errors are not 
recoverable.

Recoverable Errors

An example of such an error is depicted in the following simulation:

   INPUT
   00010     DCL 1 rec,
   00020           2 partno BIN(33),
   SBT014   20   DECLARATION OF A BINARY FIELD MUST BE 15 OR 31.
   EDIT

The terminal is now in EDIT mode, ready for correction.  The programmer should correct the error:

   c /33/31/
   00020           2 partno BIN(31),

He should then enter a null line to get back into INPUT mode.

   INPUT
   00030

The syntax checker is now ready to accept more data for the structure.

NOTE: The corrected line should not be rescanned.  The internal lists have been set up for this line 
already.  A rescan would cause line to be placed in the lists again and an unintentional syntax error 
would result.

Unrecoverable Errors

Certain syntax and logic errors occur in structure mode that negate the validity of the internal lists. 
When these errors are encountered the syntax checker will delete the lists and send messages that will 
guide the programmer in corrective action:
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   INPUT
   00010     DCL 1 rec (10),
   00020           2 mypart BIN,
   00030           2 partlst,
   00040             3 logs (6) BIN,
   SBT029   40   DIMENSION HAS BEEN DECLARED WHEN ALREADY IN FORCE.
   SBTCCC   CORRECT ERROR AND RESCAN FROM LINE 10.
   EDIT

At this point the internal lists for the structure have been deleted and the syntax checker is effectively out 
of structure mode.  The error should be corrected, and the entire structure rescanned:

   c /(6) //
   00040             3 logs BIN,
   SCAN 10 40

The syntax checker will thus be forced back into structure mode, this time with the correct internal lists. 
The programmer can then go back into INPUT mode and complete the structure.

Rules for Structure Mode  

1) Each line must end in a comma.  Structure mode is terminated by a semi-colon.

2) Do not rescan the structure unless the syntax checker sends the request message:

CORRECT ERROR AND RESCAN FROM LINE nnnn.

3) Termination of structure mode can always be forced by entering a semi-colon.

Coding Standards  

This topic is included to point out to the SABRETALK user in an INTERACTIVE environment, some coding 
standards for the syntax checker.  The way a statement is entered under control of the INTERACTIVE 
monitor makes little difference to the compiler.  However, the syntax checker works on a statement-by-
statement basis.  These tips are provided to assist the programmer.

The treatment of statements:  

The syntax checker works on a statement-by-statement basis.  It is therefore most efficient to enter one 
statement at a time.  When the syntax checker is active during the INPUT mode each line entered must be a 
complete statement or an error will be issued. There are two types of statements recognized by the syntax 
checker.  The first is a COMMENT statement.  It begins with the composite /*  and ends with */.  The syntax 
checker is unable to detect a COMMENT that extends over one line.  When a programmer wishes to enter a 
multi-line COMMENT he should begin and end each line with /* and */, respectively.  The second type of 
statement is a Program statement. Every Program statement ends with a semi-colon.  It may follow a 
COMMENT or another Program statement.  An entire structure is considered a program statement just as 
any other type of statement except a COMMENT.
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Unacceptable Statements  

The following statements cannot be syntax checked without causing confusion to the Syntax Checker:

1) Statements containing non-syntax macros.

2) Non-SABRETALK Statements:

NOTE: Assembler Language statements, with or without labels, and the OPTIONS statement do not cause 
an error.  The syntax checker disregards them.

Programmer Declared Functions  

One assumption that the syntax checker makes is that all identifiers have been or will be declared within the 
program being entered.  One exception is a programmer declared function.  Two rules should be 
remembered:

1) Before a programmer defined function can be referenced, it must be declared.

2) If a change is made to an old program on a line with a programmer declared function, or a 
new line is to be inserted which contains reference to a programmer declared function, the line with 
the DECLARE for the FUNCTION must be scanned.
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CHAPTER 9: SABRETALK COMPILER MESSAGES  

The  compiler issues information, warning, and error messages.  The mutually exclusive options 
MLEVEL0/MLEVEL1/MLEVEL2 determine which class or classes of messages will be printed at the end of 
the compilation.

There are seven types of messages:

A) Syntax errors

B) Programmer errors

C) Terminal errors

D) Internal Compiler errors

E) System (Loader) errors

F) Warning messages

G) Information messages

The type of message is encoded in the message printout:

    :   card no.            error no.            message           :
    :  ----------          -----------          ---------          :
    :      10               SBT0071E       DATA ERROR - ILLEGALLY  :
    :                                      MIXED DATA TYPES.       :
    :                                                              :
:                    ----------------                          :
    :                   |     |      |   |                         :
    :       ------------| SBT | 0071 | E |------------             :
    :      |            |     |      |   |            |            :
    :      |             ----------------             |            :
    :      |                    |                     |            :
    :      V                    V                     V            :
    :    SABRETALK          ERROR NUMBER        PROGRAMMER ERROR   :
    :                                                              :

The codes for errors and messages are:

1) S - Syntax error

2) E - Programmer error

3) T - Terminal error

4) C - Internal Compiler error

5) W - Warning message

6) I - Information message

7) L - Loader message
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Source statements that generate errors are flagged in the source listing:

        :   CARD NO.                SOURCE STATEMENT          :
        :  ----------              ---------------------         :
        :      20                   bbb = INDEX (aaa, hh, bbb);  :
        :  ****ERROR****                                         :
        :                                                        :
        :      21                   bbb = bstr(b(i));            :
        :  ****ERROR --------------->                            :
        :                                                        :

The error encountered on card number 21 above is a Syntax error.  (The grammatical rules of the language 
have been violated.)  The ‘arrow point’ highlights the symbol causing the error.

The error messages themselves are listed at the end of the compilation.  The messages associated with the 
examples above would be:

        :   card no.       error no.       message
        :   --------       ---------       -----------------------   :
        :   20             SBT0076E        THE ARGUMENT TYPE IS      :
        :                                  INCORRECT.                :
        :                                                            :
        :   21             SBT0002S        SYNTAX ERROR - THE LEFT   :
        :                                  PARENTHESIS IS INVALID    :
        :                                  AFTER THE NAME IN         :
        :                                  CARD COLUMN 16.           :
        :                                                            :

The Compiler also generates a message indicating the approximate byte count of the Assembler Language 
program associated with the source program.  The figure provided at the bottom of the source listing 
excludes macro expansions.  It includes all literals and constants before any optimization takes place.  The 
number is provided to give the programmer some insight as to the
approximate size of the program.  If the programmer needs to know the exact size he must, of course, 
assemble the generated code.

Following are lists of messages by types.  The message text itself will appear in upper case letters and may 
be followed by a short note (in upper and lower case) which provides a further explanation and/or advice.

Note:  For Loader errors see the Sabretalk Installation Guide.

SEVERE PROGRAMMER ERROR MESSAGES  

SBT0004E     ILLEGAL CHARACTER / STRING
The statement contains a character used in a way that violates the language rules.  Check 
the last character-string to see if it was closed properly.

SBT0005E     NESTED INCLUDES ARE ILLEGAL
One may not use the %INCLUDE statement to read in a file that contains another %INCLUDE 
statement.

SBT0006E     FORMAT ERROR IN %INCLUDE STATEMENT

SBT0008E     %INCLUDE FILE NOT FOUND
The file name following the %INCLUDE has not been found on the library.  Check spelling or 
contents of %INCLUDE library.

SBT0010E     %INCLUDEAF FILE NOT FOUND
Same as SBT0008E, but %INCLUDEAF file is involved.
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SBT0011E     ________ IS AN UNDEFINED SYMBOL.
The identifier specified in the error message has not been declared in this program.

SBT0013E     CHARACTER SIZE IS NOT BETWEEN 1 AND 256.
Length specification of CHARACTER field must be 1 - 256.

SBT0014E     DECLARATION FOR A BINARY FIELD MUST BE 15 OR 31.
Length specification of BINARY field must be 15 or 31.

SBT0015E     DECIMAL POINT IS NOT BETWEEN 1 AND 15.
15 is the maximum number of decimal digits that can be declared.

SBT0016E     THE DECIMAL POINT IS GREATER THAN THE SIZE OF THE FIELD.
The first number specified in the length and precision of a DECIMAL number includes those 
digits to the left and right of the decimal point, the second number indicates the number of 
digits to the right of the decimal point only.

SBT0017E     BIT SIZE IS NOT BETWEEN 1 AND 32.
Length specification of BIT field must be 1 - 32.

SBT0018E     THE DIMENSION ATTRIBUTE IS GREATER THAN 255 OR LESS THAN 1.
Arrays have a maximum of 255 elements.

SBT0019E     THERE IS A CONFLICT IN ELEMENTARY ATTRIBUTES.
More than one data type has been used to describe a single identifier.

SBT0020E     THE BASE IS NOT IN AUTO STORAGE OR IS NOT A POINTER.
The implicitly declared pointer following the BASED attribute has previously been declared 
but not as a pointer in AUTOMATIC storage.

SBT0021E     THERE IS A CONFLICT IN STORAGE CLASSES.
A storage class has previously been designated for this structure or element variable.  The 
entire structure must reside in one class storage.

SBT0022E     ________ PREVIOUSLY DEFINED NAME.
The identifier specified in the error message has previously been declared in this program. 
All identifiers must be unique.

SBT0023E     LEVEL1 HAS NOT BEEN DEFINED.
The major structure of a structure must be defined as level 1:

             DCL 1 able,
                   2 baker CHAR(2),
                     etc.

SBT0024E     LEVEL ERROR OR THE 'DEFINED' IS NOT AT THE END OF THE
             DECLARE.

The major structure has been declared as other than level 1 or a variable has been declared 
with a level other than 1.

SBT0025E     THE END OF THE DECLARE IS NOT ELEMENTARY.
A DECLARE statement has not been completed.  Usually the error occurs when a level 
umber has been omitted from a structure making statement look like a multiple DECLARE:

                 DCL 1 structure,
                       strut2 CHAR(20);
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SBT0026E     THERE IS A CONFLICT IN THE FACTORED LEVEL NUMBERS.
When factoring attributes all identifiers must have the same level number.  Such an error 
would be:

             DCL  1  rec,
                     2  (fld,flt),
                        3  (col,crd)     BIN;

SBT0027E     THE OBJECT OFTHE 'DEFINED' HAS NOT BEEN PREVIOUSLY DECLARED.
The DEFINED attribute must be based on an identifier declared in this program.

SBT0028E     THE STORAGE CLASS HAS BEEN DECLARED AT A LEVEL GREATER THAN 1.
The storage class of a BASED structure must be declared at level 1. It may not appear at 
any other level:

             DCL 1 rec BASED (iptr),
                   2 head CHAR(8),
                     etc.

SBT0029E     DIMENSION HAS BEEN DECLARED WHEN ALREADY IN FORCE.
An array cannot contain another array.  The following DECLARE statement would create this 
error:

             DCL 1 record (10),
                   2 data (5) BIN;

SBT0030E     THERE ARE 2 'DEFINES' FOR THIS ITEM.
The item declared with the DEFINED attribute is based on an item that has also been 
declared with the DEFINED attribute.

SBT0031E     THE LEVEL IS EITHER GREATER THAN 256 OR LESS THAN 1.
Level, if specified, must be between 1 and 256.  If not specified, (as in a single variable,) it is 
assumed to be 1.

SBT0032E     SYSEQ REFERENCE CONTAINS IMBEDDED BLANK(S).

SBT0033E     FUNCTION TABLE EXCEEDED.
There are more than 32 programmer declared functions in one program segment (external 
procedure.)

SBT0034E     BASE TABLE EXCEEDED.  MORE THAN 92 POINTERS WERE DECLARED.

SBT0035E     LENGTH OF RECEIVING FIELD IS SHORTER THAN SENDING FIELD,
             MVCL DOES NOT TAKE PLACE.

SBT0036E     ERROR - THE SEMICOLON AFTER THE THEN/ELSE IS INVALID.

SBT0037E     ERROR - THE SEMICOLON AFTER THE SEMICOLON IS INVALID.

SBT0038E     THERE IS AN UNDEFINED SYMBOL IN THIS STATEMENT.
The Compiler was unable to determine what symbol in the statement was the one not 
declared in the program.  Check identifiers in the statement against DECLARE statements.

SBT0039E     DECLARATION FOR A DEC FLOAT FIELD MUST BE  6 OR 16.

SBT0040E     THERE IS A CONFLICT BETWEEN DEFINED AND BASED ATTRIBUTES
             FOR THIS ITEM.

SBT0042E     EMBEDDED  BAL  STATEMENTS NOT ALLOWED.

SBT0044E     NAME IN ALLOCATE STATEMENT IS UNDEFINED.

SBT0045E     STORAGE CLASS FOR NAME IN ALLOCATED STMNT ISNT BASED OR RENTED
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SBT0046E     NAME IN FREE STATEMENT IS UNDEFINED.

SBT0047E     STORAGE CLASS FOR NAME IN FREE STMNT IS NOT BASED OR RENTED.

SBT0048E     RETURN STATEMENT ILLEGAL IN MAIN PROCEDURE.
Main (external) PROCEDURE may be entered and exited by the use of TPF ENTER and 
BACK type macros only.

SBT0049E     CONSTANT IS ILLEGAL AS A PARAMETER FOR AN INTERNAL PROCEDURE.

SBT0050E     LABEL ON STATEMENT HAS BEEN DEFINED (NOT AS A FUNCTION).
The label on the PROCEDURE statement has been declared as an identifier in this program.

SBT0051E     MAIN PROCEDURE CANNOT BE A FUNCTION.

SBT0052E     LABEL  ON  FUNCTION  HAS  BEEN  FOUND  ON  PREVIOUS  PROC
             STATEMENT.

All labels in a program must be unique.

SBT0053E     TOO MANY INTERNAL PROCEDURES AND PROGRAMMER DEFINED
             FUNCTIONS.

A maximum of 50 internal procedures and/or programmer declared functions are allowed in 
a given program.

SBT0054E     LENGTH OF CSTR (CHARACTER-STRING) IS GREATER THAN 256.
A character-string must be from 1 to 256 characters in length.  This restriction applies to the 
length specified in the CSTR function.

SBT0055E     LENGTH OF BSTR (BIT-STRING) IS GREATER THAN 32.
A BIT-string must be from 1 to 32 bits in length.  This restriction applies to the length 
specified in the BSTR function.

SBT0056E     LENGTH OF NSTR (NUMERIC STRING) IS GREATER THAN 15.
Because NSTR data is presumed to be data for arithmetic operations, its size is limited to the 
15 digit restrictions of DECIMAL arithmetic.

SBT0057E     2ND PARAM OF CSTR, BSTR OR NSTR CANT BE AN EXPRESSION
             WITHOUT 3RD.

SBT0058E     2ND PARAM OF CSTR, BSTR OR NSTR CANT BE A VARIABLE
             WITHOUT 3RD PARAM.

SBT0059E     EXPRESSION ILLEGAL AS 2ND PARAMETER OF BSTR (BIT-STRING).
The second parameter of the BSTR function must always be a constant if it is specified.

SBT0060E     THE FIRST ARGUMENT OF A BSTM FUNCTION IS ILLEGAL.
The first parameter of BSTM must be a Variable or an expression.

SBT0061E     THE SECOND ARGUMENT OF A BSTM FUNCTION IS ILLEGAL.
The second parameter of BSTM must be a BINARY literal. 

SBT0062E     NO  ARGUMENT  OR  ILLEGAL  ARGUMENT  SPECIFIED  ON   MACRO
             STATEMENT.

Check TPF macro manual and check macros supported by SABRETALK

SBT0063E     NO  LITERAL  OR  ILLEGAL  LITERAL  SPECIFIED   FOR   MACRO
             STATEMENT.

Check TPF macro manual and check macros supported by SABRETALK
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SBT0064E     STORAGE CLASS IS NOT PROGRAM BASED OR CONSTANT BASED.
The identifier specified in the CONST statement has not been defined in CONSTANT storage.

SBT0065E     ILLEGAL MACRO NAME SPECIFIED IN MACRO STATEMENT.
More than one macro has been used in a statement or a macro has been used as an 
identifier.

SBT0066E     ILLEGAL NESTING OF CSTR, BSTR, OR NSTR FUNCTION.
The string functions may not contain other string functions as parameters.

SBT0067E     INVALID REGISTER NOTED.
The register number employed in a register assignment is greater than 15.

SBT0068E     ________ IS AN UNDEFINED LABEL.
The label designated in the error message has not been defined in the program as a 
statement label or label variable.

SBT0069E     ________ IS AN INVALID FUNCTION.
The function designated in the error message either has not been declared as a function, or 
has a discrepancy in parameters.  The number of parameters passed in the function 
invocation does not match that on the PROCEDURE statement.

SBT0070E     A BIT STRING IS NOT DIVISIBLE BY 8.

SBT0071E     DATA ERROR - ILLEGALLY MIXED DATA TYPES.
The statement flagged with the error contains an operation that is illegal for the two types of 
data involved.  The operation could be assignment, arithmetic, relational, logical or string.

SBT0072E     CONTINUATION CARDS FOR THIS MACRO MUST BEGIN PRIOR TO
             CARD COL. 17.

SBT0073E     THE FUNCTION NAME IS NOT IN THE LIST OF LEGAL FUNCTION
             NAMES.

The function name is not a valid built-in function and has not been defined as a programmer 
declared function.

SBT0074E     THERE ARE AN INCORRECT NUMBER OF FUNCTION ARGUMENTS.
The number of parameters being passed to a built-in function does not match the required 
input.

SBT0075E     ARGUMENT WITHIN BUILT-IN FUNCTION INCOMPLETE.
Max built-in function requires at least two arguments within parentheses, and/or 
parentheses must be balanced.

SBT0076E     THE ARGUMENT IS ILLEGAL FOR THE BUILT-IN FUNCTION.
The parameter passed to the built-in function is not legal for that function.

SBT0077E     AN INDEX FUNCTION HAS AN INVALID SIZE.
The first parameter of the INDEX built-in function must be a character-string larger than the 
second.

SBT0078E     THE FIRST ARGUMENT OF A LSTR FUNCTION CANNOT BE A BIT
             STRING CHARACTER.

SBT0079E     BASE IS NOT IN AUTOMATIC STORAGE NOR IS IT A POINTER.
The error is normally a result of incorrectly using a pointer qualifier.

SBT0080E     THE FIRST ARGUMENT OF A LSTR FUNCTION CANNOT BE A LITERAL.

SBT0081E     LITERAL ERROR -- ILLEGAL OR UNDEFINED LITERAL TYPE.
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SBT0082E     LITERAL ERROR -- BIT-STRING LENGTH IS GREATER THAN 32.

SBT0083E     LITERAL ERROR -- CONTENTS OF THE BIT-STRING ARE NOT
             0 OR 1.

SBT0084E     LITERAL ERROR -- TOO LARGE FOR ARITHMETIC DATA TYPE.

SBT0085E     LITERAL ERROR -- NO DECIMAL POINT FOUND IN CAD FIELD.

SBT0086E     LITERAL ERROR -- HEX FIELD GREATER THAN A FULL WORD.
Because the hexadecimal literal is another way of expressing a BIT-string literal, it is limited 
to a fullword (32 bits) of valid hexadecimal digits.

SBT0087E     LITERAL ERROR -- INVALID CHARACTER IN THE HEX LITERAL.
The label on the END statement does not match the label on the DO group in question.

SBT0088E     THE SECOND ARGUMENT IS INVALID FOR AN ELEMENT OF A
             SUBSCRIPT ENTRY

SBT0089E     DO  LOOP  ERROR.   THE  LABEL  ON  THE  END  STATEMENT  IS
             UNDEFINED.

SBT0091E     ATTRIBUTES IN FACTOR LIST.
Identifiers may be factored only if all the attributes in the DECLARE statement apply to all the 
identifiers.

SBT0092E     ERROR - MISSING OR MISPLACED END STATEMENT(S).

SBT0093E     EXTRANEOUS END STATEMENT.

SBT0096E     THE FIELD BEING SUBSCRIPTED IS UNDEFINED.

SBT0097E     INDEX ERROR.  A NON-DIMENSIONED ITEM.
The identifier being subscripted has not been declared as an array.

SBT0099E     INDEX ERROR.  THE DATA TYPE FOR THE INDEX IS INVALID.
The subscript variable may be BIT, BIN, DEC or NCS.

SBT0100E     DO LOOP ERROR.  WHILE OPERAND IS NOT A PROGRAMMER DEFINED
             FUNCTION.

SBT0101E     ILLEGAL EXPRESSION IN INDEX.
The expression is illegal for the INDEX built-in function.

SBT0103E     INDEX ERROR.  MORE THAN ONE VARIABLE IN INDEX.
Only one variable is permitted in a subscript expression.

SBT0104E     INDEX ERROR.  NEGATIVE VARIABLE.
A prefix minus is not allowed in a subscript expression.

SBT0108E     INVALID DATA TYPE FOR THE SIGN FUNCTION.
The SIGN built-in function may only be used on arithmetic data types.  No string data is 
allowed.

SBT0111E     INVALID REGISTER BEING USED AS A PARAMETER ON A MACRO.
The register number assigned in a macro statement conflicts with standard system register 
assignments.  Check a TPF macro manual.
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SBT0113E     REGISTER BEING STORED HAS BEEN ALTERED PRIOR TO THE START
             MACRO.

The START macro should be the first executable statement.  If it is not, registers being 
stored by START may have been loaded prior to the stores.

SBT0121E     INCORRECT DCL, INCOMPLETE INFO - CHECK ITEMS IN THIS STATEMENT
The error will normally point to an executable statement.  However, the cause is usually a 
DECLARE within a structure referenced within an expression.  Check structures for improper 
declares.

SBT0122E     ________ IS A POINTER THAT IS BEING LOADED BUT HAS NOT BEEN
             INITIALIZED.

A register is being loaded with an uninitialized pointer.

SBT0124E     CONSTANT PREVIOUSLY INITIALIZED
The constant referenced in the CONST statement has already been initialized.

SBT0125E     ILLEGAL USE OF LOGICALS IN AN IF STATEMENT.  USE
             PARENTHESES.

SBT0126E     ILLEGAL USE OF PARENTHESIS.

SBT0127E     SIZE OF CONSTANT DOES NOT AGREE WITH DECLARED SIZE
The constant has been incorrectly initialized.

SBT0128E     THIRD PARAMETER OF VSTR FUNCTION MAY NOT BE CHARACTER
             STRING

SBT0136E     ECS FEATURE HAS NOT BEEN INSTALLED IN THIS VERSION.

SBT0150E     THE NUMBER OF DECIMAL DIGITS AFTER THE DECIMAL POINT > 15.
The maximum number of digits in DEC attribute is 15.

SBT0155E     AUTOMATIC STORAGE SIZE LIMIT HAS BEEN EXCEEDED.

SBT0156E     PICTURE SPECIFIES MORE THAN 15 DIGITS AND 32 CHARACTERS.

SBT0157E     PROGRAM SIZE LIMIT HAS BEEN EXCEEDED.

SBT0158E     _______ IS A DECLARED CONSTANT WHICH NEEDS TO BE INITIALIZED.

SBT0159E     ENTRY BLOCK SIZE LIMIT HAS BEEN EXCEEDED.

SBT0160E     PICTURE SPECIFIES MORE THAN 15 DIGITS.

SBT0162E     CHECK ALL MACROS - ONLY 256 CHARS ARE PASSED TO ASSEMBLER.

SBT0163E     PICTURE ENDS WITH PARENTHESIS.
             PICTURE specification should end with a single quote.

SBT0164E     PICTURE SPECIFIES MORE THAN 32 CHARS.
The maximum PICTURE size for Numeric character-string fields is 32 characters only 15 of 
which may specify digit positions.

SBT0165E     NO NUMBER BETWEEN LEFT AND RIGHT PARENTHESES.

SBT0167E     ILLEGAL 9 ENTRY.
Check placement of '9' characters.
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SBT0168E     ILLEGAL V ENTRY.
Implied decimal point used with character-string is illegal.

SBT0169E     MORE THAN ONE IMPLIED POINT.
Only one implied decimal point is allowed.

SBT0170E     ILLEGAL R ENTRY.

SBT0171E     LEADING AND TRAILING SIGN.
Only one sign is permitted.

SBT0173E     ILLEGAL SIGN ENTRY.
Not one of:     S + -

SBT0175E     ILLEGAL C ENTRY.
Check CR placement.

SBT0176E     CR/DB MAY NOT BE CODED IF A SIGN CHARACTER IS ALSO CODED.

SBT0177E     ILLEGAL D ENTRY.
Check DB placement.

SBT0178E     ILLEGAL INSERTION CHARACTER ENTRY.
Not one of:    . , / B

SBT0179E     ILLEGAL DOLLAR SIGN OR Z ENTRY.
Check placement of $ or Z.

SBT0180E     INVALID END.
No single quote.

SBT0181E     INVALID CHARACTER.
Not a valid PICTURE character.

SBT0183E     ILLEGAL LEADING CHARACTER.
Not one of:     9 $ - + Z *

SBT0184E     ILLEGAL FLOATING CHARACTER.
Not one of:    $ S + - *

SBT0186E     STATEMENT NOT WITHIN COLUMNS 2 - 71.

SBT0187E     REQUIRED ERROR EXIT IN MACRO CALL HAS NOT BEEN SPECIFIED.

SBT0188E     STATEMENT APPEARS TOO LONG, CHECK SEMI COLONS AND QUOTES.
The Compiler encountered an undetermined error situation.  Usually caused by a previous 
incomplete statement.

SBT0189E     INVALID EDIT PATTERN FOR DECIMAL FLOAT DATA TYPE -EDIT PATTERN
             MUST HAVE AN E.

SBT0190E     INVALID EDIT PATTERN FOR DECIMAL DATA TYPE   - EDIT PATTERN
             CAN NOT HAVE AN E.

SBT0191E     INVALID EDIT PATTERN FOR FLOAT DATA TYPE - PATTERN CONTAINING
             A  V  MUST HAVE A DECIMAL POINT.

SBT0192E     INVALID EDIT PATTERN FOR FLOAT DATA TYPE - PATTERN CONTAINING
             A DECIMAL POINT MUST HAVE A  V .
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SBT0193E     ________ A REQUIRED MACRO ERROR EXIT IS ILLEGAL (PROCEDURE).

SBT0243E     VARIABLES WITHIN A CSTR OR NSTR MAY NOT BE SUBSCRIPTED.
Calculate the value in a separate statement.

SBT0244E     EXPRESSIONS CONTAINING THE CONST 0 MAY NOT BE SUBSCRIPTED.
The default for a subscript variable is 1.

SBT0245E     ________ DECLARED AS A FUNCTION HAS NOT BEEN INCLUDED IN
             THIS PROGRAM.

The label was declared as a function.  The function itself was not coded.

SBT0246E     A VBL BEING LOADED INTO A REG IS > 4 OR ITS TYPE IS
             INVALID. 

Redefine the variable.

SBT0247E     A VBL BEING STORED FROM A REG IS > 4 OR ITS TYPE IS
             INVALID.

Redefine the variable.

SBT0248E     THE FUNCTION IS INCOMPATIBLE WITH THE CONCATENATE OPERATION.
Perform the concatenation in a separate statement.

SBT0249E     ERROR EXIT ADDRESS IN MACRO HAS NOT BEEN DEFINED.
Insure error exit routine has a label.

SBT0250E     ILLEGAL OP. RECEIVING FIELD WITHIN THE PROGRAMS BASE.
An attempt was made to modify program storage.

SBT0251E     INDEX BEYOND INITIAL FIELD, NO 3RD PARAMETER OR FIELD TOO
             LARGE.

SBT0252E     TOO MANY ITEMS OF 1 DATA TYPE ON LEFT OF ASSIGNMENT
             STATEMENT.

A maximum of 32 multiple assignments to fields of the same data type are allowed in a 
single statement.

SBT0253E     ENTRC MACRO - REGISTER WAS LOADED MORE THAN ONCE.

SBT0254E     ENTRC MACRO - ECS CANNOT BE PASSED AS A PARAMETER.

SBT0255E     ENTRC - ALL REGS ARE PARAMS, BASED DATA CAN'T BE LOADED OR
             STORED.

There is no register available for use as a pointer to BASED storage.  Move the data from 
BASED to AUTO storage for purposes of parameter passing.

SBT0256E     MACRO ARGUMENT LIMIT OF 20 HAS BEEN EXCEEDED.

SBT0257E     RETURN STATEMENT MISSING FROM PROCEDURE

SBT0258E     A PROCEDURE MUST BE CALLED.  A GO TO <PROC> IS INVALID.
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TERMINAL ERROR MESSAGES  

SBT0003T    OVERFLOW OF STACK SPACE, STATEMENT TOO LONG
            Reduce length of statement.

SBT0007T    OVERFLOW  OF  %INCLUDEAF  STACK,    TOO  MANY  %INCLUDEAF
            STATEMENTS

Eliminate some of the %INCLUDEAF statements.

SBT0009T    OVERFLOW OF NAME STACK, TOO MANY IDENTS IN PROGRAM
The program being compiled contains too many identifiers.  It probably is much larger than 
the TPF system will handle, as well.

SBT0032T    ERROR TABLE OVERFLOW DUE TO TOO MANY PROGRAMMER ERRORS.
            COMPILATION IS TERMINATED.

Correct the errors that have been specified and re-submit the program for compilation.

SBT0070T    TERMINAL ERROR.  FIRST ACCESS MUST BE P1PSEDR.
            INTERNAL COMPILER ERROR.

SBT0078T    TERMINAL ERROR.  PSEUDO REGISTER SAVE AREA TABLE SIZE
            EXCEEDED. 
            THE STATEMENT CONTAINS TOO MANY OPERATIONS.

SBT0088T    TERMINAL ERROR.  NO DO INFORMATION TABLE AVAILABLE TO
            PROCESS DO LOOPS.  CARD NO. MAY BE INVALID.

SBT0090T    TERMINAL ERROR. DO LOOP ERROR. THERE IS NO DO HEADER.
            CARD NO. MAY BE INVALID.

SBT0122T    LITERAL TABLE OVERFLOW.  TOO MANY LITERALS AND/OR
            CONSTANTS IN PROGRAM.

Reduce the size of the program and eliminate some literals.

SBT0147T    TERMINAL ERROR.  OUTPUT BUFFER LIMITS ARE EXCEEDED.
            COMPILATION IS TERMINATED.

Reduce the size of the program.

SBT0186T    INSUFFICIENT CORE ALLOCATED FOR THIS COMPILATION.
            RUN ABORTED.

Reduce size of program or use %INCLUDEAF for data declarations.

SBT0188T    TERMINAL ERROR.  ILLEGAL STATEMENT CAUSED INTERNAL
            COMPILER OVERFLOW

Remove the statement.

SBT0240T    ERROR ENCOUNTERED IN COMPILATION OF %INCLUDEAF.
            %INCLUDEAF FILE NOT UPDATED.

SBT0241T    AUTOMATIC  STORAGE  DECLARES  NOT PERMITTED IN  %INCLUDEAF
            FILE.  %INCLUDEAF FILE NOT UPDATED.

%INCLUDEAF must be BASED or ENTRYBLOCK storage class.

SBT0242T    RENTED STORAGE DECLARES NOT PERMITTED IN INCLUDEAF FILE.
            INCLUDEAF FILE NOT UPDATED.

SBT0256T    NO EXECUTABLE STATEMENTS HAVE BEEN GENERATED AS A RESULT
            OF THIS COMPILATION.
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SBT0257T    MULTIPLE INCLUDEAF FILE HAD ILLEGAL DEFINES.  INCLUDEAF
            FILE NOT UPDATED

SBT0264T    DO INFORMATION TABLE CAPACITY EXCEEDED DUE TO AN EXCESSIVE
            NUMBER OF DO LOOPS IN PROGRAM.

INTERNAL COMPILER ERRORS  

Internal Compiler error messages, those ending in the letter C, should not concern the SABRETALK 
programmer.  If a statement causes an Internal Compiler error it should be reported to the  SABRETALK 
GROUP.  Because these errors do not directly relate to the SABRETALK programmer, they have not been 
included in this Guide.

WARNING MESSAGES  

SBT0012W     WARNING - IS AN UN-INITIALIZED POINTER.

SBT0013W     WARNING - INTERPRETATION OF THIS STATEMENT IS OBSCURE.

SBT0014W     WARNING - CONSTANT DECLARED AS BIN(15) HAS BEEN
             ALLOCATED AS BIN(31).

SBT0032W     WARNING - SYSEQ REFERENCE CONTAINS IMBEDDED BLANK(S).

SBT0034W     WARNING - MACRO PARAMETER CONTAINS IMBEDDED BLANK(S).

SBT0037W     WARNING - MACRO PARAMETER REFERENCES A PROCEDURE NOT TAG.
             BRANCH MAY CAUSE PROBLEM.

SBT0049W     ARGUMENTS ON MAIN PROCEDURE STATEMENT WILL BE IGNORED.

SBT0061W     FIRST SOURCE STATEMENT IS NOT A PROCEDURE STATEMENT.

SBT0129W     WARNING - SEMICOLON MAY BE INVALID AFTER THE ELSE.
Verify that the semicolon is correctly placed in the statement after the THEN.

SBT0130W     WARNING - MISSING OR MISPLACED  END  STATEMENT(S) SIMULATED
             BY END OF INPUT.

SBT0136W     WARNING - TRUNCATION MAY OCCUR - RECEIVING FIELD IS SHORTER
             THAN SENDING FIELD.

SBT0155W     WARNING - EXTERNAL  PROCEDURE  END  STATEMENT  IS  EXTRA
             OR  MISPLACED - END  STATEMENT  IS  IGNORED.

SBT0156W     WARNING - LABEL  ON  EXTERNAL  PROCEDURE  END  STATEMENT
             DOES  NOT  MATCH  NAME  OF  MAIN  PROCEDURE.

SBT0157W     WARNING - LAST SOURCE STATEMENT IS NOT AN END STATEMENT /
             END MAY BE MISSING OR MISPLACED.

SBT0158W     WARNING - END  STATEMENT  IS  EXTRA  OR
             MISPLACED - END  STATEMENT  IS  IGNORED.
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SBT0160W     WARNING - IMPROPER USE OF BUILT-IN FUNCTIONS WITHIN
             AN TPF MACRO AND/OR ---(NOTE: THIS WARNING ISSUED
             AS A PREFIX TO A RELATED SYNTAX MESSAGE).

SBT0161W     WARNING - AREA POINTED TO BY THE POINTER EXCEEDS BASED-
             STORAGE LIMITS.

SBT0166W     WARNING - MISSING  OR  MISPLACED  END  STATEMENT(S)
             SIMULATED  BY  EXTERNAL  PROCEDURE  END  STATEMENT.

SBT0167W     WARNING - MISSING  OR  MISPLACED  END  STATEMENT(S)
             PRIOR TO A RETURN IN AN INTERNAL PROCEDURE.

SBT0172W     WARNING - LABEL  ON  END  STATEMENT  IS  INCORRECTLY
             USED - LABEL  IS  IGNORED.

SBT0173W     WARNING -- ARRAY ELEMENT IS NOT INDEXED, DEFAULTS TO ONE.

SBT0174W     WARNING -- ARRAY ELEMENT INDEX IS NOT SUPPORTED BY CASE.
             INDEX DEFAULTS TO ONE.

SBT0180W     WARNING -- ROUND FUNCTION - PLACE VALUE BEYOND RANGE OF
             TARGET. NO ROUND WILL OCCUR.

SBT0190W     WARNING -- LENGTH OF EDIT PATTERN EXCEEDS THE PRECISION OF THE
                        NUMBER BEING EDITED.

SBT0191W     WARNING -- EDIT PATTERN CONTAINS A  V  BUT DOES NOT CONTAIN A
                        DECIMAL POINT.

SBT0192W     WARNING -- EDIT PATTERN CONTAINS A DECIMAL POINT BUT DOES NOT
                        CONTAIN A  V.

SBT0193W     WARNING -- THIS IS A RECURSIVE CALL -- MAY RESULT IN A LOOP.

INFORMATION MESSAGES  

SBT0500I     OPTIMIZATION ERROR FROM POFORM - INFORM SABRETALK
             GROUP.

SYNTAX CHECKER MESSAGES  

SBT001S      DECIMAL NUMBER > 15.
A DECIMAL field can contain a maximum of fifteen digits.

SBT002S      BIT SIZE > 32.
A BIT-string can only be defined with a length of 1 to 32.

SBT003S      INVALID HEX CHARACTER.
A character in a hexadecimal literal was not 0 through 9 or A through F.
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SBT004S      ILLEGAL CHAR OR STRING > 256.
Check the character-string length and make certain that there is no unpaired single quote.

SBT005S      SYNTAX ERROR IN %INCLUDE OR %INCLUDEAF.

SBT006S      INCOMPLETE STATEMENT.
The syntax checker must have an entire statement, enter the rest of the statement, or a 
semi-colon.

SBT007S      STATEMENT CONTAINS UNCLOSED COMMENT.
To continue comment, enter /* at the start of the next line.

SBT009S      ILLEGAL BIT CHARACTER.
A character in a BIT-string literal was not 0 or 1.

SBT010S      DANGLING STRUCTURE.
A structure was not completed.  Finish or enter a semi-colon.

SBT013S      CHARACTER SIZE IS NOT BETWEEN 1 AND 256.

SBT014S      DECLARATION FOR A BINARY FIELD MUST BE 15 OR 31.
Length of a BINARY field must be 15 or 31, plus the sign bit.

SBT015S      DECIMAL POINT IS NOT BETWEEN 1 AND 15.
15 is the maximum number of DECIMAL digits that can be declared.

SBT016S      THE DECIMAL PART IS > THE SIZE OF THE FIELD.
The second number indicates the decimal part - it must be smaller than the first number.

SBT017S      BIT SIZE IS NOT BETWEEN 1 AND 32.

SBT018S      THE DIMENSION ATTRIBUTE IS > 255 OR < 1.
Arrays have a maximum of 255 elements.

SBT019S      THERE IS A CONFLICT IN ELEMENTARY ATTRIBUTES.
More than one data type has been used to describe a single identifier.

SBT021S      THERE IS A CONFLICT IN STORAGE CLASSES.
The entire structure must reside in one storage class.

SBT023S      LEVEL 01 HAS NOT BEEN DEFINED.
The major structure must be defined as a level 1.

SBT024S      LEVEL ERROR OR THE DEFINED IS NOT AT THE END OF THE DECLARE.
The major structure has been declared as other than level 1 or an individual variable has 
been declared with a level other than 1.

SBT025S      THE END OF THE DECLARE IS NOT ELEMENTARY.
A DECLARE statement has not been completed.

SBT026S      THERE IS A CONFLICT IN THE FACTORED LEVEL NUMBERS.
When factoring attributes, all identifiers must have the same level number.

SBT028S      THE STORAGE CLASS HAS BEEN DECLARED AT A LEVEL > 1.
The storage class of a BASED structure must be declared at level 1.

SBT029S      DIMENSION HAS BEEN DECLARED WHEN ALREADY IN FORCE.
An array cannot contain another array.

SBT031S      THE LEVEL IS > 256 OR < 1.
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SBT091S      ATTRIBUTES IN FACTOR LIST.
Identifiers may be factored only if all the attributes in the DECLARE statement apply to all the 
identifiers.

SBT163S      PICTURE ENDS WITH PARENTHESIS.
PICTURE specification should end with a single quote.

SBT164S      PICTURE TOO LARGE.
Maximum PICTURE size for a Numeric character-string is 15, for an Edited character-string 
is 32.

SBT165S      NUMBER BETWEEN LEFT AND RIGHT PARENS MISSING.

SBT167S      ILLEGAL 9 ENTRY.
Check placement of '9' characters.

SBT168S      ILLEGAL V ENTRY.
Implied decimal point used with character-string is illegal.

SBT169S      MORE THAN ONE IMPLIED POINT.
Only one implied decimal point is allowed.

SBT170S      ILLEGAL R ENTRY.

SBT171S      LEADING AND TRAILING SIGN.
Only one sign permitted.

SBT173S      ILLEGAL SIGN ENTRY.
Not one of:    S + -

SBT175S      ILLEGAL C ENTRY.
Check CR placement.

SBT177S      ILLEGAL D ENTRY.
Check DB placement.

SBT178S      ILLEGAL INSERTION CHARACTER ENTRY.
Not one of:   . , / B

SBT179S      ILLEGAL DOLLAR SIGN OR Z ENTRY.
$ or Z in wrong place.

SBT180S      INVALID END.
No single quote.

SBT181S      INVALID CHARACTER.
Not a valid PICTURE character.

SBT184S      ILLEGAL FLOATING CHARACTER.
Not one of:   $ S + - *

SBT185S      UNCLOSED QUOTE.
A string started with a quote has not been terminated.

SBT186S      STATEMENT NOT WITHIN COLUMNS 2 - 71.
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APPENDIX A:  

The ECB shown here is an example of how one would describe a data record to be included in the 
INCLUDE library.  This is provided for information only, and should be used only after it is compared to the 
installation requirements.

EXAMPLE FORMAT OF AN ENTRY CONTROL BLOCK  

Format of the Entry Control Block: (an INCLUDE Member)

 DECLARE 1 EB0EB ENTRYBLOCK,       /* 1055 BYTE ECB                */
           2 CE1CHW PTR,           /* CHAIN WORD                   */
           2 CE1BAD PTR,           /* POST INTERRUPT BRANCH ADDR   */
           2 CE1WKA,               /* WORK AREA                    */
             3 EBW000F,
               4 (EBW000,EBW001,EBW002,EBW003) CHAR (1),
             3 EBW004F,
               4 (EBW004,EBW005,EBW006,EBW007) CHAR (1),
             3 EBW008F,
               4 (EBW008,EBW009,EBW010,EBW011) CHAR (1),
             3 EBW012F,
               4 (EBW012,EBW013,EBW014,EBW015) CHAR (1),
             3 EBW016F,
               4 (EBW016,EBW017,EBW018,EBW019) CHAR (1),
             3 EBW020F,
               4 (EBW020,EBW021,EBW022,EBW023) CHAR (1),
             3 EBW024F,
               4 (EBW024,EBW025,EBW026,EBW027) CHAR (1),
             3 EBW028F,
               4 (EBW028,EBW029,EBW030,EBW031) CHAR (1),
             3 EBW032F,
               4 (EBW032,EBW033,EBW034,EBW035) CHAR (1),
             3 EBW036F,
               4 (EBW036,EBW037,EBW038,EBW039) CHAR (1),
             3 EBW040F,
               4 (EBW040,EBW041,EBW042,EBW043) CHAR (1),
             3 EBW044F,
               4 (EBW044,EBW045,EBW046,EBW047) CHAR (1),
             3 EBW048F,
               4 (EBW048,EBW049,EBW050,EBW051) CHAR (1),
             3 EBW052F,
               4 (EBW052,EBW053,EBW054,EBW055) CHAR (1),
             3 EBW056F,
               4 (EBW056,EBW057,EBW058,EBW059) CHAR (1),
             3 EBW060F,
               4 (EBW060,EBW061,EBW062,EBW063) CHAR (1),
             3 EBW064F,
               4 (EBW064,EBW065,EBW066,EBW067) CHAR (1),
             3 EBW068F,
               4 (EBW068,EBW069,EBW070,EBW071) CHAR (1),
             3 EBW072F,
               4 (EBW072,EBW073,EBW074,EBW075) CHAR (1),
             3 EBW076F,
               4 (EBW076,EBW077,EBW078,EBW079) CHAR (1),
             3 EBW080F,
               4 (EBW080,EBW081,EBW082,EBW083) CHAR (1),
             3 EBW084F,
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               4 (EBW084,EBW085,EBW086,EBW087) CHAR (1),
             3 EBW088F,
               4 (EBW088,EBW089,EBW090,EBW091) CHAR (1),
             3 EBW092F,
               4 (EBW092,EBW093,EBW094,EBW095) CHAR (1),
             3 EBW096F,
               4 (EBW096,EBW097,EBW098,EBW099) CHAR (1),
             3 EBW100F,
               4 (EBW100,EBW101,EBW102,EBW103) CHAR (1),
             3 EBW104F,
               4 (EBSW01,EBSW02,EBSW03,EBRS01) BIT (8),
             3 EBW108F,
               4 (EBCM01,EBCM02,EBCM03,EBER01) BIT (8),
           2 CE1FA0 BIT(32),                          /* FARW - 0  */
           2  CE1FM0 BIT(32),
           2 CE1FA1 BIT(32),                          /* FARW - 1  */
           2  CE1FM1 BIT(32),
           2 CE1FA2 BIT(32),                          /* FARW - 2  */
           2  CE1FM2 BIT(32),
           2 CE1FA3  BIT(32),                         /* FARW - 3  */
           2  CE1FM3 BIT(32),
           2 CE1FA4 BIT(32),                          /* FARW - 4  */
           2  CE1FM4 BIT(32),
           2 CE1FA5 BIT(32),                          /* FARW - 5  */
           2  CE1FM5 BIT(32),
           2 CE1FA6 BIT(32),                          /* FARW - 6  */
           2  CE1FM6 BIT(32),
           2 CE1FA7 BIT(32),                          /* FARW - 7  */
           2  CE1FM7 BIT(32),
           2 CE1FA8 BIT(32),                          /* FARW - 8  */
           2  CE1FM8 BIT(32),
           2 CE1FA9 BIT(32),                          /* FARW - 9  */
           2  CE1FM9 BIT(32),
           2 CE1FAA BIT(32),                          /* FARW - A  */
           2  CE1FMA BIT(32),
           2 CE1FAB BIT(32),                          /* FARW - B  */
           2  CE1FMB BIT(32),
           2 CE1FAC BIT(32),                          /* FARW - C  */
           2  CE1FMC BIT(32),
           2 CE1FAD BIT(32),                          /* FARW - D  */
           2  CE1FMD BIT(32),
           2 CE1FAE BIT(32),                          /* FARW - E  */
           2  CE1FME BIT(32),
           2 CE1FAF BIT(32),                          /* FARW - F  */
           2  CE1FMF BIT(32),
           2 CE1FAP BIN (31),            /* FARW FOR PROGRAM CALL  */
           2 CE1FMP BIN (31),
           2 CE1CR0 PTR,           /* CORE BLOCK REFENCE WORD - 0  */
           2 CE1CT00 CHAR(1),
           2 CE1CT01 BIT(8),
           2 CE1CC0 BIN (15),
           2 CE1CR1 PTR,           /* CORE BLOCK REFERENCE WORD - 1*/
           2 CE1CT10 CHAR(1),
           2 CE1CT11 BIT(8),
           2 CE1CC1 BIN (15),
           2 CE1CR2 PTR,           /* CORE BLOCK REFERENCE WORD - 2*/
           2 CE1CT20 CHAR(1),
           2 CE1CT21 BIT(8),
           2 CE1CC2 BIN (15),
           2 CE1CR3 PTR,           /* CORE BLOCK REFERENCE WORD - 3*/
           2 CE1CT30 CHAR(1),
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           2 CE1CT31 BIT(8),
           2 CE1CC3 BIN (15),
           2 CE1CR4 PTR,           /* CORE BLOCK REFERENCE WORD - 4*/
           2 CE1CT40 CHAR(1),
           2 CE1CT41 BIT(8),
           2 CE1CC4 BIN (15),
           2 CE1CR5 PTR,           /* CORE BLOCK REFERENCE WORD - 5*/
           2 CE1CT50 CHAR(1),
           2 CE1CT51 BIT(8),
           2 CE1CC5 BIN (15),
           2 CE1CR6 PTR,           /* CORE BLOCK REFERENCE WORD - 6*/
           2 CE1CT60 CHAR(1),
           2 CE1CT61 BIT(8),
           2 CE1CC6 BIN (15),
           2 CE1CR7 PTR,           /* CORE BLOCK REFERENCE WORD - 7*/
           2 CE1CT70 CHAR(1),
           2 CE1CT71 BIT(8),
           2 CE1CC7 BIN (15),
           2 CE1CR8 PTR,           /* CORE BLOCK REFERENCE WORD - 8*/
           2 CE1CT80 CHAR(1),
           2 CE1CT81 BIT(8),
           2 CE1CC8 BIN (15),
           2 CE1CR9 PTR,           /* CORE BLOCK REFERENCE WORD - 9*/
           2 CE1CT90 CHAR(1),
           2 CE1CT91 BIT(8),
           2 CE1CC9 BIN (15),
           2 CE1CRA PTR,           /* CORE BLOCK REFERENCE WORD - A*/
           2 CE1CTA0 CHAR(1),
           2 CE1CTA1 BIT(8),
           2 CE1CCA BIN (15),
           2 CE1CRB PTR,           /* CORE BLOCK REFERENCE WORD - B*/
           2 CE1CTB0 CHAR(1),
           2 CE1CTB1 BIT(8),
           2 CE1CCB BIN (15),
           2 CE1CRC PTR,           /* CORE BLOCK REFERENCE WORD - C*/
           2 CE1CTC0 CHAR(1),
           2 CE1CTC1 BIT(8),
           2 CE1CCC BIN (15),
           2 CE1CRD PTR,           /* CORE BLOCK REFERENCE WORD - D*/
           2 CE1CTD0 CHAR(1),
           2 CE1CTD1 BIT(8),
           2 CE1CCD BIN (15),
           2 CE1CRE PTR,           /* CORE BLOCK REFERENCE WORD - E*/
           2 CE1CTE0 CHAR(1),
           2 CE1CTE1 BIT(8),
           2 CE1CCE BIN (15),
           2 CE1CRF PTR,           /* CORE BLOCK REFERENCE WORD - F*/
           2 CE1CTF0 CHAR(1),
           2 CE1CTF1 BIT(8),
           2 CE1CCF BIN (15),
           2 CE1CRP PTR,           /* CBRW FOR PROGRAM CALLS       */
           2 CE1CTP CHAR (2),
           2 CE1CCP BIN (15),
           2 CE1FX0 CHAR (8),               /* FARW EXTENSION - 0  */
           2 CE1FX1 CHAR (8),               /* FARW EXTENSION - 1  */
           2 CE1FX2 CHAR (8),               /* FARW EXTENSION - 2  */
           2 CE1FX3 CHAR (8),               /* FARW EXTENSION - 3  */
           2 CE1FX4 CHAR (8),               /* FARW EXTENSION - 4  */
           2 CE1FX5 CHAR (8),               /* FARW EXTENSION - 5  */
           2 CE1FX6 CHAR (8),               /* FARW EXTENSION - 6  */
           2 CE1FX7 CHAR (8),               /* FARW EXTENSION - 7  */
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           2 CE1FX8 CHAR (8),               /* FARW EXTENSION - 8  */
           2 CE1FX9 CHAR (8),               /* FARW EXTENSION - 9  */
           2 CE1FXA CHAR (8),               /* FARW EXTENSION - A  */
           2 CE1FXB CHAR (8),               /* FARW EXTENSION - B  */
           2 CE1FXC CHAR (8),               /* FARW EXTENSION - C  */
           2 CE1FXD CHAR (8),               /* FARW EXTENSION - D  */
           2 CE1FXE CHAR (8),               /* FARW EXTENSION - E  */
           2 CE1FXF CHAR (8),               /* FARW EXTENSION - F  */
           2 CE1SUD,               /* DETAIL DATA LEVEL ERROR INDS */
             3 EBCSD0 BIT (8),     /* DATA LEVEL ERROR IND - 0     */
             3 EBCSD1 BIT (8),     /* DATA LEVEL ERROR IND - 1     */
             3 EBCSD2 BIT (8),     /* DATA LEVEL ERROR IND - 2     */
             3 EBCSD3 BIT (8),     /* DATA LEVEL ERROR IND - 3     */
             3 EBCSD4 BIT (8),     /* DATA LEVEL ERROR IND - 4     */
             3 EBCSD5 BIT (8),     /* DATA LEVEL ERROR IND - 5     */
             3 EBCSD6 BIT (8),     /* DATA LEVEL ERROR IND - 6     */
             3 EBCSD7 BIT (8),     /* DATA LEVEL ERROR IND - 7     */
             3 EBCSD8 BIT (8),     /* DATA LEVEL ERROR IND - 8     */
             3 EBCSD9 BIT (8),     /* DATA LEVEL ERROR IND - 9     */
             3 EBCSDA BIT (8),     /* DATA LEVEL ERROR IND - A     */
             3 EBCSDB BIT (8),     /* DATA LEVEL ERROR IND - B     */
             3 EBCSDC BIT (8),     /* DATA LEVEL ERROR IND - C     */
             3 EBCSDD BIT (8),     /* DATA LEVEL ERROR IND - D     */
             3 EBCSDE BIT (8),     /* DATA LEVEL ERROR IND - E     */
             3 EBCSDF BIT (8),     /* DATA LEVEL ERROR IND - F     */
           2 CE1SUP,               /* DETAIL PROGRAM LEVEL ERROR   */
             3 EBCSDP BIT (8),
           2 CE1SUG,               /* GROSS DATA LEVEL ERROR IND   */
             3 EBCSUG BIT (8),
           2 CE1SP0 CHAR (6),      /* RESERVED                     */
           2 CE1PL0 CHAR (8),      /* PROGRAM NESTING LEVEL - 0    */
           2 CE1PL1 CHAR (8),      /* PROGRAM NESTING LEVEL - 1    */
           2 CE1PL2 CHAR (8),      /* PROGRAM NESTING LEVEL - 2    */
           2 CE1PL3 CHAR (8),      /* PROGRAM NESTING LEVEL - 3    */
           2 CE1PL4 CHAR (8),      /* PROGRAM NESTING LEVEL - 4    */
           2 CE1PL5 CHAR (8),      /* PROGRAM NESTING LEVEL - 5    */
           2 CE1PL6 CHAR (8),      /* PROGRAM NESTING LEVEL - 6    */
           2 CE1PL7 CHAR (8),      /* PROGRAM NESTING LEVEL - 7    */
           2 CE1PL8 CHAR (8),      /* PROGRAM NESTING LEVEL - 8    */
           2 CE1PL9 CHAR (8),      /* PROGRAM NESTING LEVEL - 9    */
           2 CE1PLA CHAR (8),      /* PROGRAM NESTING LEVEL - A    */
           2 CE1PLB CHAR (8),      /* PROGRAM NESTING LEVEL - B    */
           2 CE1PLC CHAR (8),      /* PROGRAM NESTING LEVEL - C    */
           2 CE1PLD CHAR (8),      /* PROGRAM NESTING LEVEL - D    */
           2 CE1PLE CHAR (8),      /* PROGRAM NESTING LEVEL - E    */
           2 CE1PLF CHAR (8),      /* PROGRAM NESTING LEVEL - F    */
           2 CE1RDA BIN (31),      /* REGISTER SAVE AREA - RDA     */
           2 CE1RDB BIN (31),      /* REGISTER SAVE AREA - RDB     */
           2 CE1SVR BIN (31),      /* REGISTER SAVE AREA - RAC     */
           2 CE1SV1 BIN (31),      /* REGISTER SAVE AREA - RG1     */
           2 CE1SVA BIN (31),      /* REGISTER SAVE AREA - RGA     */
           2 CE1SVB BIN (31),      /* REGISTER SAVE AREA - RGB     */
           2 CE1SVC BIN (31),      /* REGISTER SAVE AREA - RGC     */
           2 CE1SVD BIN (31),      /* REGISTER SAVE AREA - RGD     */
           2 CE1SVE BIN (31),      /* REGISTER SAVE AREA - RGE     */
           2 CE1SVF BIN (31),      /* REGISTER SAVE AREA - RGF     */
           2 CE1SVP BIN (31),      /* REGISTER SAVE AREA - RAP     */
           2 CE1PRL BIN (31),      /* PROGRAM LEVEL COUNT          */
           2 CE1NST PTR,           /* ADDRESS OF PGM NESTING AREA  */
           2 CE1CXR CHAR (8),      /* CONTROL TRANSFER FIELD       */
           2 CE1CQE BIN (31),      /* 2305 COPY QUEUE CHAIN WORD   */
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           2 CE1SP1 CHAR (4),      /* RESERVED                     */
           2 CE1SON CHAR (16),     /* SON DECODE FIELD             */
           2 CE1AWA CHAR (8),      /* AUXILIARY WORK AREA          */
           2 CE1AUT BIN (31),      /* AUTOMATIC STORAGE BLOCK      */
           2 CE1PBI CHAR (2),      /* PROGRAM BASE ID              */
           2 CE1DBI,               /* DATA BASE ID                 */
             3 CE1UID CHAR (2),
           2 CE1SDBI CHAR (2),     /* SAVE DATA BASE ID            */
           2 CE1SP7 CHAR (2),      /* RESERVED                     */
           2 CE1TTA CHAR (8),      /* TEST TOOLS AREA              */
           2 CE1COM,               /* CRPL                         */
             3 CE1DES PTR,         /* MESSAGE DESTINATION          */
             3 CE1ORG PTR,         /* MESSAGE ORIGIN               */
             3 CE1PRE CHAR (2),    /* CONSOLE PREFIX SMART ID      */
             3 CE1MID CHAR (2),    /* SMART USER ID                */
             3 CE1CL1 BIT (8),     /* CONTROL INFORMATION          */
             3 CE1CL2 BIT (8),
             3 CE1CL3 BIT (8),
             3 CE1CL4 BIT (8),
             3 CE1CL5 BIT (8),
             3 CE1CL6 BIT (8),
             3 CE1CL7 BIT (8),
             3 CE1CL8 BIT (8),
           2 CE1UTP BIT (8),       /* COMPOSITE USER - USER TYPE   */
           2 CE1SUN BIT (8),       /* SUB USER NUMBER              */
           2 CE1TNS BIT (8),       /* TTL NBR OF SUBUSERS          */
           2 CE1SP9 BIT (8),       /* RESERVED                     */
           2 CE1CPX,               /* CONTROL PROGRAM WORK AREA    */
             3 CE1CPA BIT (8),
             3 CE1CPB BIT (8),
             3 CE1CPC BIT (8),
             3 CE1CPD BIT (8),
           2 CE1SP2 CHAR (4),      /* RESERVED                     */
           2 CE1SP3 CHAR (6),      /* RESERVED                     */
           2 CE1TRV BIN (15),      /* TRANSFER VECTOR FIELD        */
           2 CE1PSW CHAR (8),      /* PROGRAM STATUS WORD          */
           2 CE1IOC BIN (15),      /* INPUT/OUTPUT COUNTER         */
           2 CE1HLD CHAR (1),      /* HOLD COUNTER                 */
           2 CE1TAP CHAR (1),      /* SYMBOLIC TAPE MODULE NO.     */
           2 CE1TIN BIT (16),      /* TAPE STATUS INDICATORS       */
           2 CE1URM BIT (16),      /* UNIT RECORD                  */
           2 CE1REC,               /* TEST TOOL OPTIONS            */
             3 CE1TOP BIT (8),     /* TRACE OPTIONS                */
             3 CE1OUT,             /* TERMINAL ADDRESS             */
               4 EBROUT CHAR (3),
             3 CE1TST CHAR (4),    /* RECORDING/TEST               */
           2 CE1SP4 CHAR (2),      /* RESERVED                     */
           2 CE1SUC,               /* CONTROL PROGRAM FLAG         */
             3 EBCSUC BIT (8),
           2 CE1SUI,               /* SYSTEM ERROR INDICATORS      */
             3 CE1SYE BIT (8),
           2 CE1TRC PTR,           /* TRACE CNTRL XFER & CREATES   */
           2 CE1TCU CHAR (1),      /* PTI CONTROL BYTE             */
           2 CE1TIM CHAR (5),      /* ECB TIME STAMP               */
           2 CE1IN1 BIT (8),       /* INDICATOR BYTE - 1           */
           2 CE1RTT BIT (8),       /* TRACE OUTPUT SELECTION       */
           2 CE1SP5 CHAR (8),      /* RESERVED                     */
           2 CE1ARS,               /* USER REGISTER SAVE AREA      */
             3 CE1URA BIN (31),    /* REGISTER SAVE AREA - RDA     */
             3 CE1URB BIN (31),    /* REGISTER SAVE AREA - RDB     */
             3 CE1UR0 BIN (31),    /* REGISTER SAVE AREA - RAC     */
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             3 CE1UR1 BIN (31),    /* REGISTER SAVE AREA - RG1     */
             3 CE1UR2 BIN (31),    /* REGISTER SAVE AREA - RGA     */
             3 CE1UR3 BIN (31),    /* REGISTER SAVE AREA - RGB     */
             3 CE1UR4 BIN (31),    /* REGISTER SAVE AREA - RGC     */
             3 CE1UR5 BIN (31),    /* REGISTER SAVE AREA - RGD     */
             3 CE1UR6 BIN (31),    /* REGISTER SAVE AREA - RGE     */
             3 CE1UR7 BIN (31),    /* REGISTER SAVE AREA - RGF     */
           2 CE1WKB,               /* WORK AREA 2                  */
             3 EBX000F,
               4 (EBX000,EBX001,EBX002,EBX003) CHAR (1),
             3 EBX004F,
               4 (EBX004,EBX005,EBX006,EBX007) CHAR (1),
             3 EBX008F,
               4 (EBX008,EBX009,EBX010,EBX011) CHAR (1),
             3 EBX012F,
               4 (EBX012,EBX013,EBX014,EBX015) CHAR (1),
             3 EBX016F,
               4 (EBX016,EBX017,EBX018,EBX019) CHAR (1),
             3 EBX020F,
               4 (EBX020,EBX021,EBX022,EBX023) CHAR (1),
             3 EBX024F,
               4 (EBX024,EBX025,EBX026,EBX027) CHAR (1),
             3 EBX028F,
               4 (EBX028,EBX029,EBX030,EBX031) CHAR (1),
             3 EBX032F,
               4 (EBX032,EBX033,EBX034,EBX035) CHAR (1),
             3 EBX036F,
               4 (EBX036,EBX037,EBX038,EBX039) CHAR (1),
             3 EBX040F,
               4 (EBX040,EBX041,EBX042,EBX043) CHAR (1),
             3 EBX044F,
               4 (EBX044,EBX045,EBX046,EBX047) CHAR (1),
             3 EBX048F,
               4 (EBX048,EBX049,EBX050,EBX051) CHAR (1),
             3 EBX052F,
               4 (EBX052,EBX053,EBX054,EBX055) CHAR (1),
             3 EBX056F,
               4 (EBX056,EBX057,EBX058,EBX059) CHAR (1),
             3 EBX060F,
               4 (EBX060,EBX061,EBX062,EBX063) CHAR (1),
             3 EBX064F,
               4 (EBX064,EBX065,EBX066,EBX067) CHAR (1),
             3 EBX068F,
               4 (EBX068,EBX069,EBX070,EBX071) CHAR (1),
             3 EBX072F,
               4 (EBX072,EBX073,EBX074,EBX075) CHAR (1),
             3 EBX076F,
               4 (EBX076,EBX077,EBX078,EBX079) CHAR (1),
             3 EBX080F,
               4 (EBX080,EBX081,EBX082,EBX083) CHAR (1),
             3 EBX084F,
               4 (EBX084,EBX085,EBX086,EBX087) CHAR (1),
             3 EBX088F,
               4 (EBX088,EBX089,EBX090,EBX091) CHAR (1),
             3 EBX092F,
               4 (EBX092,EBX093,EBX094,EBX095) CHAR (1),
             3 EBX096F,
               4 (EBX096,EBX097,EBX098,EBX099) CHAR (1),
             3 EBX100F,
               4 (EBX100,EBX101,EBX102,EBX103) CHAR (1),
             3 EBX104F,
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               4 (EBXSW0,EBXSW1,EBXSW2,EBXSW3) BIT (8),
             3 EBX108F,
               4 (EBXSW4,EBXSW5,EBXSW6,EBXSW7) BIT (8),
           2 CE1SP6 CHAR (15),     /* RESERVED                     */
           2 CE1FLG BIT (8);       /* FORMAT FLAG                  */
 /*        2 CE1RES CHAR (300),       RESERVED SYSTEM AREA         */
 /*        2 CE1USA CHAR (336),       USER AREA                    */
 DECLARE 1 EBCFW0 DEFINED CE1FA0,
           2 EBCID0 BIN (15),
           2 EBCRC0 CHAR (1),
           2 EBCCN0 CHAR (1),
           2 EBCFA0,
             3 EBCFM0 CHAR (1),
             3 EBCFC0 CHAR (1),
             3 EBCFH0 CHAR (1),
             3 EBCFR0 CHAR (1);
 DECLARE 1 EBCFW1 DEFINED CE1FA1,
           2 EBCID1 BIN (15),
           2 EBCRC1 CHAR (1),
           2 EBCCN1 CHAR (1),
           2 EBCFA1,
             3 EBCFM1 CHAR (1),
             3 EBCFC1 CHAR (1),
             3 EBCFH1 CHAR (1),
             3 EBCFR1 CHAR (1);
 DECLARE 1 EBCFW2 DEFINED CE1FA2,
         2 EBCID2 BIN (15),
           2 EBCRC2 CHAR (1),
           2 EBCCN2 CHAR (1),
           2 EBCFA2,
             3 EBCFM2 CHAR (1),
             3 EBCFC2 CHAR (1),
             3 EBCFH2 CHAR (1),
             3 EBCFR2 CHAR (1);
 DECLARE 1 EBCFW3 DEFINED CE1FA3,
           2 EBCID3 BIN (15),
           2 EBCRC3 CHAR (1),
           2 EBCCN3 CHAR (1),
           2 EBCFA3,
             3 EBCFM3 CHAR (1),
             3 EBCFC3 CHAR (1),
             3 EBCFH3 CHAR (1),
             3 EBCFR3 CHAR (1);
 DECLARE 1 EBCFW4 DEFINED CE1FA4,
           2 EBCID4 BIN (15),
           2 EBCRC4 CHAR (1),
           2 EBCCN4 CHAR (1),
           2 EBCFA4,
             3 EBCFM4 CHAR (1),
             3 EBCFC4 CHAR (1),
             3 EBCFH4 CHAR (1),
             3 EBCFR4 CHAR (1);
 DECLARE 1 EBCFW5 DEFINED CE1FA5,
           2 EBCID5 BIN (15),
           2 EBCRC5 CHAR (1),
           2 EBCCN5 CHAR (1),
           2 EBCFA5,
             3 EBCFM5 CHAR (1),
             3 EBCFC5 CHAR (1),
             3 EBCFH5 CHAR (1),
             3 EBCFR5 CHAR (1);
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 DECLARE 1 EBCFW6 DEFINED CE1FA6,
           2 EBCID6 BIN (15),
           2 EBCRC6 CHAR (1),
           2 EBCCN6 CHAR (1),
           2 EBCFA6,
             3 EBCFM6 CHAR (1),
             3 EBCFC6 CHAR (1),
             3 EBCFH6 CHAR (1),
             3 EBCFR6 CHAR (1);
 DECLARE 1 EBCFW7 DEFINED CE1FA7,
           2 EBCID7 BIN (15),
           2 EBCRC7 CHAR (1),
           2 EBCCN7 CHAR (1),
           2 EBCFA7,
             3 EBCFM7 CHAR (1),
             3 EBCFC7 CHAR (1),
             3 EBCFH7 CHAR (1),
             3 EBCFR7 CHAR (1);
 DECLARE 1 EBCFW8 DEFINED CE1FA8,
           2 EBCID8 BIN (15),
           2 EBCRC8 CHAR (1),
           2 EBCCN8 CHAR (1),
           2 EBCFA8,
             3 EBCFM8 CHAR (1),
             3 EBCFC8 CHAR (1),
             3 EBCFH8 CHAR (1),
             3 EBCFR8 CHAR (1);
 DECLARE 1 EBCFW9 DEFINED CE1FA9,
           2 EBCID9 BIN (15),
           2 EBCRC9 CHAR (1),
           2 EBCCN9 CHAR (1),
           2 EBCFA9,
             3 EBCFM9 CHAR (1),
             3 EBCFC9 CHAR (1),
             3 EBCFH9 CHAR (1),
             3 EBCFR9 CHAR (1);
 DECLARE 1 EBCFWA DEFINED CE1FAA,
           2 EBCIDA BIN (15),
           2 EBCRCA CHAR (1),
           2 EBCCNA CHAR (1),
           2 EBCFAA,
             3 EBCFMA CHAR (1),
             3 EBCFCA CHAR (1),
             3 EBCFHA CHAR (1),
             3 EBCFRA CHAR (1);
 DECLARE 1 EBCFWB DEFINED CE1FAB,
           2 EBCIDB BIN (15),
           2 EBCRCB CHAR (1),
           2 EBCCNB CHAR (1),
           2 EBCFAB,
             3 EBCFMB CHAR (1),
             3 EBCFCB CHAR (1),
             3 EBCFHB CHAR (1),
             3 EBCFRB CHAR (1);
 DECLARE 1 EBCFWC DEFINED CE1FAC,
           2 EBCIDC BIN (15),
           2 EBCRCC CHAR (1),
           2 EBCCNC CHAR (1),
           2 EBCFAC,
             3 EBCFMC CHAR (1),
             3 EBCFCC CHAR (1),
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             3 EBCFHC CHAR (1),
             3 EBCFRC CHAR (1);
 DECLARE 1 EBCFWD DEFINED CE1FAD,
           2 EBCIDD BIN (15),
           2 EBCRCD CHAR (1),
           2 EBCCND CHAR (1),
           2 EBCFAD,
             3 EBCFMD CHAR (1),
             3 EBCFCD CHAR (1),
             3 EBCFHD CHAR (1),
             3 EBCFRD CHAR (1);
 DECLARE 1 EBCFWE DEFINED CE1FAE,
           2 EBCIDE BIN (15),
           2 EBCRCE CHAR (1),
           2 EBCCNE CHAR (1),
           2 EBCFAE,
             3 EBCFME CHAR (1),
             3 EBCFCE CHAR (1),
             3 EBCFHE CHAR (1),
             3 EBCFRE CHAR (1);
 DECLARE 1 EBCFWF DEFINED CE1FAF,
           2 EBCIDF BIN (15),
           2 EBCRCF CHAR (1),
           2 EBCCNF CHAR (1),
           2 EBCFAF,
             3 EBCFMF CHAR (1),
             3 EBCFCF CHAR (1),
             3 EBCFHF CHAR (1),
             3 EBCFRF CHAR (1);
 DECLARE 1 EBCCX0 DEFINED CE1CR0,
           2 EBCCR0 PTR,
           2 EBCCT0 CHAR (2),
           2 EBCCC0 BIN (15);
 DECLARE 1 EBCCX1 DEFINED CE1CR1,
           2 EBCCR1 PTR,
           2 EBCCT1 CHAR (2),
           2 EBCCC1 BIN (15);
 DECLARE 1 EBCCX2 DEFINED CE1CR2,
           2 EBCCR2 PTR,
           2 EBCCT2 CHAR (2),
           2 EBCCC2 BIN (15);
 DECLARE 1 EBCCX3 DEFINED CE1CR3,
           2 EBCCR3 PTR,
           2 EBCCT3 CHAR (2),
           2 EBCCC3 BIN (15);
 DECLARE 1 EBCCX4 DEFINED CE1CR4,
           2 EBCCR4 PTR,
           2 EBCCT4 CHAR (2),
           2 EBCCC4 BIN (15);
 DECLARE 1 EBCCX5 DEFINED CE1CR5,
           2 EBCCR5 PTR,
           2 EBCCT5 CHAR (2),
           2 EBCCC5 BIN (15);
 DECLARE 1 EBCCX6 DEFINED CE1CR6,
           2 EBCCR6 PTR,
           2 EBCCT6 CHAR (2),
           2 EBCCC6 BIN (15);
 DECLARE 1 EBCCX7 DEFINED CE1CR7,
           2 EBCCR7 PTR,
           2 EBCCT7 CHAR (2),
           2 EBCCC7 BIN (15);
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 DECLARE 1 EBCCX8 DEFINED CE1CR8,
           2 EBCCR8 PTR,
           2 EBCCT8 CHAR (2),
           2 EBCCC8 BIN (15);
 DECLARE 1 EBCCX9 DEFINED CE1CR9,
           2 EBCCR9 PTR,
           2 EBCCT9 CHAR (2),
           2 EBCCC9 BIN (15);
 DECLARE 1 EBCCXA DEFINED CE1CRA,
           2 EBCCRA PTR,
           2 EBCCTA CHAR (2),
           2 EBCCCA BIN (15);
 DECLARE 1 EBCCXB DEFINED CE1CRB,
           2 EBCCRB PTR,
           2 EBCCTB CHAR (2),
           2 EBCCCB BIN (15);
 DECLARE 1 EBCCXC DEFINED CE1CRC,
           2 EBCCRC PTR,
           2 EBCCTC CHAR (2),
           2 EBCCCC BIN (15);
 DECLARE 1 EBCCXD DEFINED CE1CRD,
           2 EBCCRD PTR,
           2 EBCCTD CHAR (2),
           2 EBCCCD BIN (15);
 DECLARE 1 EBCCXE DEFINED CE1CRE,
           2 EBCCRE PTR,
           2 EBCCTE CHAR (2),
           2 EBCCCE BIN (15);
 DECLARE 1 EBCCXF DEFINED CE1CRF,
           2 EBCCRF PTR,
           2 EBCCTF CHAR (2),
           2 EBCCCF BIN (15);
 DECLARE CITPCA PTR DEFINED EBW100F;
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SPECIAL SABRETALK CONSIDERATIONS FOR TPFDF USERS  

As a general rule, assembler macros within a SABRETALK segment are simply passed along to the 
generated assembler language program.  Any processing by the compiler is normally limited to syntax 
checking of the  macro.  Consequently, if macro parameters contain entries in the form “keyword=value",
these parameters have to be enclosed in quotes so as not to cause syntax errors when examined by the 
syntax checker.  Example:

         ROUTC 'LIST=R2','LEV=D2'(#R2=LISTPTR);

In the case of TPFDF macros, however, special processing has been introduced to allow more flexible 
interchange of information between items known to SABRETALK and those needed by TPFDF.  As such, 
any keyword parameters (of the form "keyword=value") that are not enclosed in quotes, will be  analyzed by 
the compiler for possible resolution of SABRETALK symbols.  For example:

         TPFDF ADD,'FILE=GR20SR','NEWLREC=R5',ERROR=ERR1(#R5=P);

would cause the compiler to pass the first three parameters (ADD, FILE=GR20SR, NEWLREC=R5) exactly 
as shown (except for the delimiting quote marks), while the fourth parameter (ERROR=ERR1) would be 
changed to read “ERROR=ERR1$ “. (Assuming that the compiler option DOLLAR is in effect.)

In addition, because TPFDF may have to know about some fields which have been defined to the compiler 
(but are not generally given to the assembler in base displacement formats), the compiler will generate the 
correct references to such fields if a special flag ("?")  is  coded  immediately  before
each field.  For example:

        TPFDF READ,'FILE=GR20SR',UP,
              KEY1=('R=GR20KEY',S=?P->GR20KEY),
              KEY2=('R=GR20AL2',S=?P->GR20AL2),ERROR=ERR1;

In the above case, the sub-parameters S=?... cause the symbols given to be substituted with expressions 
that yield the correct base and displacements so that the correct locations can be identified at assembly 
time.  In addition, the compiler will also cause the appropriate register to be loaded with the correct base 
address so that the code will execute as expected.  As such, the above macro reference would cause the 
following code to be generated:

         L     R4,P$(R7)
         TPFDF READ,FILE=GR20SR,UP,
               KEY1=(R=GR20KEY,S=GR20KEY$(R4)),
               KEY2=(R=GR20AL2,S=GR20AL2$(R4)),ERROR=ERR1$

The compiler automatically selects the registers in a predetermined order starting with R8 and continuing 
"downward" to R1 if necessary.  Thus: 

• R9 will be selected for any fields in ENTRYBLOCK storage (ECB).

• R7 will be selected for any fields in AUTOMATIC storage.

• R6 will be selected for any fields of BASED storage assigned a permanent base of R6.

• R5 will be selected for any fields of BASED storage assigned a permanent base of R5.

• R4 thru R1 will be selected and loaded for any other fields as needed.
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Programmers should keep these assignments in mind whenever they need to pass values to TPFDF in 
registers, i.e., they should not attempt to pass an automatic storage field while at the same time trying to 
load R7 with some other value.  It is best for programmers to select registers starting at R0 and working 
"upward" as far as necessary to avoid conflicts with the compiler selection.

Because CONSTANT storage fields reside in the same core block as the program, and consequently are 
addressed through R8, they should not be passed to the TPFDF macro.

USER MACROS  

This category is for Macros not specifically written for SABRETALK use which may not preserve registers 
R1  - R7.   Also, all coding used for Special macros (TPFDF type) will be allowed.  For example, use of a 
Question Mark to pass Base and Displacement.

After this type of Macro is issued, R7 will be restored from the ECB (CE1AUT) and R1 - R6 will be marked 
as altered.   Example:

  TESTC   ADD,'REF=SW0SEA',UP,WAIT=TAG1,
          REG=?CORD6,ERROR=TAG2
          (CORD5=#R1,#R2=CP_ORD5);

generates:

        L     R2,CP$ORD5$(R5)
        TESTC    ADD,REF=SW0SEA,UP,WAIT=TAG1$,REG=CORD6$(R6),         X
                 ERROR=TAG2$
        L     R7,CE1AUT
        LA    R7,8(,R7)
        L     R5,CPINCPTR(R7)
        L     R6,$PPTR$(R7)
        ST    R1,CORD5$(R6)
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Definitions are biased to reflect a particular meaning associated with SABRETALK.

An asterisk (*) is used to mark duplicate entries: information about  ''Address, Absolute *'' can be found 
under ''Absolute Address''

Absolute Address
The number of each storage location which is permanently wired into the hardware by the 
manufacturer. In the case of core memory this is a byte address.

Absolute Value
A number whose magnitude is given but whose sign is not.

Addition, File *

Address, Absolute *

Address, Base *

Address, Machine *

Address Modification
The incrementation of an address for the purpose of preserving the relativity of relocated programs.

Address, Relative *

ALGOL
An acronym for ''Algorithmic Language'', one of the more common compilers. ALGOL is a powerful 
statement-oriented algebraic language used principally for scientific problems.  It was the model for 
many of the newer artificial computer languages.

Aligned
A statement keyword that allows areas to be positionally adjusted, in byte multiples, so that they can 
be more readily accessed and so as to more closely conform to the format (doubleword, full-word, 
half-word, byte) of a major structure. (See Packed)

Allocation
The assignment of specific memory locations to program instructions or data.

Allocation, Dynamic *

Allocation, Storage *

Alphabet
An ordered set of language characters. The Roman alphabet consists of the 26 letters, a through z, 
while the Universal alphabet of 29 characters contains the 26 letters and the symbols $, @, #.

Alphanumeric
An ordered set of characters that consists of the characters of an alphabet and numerals.

And, Logical *

And Symbol
The ampersand symbol (&) used to represent the logical ''and'' operator.
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Area
A portion of memory whose smallest unit is a bit value and within which the binary representation of 
a value or values may reside.

Arithmetic, Boolean *

Arithmetic Operator
One of the symbols for addition, subtraction, multiplication, and division (+,-,*,/).  Used to 
indicate the mathematical treatment of one operand by another.

Array
A collection of logically related data items, all of which have identical data attributes.

Assemble
The act of producing machine coding from a representative, symbolic version.

Assembler
A program designed to produce machine language coding from a representative, symbolic version.

Assembler Code
The specification of program instructions and data in symbolic form. (also Assembler coding)

Assembler Instruction
An element of Assembler code normally representative of a single machine instruction.

Assembler Language
(see Assembler Code)

Assignment Operator
The character (=) that signifies that an assignment of data is to be performed.

Assignment Statement
An executable SABRETALK instruction used to assign a value into an area or field.  The assignment 
operator is an equal sign (=).

Asterisk
Used as an operator, this character (*) denotes multiplication.

At Sign
Used as a character in the Universal alphabet, this character (@) is used as a prefix for a global tag.

Attribute
A characteristic of a value or of an area. Attributes in SABRETALK are frequently keywords.

Attribute, Data *

BAL
An acronym for Basic Assembler Language, an Assembler language used for many computers and 
which is the object code or output code of SABRETALK.

Base
The starting location of data.  Also, the first digit of a counting system; for example, when counting 
items, if the first, second and third items are numbered 0, 1, 2 then the base is zero; if they are 
numbered 1,2,3 then the base is one. In SABRETALK arrays are subscripted base one. (See 
Radix.)

Base Address
Generally, the absolute address of the start of some area, to which may be added a relative 
address.  A choice of relative and/or absolute addresses provides a more flexible programming 
environment.
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Binary
Pertaining to a number system that uses only two digits: zero and one.  Values can be represented 
by digit groups: the decimal number ''three'' by 000011 or by 11; the letter ''U'' by 11100101. 
Arithmetic is performed by decimal hardware or by binary hardware according to convention.

Binary Code
The representation of data in terms of binary digits.

Binary Coded Decimal
The representation of decimal digits by one of a number of binary code sets.

Binary Digit
A character representing one of the two possible binary values; zero or one.

Binary Number
A representation of a number by positional notation of binary digits.  Where a point (.) is used to 
separate the integer portion and fractional portion of a number, the binary number 111.01 would 
represent:

+  1  times  2  raised-to-the-power  two
+  1    ''   2         ''            one
+  1    ''   2         ''            zero
+  0    ''   2         ''            minus one
+  1    ''   2         ''            minus two

Bit
An acronym meaning ''BInary digiT'', the smallest unit of computer data.  Frequently used to also 
refer to the area in which a binary digit may reside.

Blank
The representation of:

• the absence of print where a print character might appear.
• the absence of a punch where a punch character might appear.
• a specific symbol representing the absence of a print or punch character.

In SABRETALK a blank is considered a character.

Body, Statement *

Boolean
Pertaining to the algebra of logic formulated by George Boole; by extension, to the method whereby 
the truth or falsity of statements may be represented by the binary digits zero and one: conclusions 
from ordered sets of statements may then be derived by the rules of Boolean algebra.

Boolean Arithmetic
The operations involved in the use of the logical operators  ''and'', ''or'' and ''not''.

Boundary
A restriction that limits a core location to a modular one.

Boundary, Byte *

Boundary, Character *

Boundary, Double-word *

Boundary, Full-word *
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Boundary, Half-word *

Branch
One of the paths chosen as a result of the execution of a decision instruction; to give control to an 
instruction other than the next sequential one.

Branch, Conditional *

Break Character
An underline character ( _ ) frequently used as an aid in visually partitioning identifiers or labels.

Built-in Function
A SABRETALK keyword that results in the performance of a specific task through the collective 
action of an instruction set.

Byte
An eight-bit modular unit of serial core represented by a core address.

Byte Boundary
A restriction that limits a core address to a byte module; also a character module.

Call
To transfer control to a specified closed internal procedure.

Card Column
A vertical strip through 1/80th of a card. Twelve rows cross the strip giving 4096 possible values per 
column.

Card Image
A representation of an eighty-character record that constitutes a method of standardizing the size of 
record modules.

Card Format
A string of eighty consecutive columns where each column could contain one character.

Character
A single planar graphic used as a visual representation of data.  In a computer a character is 
represented by an eight-bit module.  Since it can also represent the addressable element of core, it 
is often referenced as a byte.  A blank is to be considered a character in SABRETALK.

Character Boundary
A byte boundary.

Character, Break *

Character, Drifting *

Character, Special *

Code 
To express information in character patterns.  The character patterns that express information.

Code, Assembler *

Code, Binary *

Code, Compiler *

Code, Decimal *
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Code, Machine *

Code, Object *

Code, Re-entrant
(see Re-entrant)

Code, Source *

Column, Card *

Command
An instruction.

Comment
An aside. A note or remark that accompanies a portion of source code and has no effect on object 
coding.  SABRETALK comments have the form /*comment*/.

Comparison Operator
Any of the symbols  ( =  <  >  ^=  ^<  ^>  <=   >=   ) that signify a comparison is to be 
performed.

Compile
To translate from a more sophisticated, higher-level language to a more simple, machine-oriented 
language.

Compiler
A program that compiles. Input to a Compiler (source code) is manipulated so as to produce a more 
machine-compatible version of the data, data-structures and procedures desired. The consequential 
output (object code) is usually accompanied by such programmer aids as cross- references, error 
messages, etc.

Compiler Code
(see Compiler Language)

Compiler Instruction
(see Compiler Statement)

Compiler Language
The specification of program instructions and data in a more general problem-oriented statement 
form, rather than the strict machine-oriented instruction format of an Assembler language.

Compiler Statement
In SABRETALK, a basic language element that ends in a semicolon (;) and that is used to 
DECLARE data and/or specify executable directives.

Complement
The difference between a number and a string of identical digits; for example, the complement of 
123 (using the digit string 99999) is 99876.

Composite
A set of two or more consecutive characters.  In SABRETALK, composites may not contain a blank.

Composite Operator
A set of two or more consecutive characters that signifies an arithmetic, logical, relational, 
parenthetical or concatenation operation is to be performed.

Computer Program
The orderly set of instructions, associative data and work area(s) needed to perform a computer 
task.
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Concatenation
The orderly appending of sequential data to sequential data. The result, of course, is a new and 
larger set of data.

Concatenation Operator
The composite (||) that signifies a concatenation operation is to be performed.

Concatenation Symbol
A composite of two vertical bars (||) used to represent the concatenation operator.

Conditional Branch
The giving of control to an instruction as a result of executing a test instruction.

Constant
A data item, referenced by an identifier, the value of which may NOT change during execution of the 
program.

Constant String
An ordered sequence of constants. In SABRETALK, the individual selection of constants from a 
string is facilitated by declaring the area(s) in which they reside to be an array.

Control Program
A program or routine that supervises all other programs and is responsible for loading them, 
performing their I/O (input-output) tasks, for initiating and monitoring their activity and for terminating 
them.  The control routine for programs produced by SABRETALK is called TPF (Transaction 
Processing Facility).

Control Routine
(see Control Program)

Core Memory
The large area of computer hardware used for the prime storage of data, instructions, programs etc. 
in a computer.

Data
Representations of information. In SABRETALK, the basic data unit is a bit from which are built 
elements called bytes, half-words, etc..  Though instructions are data elements, the SABRETALK 
guide favors the term ''instruction'' for commands and ''data'' for non-instructional coding.

Data Attribute
A characteristic of a value or of an area in which a value may be found, not the value itself.

Data Field
An area in which information is to reside.

Data Item
Generally, a singular value.

Data LABEL
A misnomer; in the SABRETALK guide an attempt is made to refer to instruction names as 
''LABELS'' and to data names as ''IDENTIFIERS''.

Data Organization
The  arrangement  of data so that elements may be more easily or quickly accessed.  Sequencing, 
indexing and partitioning are some of the methods of arranging data.

Data Processing
Any of the operations performed on data by a computer.
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Data Record
A collection of data fields or data items that have some correlation.

Data Set
Specifically, any data collection; by context, a collection of records.

Data Statement
In SABRETALK, the term used to identify a statement that particularly defines (declares) a data 
item.

Decimal, Binary-coded *

Decimal Code
The representation of numeric information using decimal digits.

Decimal Digit
One of the characters, zero (0) through nine (9), used to represent the numbers of a system of radix 
10 (the decimal system.)

Decimal Point
A period (.) used when necessary to define the boundary of the integer and/or fractional of a 
number.

Decision Table
A two-dimensional chart used to format the results of logical operations.  A truth table for a logical 
'AND' would be:

------------------------------
if A is true (1)             |
          -------------      |
if A is false(/)       |     |
-----------------+-----+-----|
if B is true     |  /  |  1  |
          -------+-----+-----|
if B is false    |  /  |  /  |
------------------+-----+-----

Delimiter
An indicator that restricts sequential extension into another area.

Diagram, Logic
(see Decision Table)

Digit
A character used to denote a unit multiple.  Hexadecimal digits, for example, consist of the digits 0 
through F

Digit, Binary *

Digit, Decimal *

Digit, Hexadecimal *

Digit, Significant *

Dimension
An attribute declared for arrays that specifies the number of identical sub-units in the array, 
terminated by an END statement:
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DO Group
In SABRETALK a relational set of statements or a part of a relational statement. The DO group 
begins with a DO statement and is terminated by an END statement:

a: DO b = 1 TO 9 BY 2 WHILE c = 5; ...END;
IF d = f THEN DO g = h; END;

DO Statement
In SABRETALK, the first statement in a DO group.

Double-word
An eight-byte unit of contiguous core on a double-word boundary.

Double-word Boundary
A byte boundary whose address is a multiple of 8.

Drifting Character
In SABRETALK, an editing character the positioning of which depends upon the location of the most 
significant digit of an edited number.

Dynamic Allocation
The act of providing core areas at the request of, and during the run time of, a program.

Edit
To peruse and/or modify the format or the content of data.  In SABRETALK, editing is normally 
restricted to the modification of output data, particularly data that is in zoned-decimal format. The 
prime purpose of editing is to produce printable or displayable numeric data.

Element
A basic or fundamental portion of data.

Element, Language *

Enclosure
A pair of delimiters that surround a sequential field.

Entry Point
In SABRETALK, the entry point of a program can be considered to be the first PROC statement in the 
program. From here, control will pass to the START statement, if one is present, or will flow.

Equal Sign
The character (=) used in SABRETALK for assignment and comparison of variables.

Exclusive Or
A logical add operation in which a statement is assigned a value of one if true, zero if false.  The 
sum (no carry) of the values assigned to each of a set of statements determines the truthfulness of 
the set.

Executive Routine
(see Control Program)

Expression
Two or more values and the enclosed operator(s) that constitute the arithmetic, logical, relational or 
concatenation operations.

Expression, Logical *

External Reference
That which refers to an area outside of the program.

188



GLOSSARY

Factor
A multiplier or an integral divisor.

Factoring of Terms
In SABRETALK, the combining of statements with similar attributes into one statement. Only one 
level of a structure may be factored:

DCL (a,b,c,d) BIN;

Field
A part of an area or a part of a record.  Data is frequently structured in the following largest-to-
smallest graduations: library, data set, record, word, field.

Field, Data *

File Addition
The concatenation of files.

Fixed Point
An arithmetic in which the (decimal) point is placed at a specific position in a field and is not moved 
thereafter. In contrast, floating point is an arithmetic in which the point is positioned or repositioned 
so that a maximum amount of significant digits may be preserved and so that one (usually) digit 
precedes the point.

Format, Card *

Full-word
A four-byte unit of contiguous core on a full-word boundary.

Full-word Boundary
A byte boundary whose address is a multiple of 4.

Function
• An activity.
• The way in which an activity is performed.
• In SABRETALK, a specific term for an internal procedure to which data is passed and which returns to 

the caller a computed result.

Function, Built-in *

Group, DO *

Half-word
A two-byte unit of contiguous core on a half-word boundary.

Half-word Boundary
A byte boundary whose address is an even number.

Hexadecimal Code
The representation of numeric information using hexadecimal digits.

Hexadecimal Digit
One  of the characters used to represent numbers in the number system of radix 16 (the 
hexadecimal system.)  The digits are represented by the characters 0 through 9 and by the letters A 
through F.  The binary equivalents of the sixteen digits are 0000 through 1111.

Identifier
In SABRETALK, the name given to a value or to a data field.  The term “LABEL” will be generally 
limited, in this guide, to the name of an executable statement.
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Identifying Keyword
A composite reserved in SABRETALK for defining data characteristics or for specifying the function 
of a statement.  Keywords are classified as statement identifiers, data attributes, separators and 
built-in function names.

IF Statement
In SABRETALK, a relational statement that provides ''then'' or  ''else'' branch control when the 
results of a test are true or false.

Image, Card *

Inclusive Or
A logical overlay operation in which statements are assigned a value of one if true and a value of 
zero if false.  The logical resultant of OR'ing the statements is true unless all of the statements are 
false.  The SABRETALK ''OR’' operation is an inclusive ''OR''.

Index
The integer rank of an item in a sequential set. In SABRETALK, sets of similar data elements are 
called arrays and an element is referenced by subscript, base 1, thus:

E(1) = first element (named ''E'') of array ''A''
E(2) = second element of array ''A''
E(3) = third element of array ''A''

Infix
In SABRETALK, the type of operator that is inserted between two operands, as contrasted to the 
type of operator (prefix) that precedes one operand.  All operators in SABRETALK are infix. The 
two operators plus (+) and minus (-) may also appear as 'prefix' operators.

Information
That portion of a signal or of a communication that has meaning.

Initialize
To bring to, or bring back to a starting state.  SABRETALK will provide, for example, the object code 
necessary to initialize ''DO'' loops when they are entered or re-entered.

Input
In relation to programs produced by SABRETALK, input would be any data supplied to the program, 
before or after initialization, by a source external to the program.

Instruction
The command, or the equivalent of a command, that can cause programmable computer activity. 
Instructions are usually:

• executed by the central processing unit.
• composed of binary numbers.
• represented as an operation to be performed and the operand(s) to be operated 
upon.

Instructions of higher-level languages are called statements.

Instruction, Assembler *

Instruction, Compiler *
(see Compiler Statement)

Instruction, Machine *

Item
A singular portion of data that conveys unit information. In a general hierarchy of data structure, an 
item might be a bit, a field, a word, etc..
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Item, Data *

Iteration
One pass through a series of instructions, a series usually designed  to manage modifications at 
each of a number of passes. In SABRETALK, IF statements, DO statements and GOTO statements 
provide for iterative processing.

I/O
Input and/or output.  (see Input, Output)

Keyword
In SABRETALK, a composite reserved for defining data characteristics or for specifying the function 
of a statement. Keywords are classed as data attributes, statement identifiers, separating keywords 
and built-in- function names.

Keyword, Identifying *

Keyword, Separating
(see Separator)

Label
The name given to an executable statement commonly equated with a core address. The 
SABRETALK guide attempts to distinguish between names of executable statements (labels) and 
names of values or data areas (identifiers.)

Label, Program *

Label, Statement *

Language
The syntax, the rules, the set of elements that comprise a communication system.

Language, Assembler *

Language, Compiler *

Language Element
A unit portion of a language; a character, a composite, an operator, an expression, a procedure, etc.

Language, Machine *

Length
An attribute of linear dimension, in terms of bits, bytes, etc.  A distinction should be made between 
length and precision. Length applies strictly to measurement; precision refers to the accuracy with 
which a quantity is represented, particularly:

• when DECIMAL fractions are converted to BINARY fractions and vice-versa.
• when arithmetic operations result in truncation or in rounding.
• when a value is moved from a larger to a smaller area and some significance is lost.

Letters, Lower-case *

Letters, Upper-case *

List
A set of data items that are to be printed, read or displayed in order.  In most cases, items in a list 
are to be treated serially from beginning to end.
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Literal
A data item which does not have an identifier, and which is referenced by the actual value it 
represents.

Location
The specification of a place into which data may be stored. A more general term than the word 
'address'.

Logical And
A logical operation in which statements are assigned a value of zero if false, a non-zero value if true 
and then the product (a bit multiplication product with no carry) is used to determine whether the set 
of statements are true (1) or false (0).

Logical Expression
A portion of a statement that indicates one or more logical operations is to be performed.

Logical Not
A negating operation in which a statement is assigned a 'true' value if false and assigned a  'false' 
value if true. In SABRETALK, the 'not' symbol (^) is used as:

• a logical negate where the essence of the result is zero or nonzero (true or false). 
e.g.:

IF ^ A THEN GOTO B ;

• an arithmetic negate where each bit in a location is replaced with a bit of opposite 
value. NOTE: This is not the same as changing the sign.

Logical Operator
A symbol that indicates a logical operation is to be performed.  The three logical operators in 
SABRETALK are 

• the 'not' symbol (^) - a logical  not
• the 'and' symbol (&) -a logical and 
• the ''or'' symbol (|) - an inclusive or

Logical Or
(see Inclusive Or)

Lower-case Letters
The non-capital constructs of the Roman alphabet.

Machine Address
A unique number assigned to a small module of memory.

Machine Code
The character pattern(s) used to represent commands or data in a computer; machine language 
code.

Machine Instruction
A character pattern used by a computer to perform an individual action including, in some cases, 
operands or addresses essential to the act.

Machine Language
(see Machine Code)

Macro
The keyword that identifies the activity requested of an external system.  Part of a macro statement.

Macro Statement
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A statement or instruction used as a substitute for, and representing, a set of instructions.  In most 
cases, parameters may be included in order to modify portions of the represented set.

Mark, Question *

Memory
Any portion of a computer or computer peripheral in which information may reside.

Memory, Core *

Minus Sign
The dash character (-) that is used as a prefix/infix operator in arithmetic operations.

Modification, Address *

Name
An ordered set of specific characters used to reference a data item or a statement.

Noise
The portion of a signal that contains no information.

Not, Logical *

Not Symbol
The character (^) used to represent the logical ''not'' operator.

No-op
An instruction or statement that can be completely disregarded without affecting the result of a 
routine in which it may be found.  SABRETALK will not produce object code for many types of no-op 
statements.

Null Statement
A SABRETALK statement that consists only of a statement terminator (;), or of a label and a 
statement terminator.

Number
Used in this guide, loosely, to mean a concept in a number system, a numeral, a numeric, a serial 
group of digits, etc..

Numeral
A symbol, character or graphic that represents a number.

Numeric
Pertaining to numerals.

Object Code
The representation of a language as it is produced (output) by a Compiler, Assembler, Translator, 
etc.

Object Program
The output of an Assembler, Compiler or Translator.

Operand
That data item used by an operation process or processed by an operation.

Operation
In SABRETALK, that action performed by a statement operator.

Operator
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In SABRETALK, a symbol representing one of a specific group of processes: arithmetic, 
assignment, relational, concatenation, logical.

Operator, Arithmetic *

Operator, Assignment *

Operator, Comparison *

Operator, Composite *

Operator, Concatenation *

Operator, Logical *

Or, Exclusive *

Or, Inclusive *

Or, Logical *

Or Symbol
The vertical-bar character (|) used to represent the logical inclusive-or operator.

Organization, Data *

Output
That which is produced by a program, computer or device and which is, in essence, displayable on 
paper, film, etc.

Overflow
Usually, the part of the result of an arithmetic operation that will not fit within the limits of the 
computer's arithmetic registers.

Packed
A statement keyword that allows areas to be positionally adjusted so that they can be more tightly 
grouped. (See Aligned.)

Patch
A temporary insertion into a program.  Commonly used for minor corrections when a complete re-
compilation or re-assembly is not desired.  Sometimes used for the insertion of a unique set of 
instructions.

Picture Specification
A combination of editing and editing format codes that is used to modify numerals for output printing 
and/or display.

PL/I
An abbreviation for Programming Language I, a large Compiler adaptable for either scientific or 
commercial applications and which provides simple or complex levels of programming. SABRETALK 
is an extended subset of PL/I.

Plus Sign
The symbol (+) that is used as an infix operator in addition operations.  (Disregarded as a prefix 
operator.)

Point, Decimal *

Point, Entry *
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Point, Fixed *
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Pointer
An attribute keyword used to DECLARE an area as that which contains an address, usually an 
address of some larger or major area.

Precision
The accuracy with which a value is represented.  (See Length)

Prefix
In SABRETALK, the type of operator that precedes one operand, in contrast to the type of operand 
(infix) that is inserted between two operands.  The prefix operators in SABRETALK are the plus (+) 
and the minus (-) signs.

PROCEDURE
A labelled unit of sequenced instructions that when given control (with or without parametric 
information) performs some unique activity.  Procedures are a major order of algorithmic internal 
procedures and of heuristic internal procedures.

Processing, Data *

Program
A complete set of directions and data, in, or convertible into, machine code and which can 
accomplish a singular task.

Program, Computer *

Program, Control *

Program, Executive
(see Control Program)

Program Label
In SABRETALK, the name assigned to a program by attaching it to the first statement.

Program, Object *

Program, Source *

Question Mark
A SABRETALK character that appears only as a character in a character-string.

Radix
The number of digits in a positional numbering system such as the decimal system, binary, 
hexadecimal, etc.  In the decimal system (the radix of which is ten decimal) the number 234 
represents:

4
+ 3 times ten
+ 2 times ten times ten

Each successive position has a value ten times greater than the position on its right.

Real-time System
A computer operating system that provides output responses, each within a time period essential to 
the response.

Record
Generally, a data unit of intermediate size that contains related fields.

Record, Data *
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Re-entrant
The property of programs that allows a single copy of the program to concurrently service more than 
one request by preventing the program from modifying itself during execution.

Reference, External *

Register
One of the group of basic hardware transfer nodes used for arithmetic, logical, relational and 
assignment operations and for indexing, counting, addressing, etc.  All instructions and manipulated 
data pass through some register. The bit capacity of each register is individually fixed.

Relative Address
A location given as an incremental measurement from a base.

Return, Carriage *

Routine, Control
(see Control Program)

Routine, Executive
(see Control Program)

Separating Keyword
(see Separator)

Separator
In SABRETALK, any character or character group used to keep apart distinct elements of a 
statement. Examples are the comma, colon, etc.

Separator, Statement
(see Separator)

Set
A collection.

Set, Data *

Sign
A representation of positive or negative quantity (+ -).

Sign, At *

Sign, Equal *

Sign, Minus *

Sign, Plus *

Significant Digit
Those unit portions of a numeral which represent its true value. Those unit portions of a numeral 
which have not been changed as a result of manipulation or as a result of insufficient definition.

Source Code
The representation of a language as it is input to a Compiler, Assembler, Translator, etc.

Source Language
 (see Source Code)

Source Program
A program in source code.
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Source Statement
A unit portion of an Assembler or Compiler language.

Space
Referring, in this guide, to print line indexing.  Not meant to signify a blank that is a character.

Special Character
The 20 SABRETALK characters that are used as operators.

Specification, Picture *

Statement
A basic problem-oriented language element that is used to delineate data characteristics and 
problem-solving steps of higher-level languages.

Statement, Assignment *

Statement Body
The portion of a statement that follows an identifying keyword, or that is an assignment.

Statement, Compiler *

Statement, Data *

Statement, DO *

Statement, IF *

Statement LABEL
The name assigned to an executable statement.

Statement, Null *

Statement Separator
(see Separator)

Statement, Source *

Statement Terminator
In SABRETALK, the semicolon (;) that signifies the end of a statement.

Step
A common synonym for instruction.

Storage Allocation
The dispensation (and control) of core areas and memory areas. In SABRETALK programs, the 
responsibility of allocating areas is generally divided between (or shared by) the control program and 
the Compiler.

String, Constant *
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Structure
A logical collection of data items, which may or not have identical data attributes, but which have a 
hierarchical relationship to one another. A strict tree organization of data where members of the 
major level are:

named data items, or
a next-lower-level set

and where members of the next (lower) level are:

named data items, or
a next-lower-level set

etc.

Supervising Program
(see Control Program)

Suppression
In SABRETALK, the deletion of unnecessary digits in a number, for example, deleting prefix-zeros, 
or deleting suffix zeros after rounding.

Switch
An address or value used for the selection of alternatives.

Symbol
A graphic sign or set of signs, usually not alphanumeric, that represents some conventional abstract. 
Examples:   $  %  ->   .

Symbol, And *

Symbol, Concatenation *

Symbol, Not *

Symbol, Or *

Syntax
The rules of grammar. Computer languages must be necessarily precise and therefore strictly 
conform to thoroughly defined concepts.

System, Real-time *

Table, Decision *

Terminator
Any construct used to define the end. In SABRETALK, the semicolon (;) is used as an end-of-
statement mark.

Terminator, Statement *

Terms, Factoring-of *

TPF
An acronym for ''Transaction Processing Facility'', the control or executive program that initiates, 
terminates and supervises the activities of all other programs.

Transfer Operator
(see Assignment Operator)
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Truncate
To remove digits from the head and/or tail of a numeral. In SABRETALK, this is often necessary 
when assigning values to a field of insufficient size.

Upper-case Letters
The capitals of the Roman alphabet.

Value
That which possesses a measurable quality and can therefore be compared.

Value, Absolute *

Variable
In SABRETALK, the contents of a named area to which may be assigned different values.

Word
In SABRETALK, a memory unit of four bytes on a full-word boundary.

Word, Double *

Word, Full *

Word, Half *

Zero Suppression
(see Suppression)
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These are the revisions added to the current Sabretalk Manual dated 12/18/91. The previous issue was 
dated  09/05/91.

7.4         CLEAR   OPTION ADDED TO COMPILER OPTIONS.      
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These  pages are supplied to solicit the reader's comments, suggestions, corrections, questions and 
requests for missing revisions. Return to:

SYSTEMONE CORPORATION
9300 NW 36th STREET
MIAMI FLORIDA 33178

203



REVISIONS LOG

204



REVISIONS LOG

205



REVISIONS LOG

206



REVISIONS LOG

207


	Table of Contents
	Introduction
	Programmer's Reference Guide Organization
	Format of this Guide
	Additional SABRETALK Publications

	CHAPTER 1: PROGRAM COMPONENTS
	PROGRAM COMPONENTS
	Statement Classification
	General Statement Structure
	Comments
	Keywords
	Macro keywords
	Assembler Language Instructions

	PROGRAM CONSTRUCTION RULES
	Format of Programs

	CHARACTER SETS
	Alphabetic Characters:
	Numeric Characters
	Special Characters
	Composites 

	CHARACTER SET USAGE
	Separators
	Use of blanks
	The Hexadecimal Numerics
	Miscellaneous Character Sets

	Data Classification
	DATA CONSTRUCTION METHODS
	Variables
	Literals
	Constants


	CHAPTER 2: DATA DEFINITION RULES
	DECLARE STATEMENT
	Implicit length

	DATA TYPES
	BINARY Data
	BIT-String Data
	DECIMAL Data
	DECIMAL FLOAT Data
	CHARACTER String Data
	Numeric Character string Data
	Edited Character-string Data
	PICTURE Specification for Edited Character-strings
	Suppression Characters
	Insertion Characters
	Drifting Characters
	Credit (CR) and Debit (DB) Composites 
	Floating point Edited character-string.

	LABEL Data
	POINTER Data
	Literal Data
	Literal Specification Summary


	CHAPTER 3: EXECUTABLE STATEMENTS - RULES
	EXPRESSIONS AND DATA CONVERSIONS
	Arithmetic Expressions
	Data Conversions
	Relational Expressions
	Relational Operations
	Logical Expressions
	Padding
	Boolean Arithmetic of Logical Operations
	Concatenation Expressions

	PRIORITY OF OPERATORS
	ASSIGNMENT STATEMENTS
	Simple Assignment
	Multiple Assignment
	Data Conversion, Truncation and Padding
	Structure Assignment
	Character-string to character-string assignment
	Arithmetic to arithmetic (*DEC, *NCS, *ECS, *BIN, *DEC FLOAT)
	BIT-string to BIT-string
	Arithmetic to BIT-string
	BIT-string to arithmetic
	Assignment of Labels and Pointers

	GOTO STATEMENTS
	DO STATEMENTS
	Non-iterative DO Group
	Iterative DO Group using WHILE Clause
	Iterative DO Group using a control variable

	IF Statements

	CHAPTER 4: EXPANDED DATA DEFINITION RULES
	DATA ORGANIZATION
	Arrays
	General Format:
	Subscripts

	Structures
	General Format of a Structure:

	Arrays Containing Structures
	Structures Containing Arrays
	Factoring of Attributes
	ALIGNED and PACKED Attributes
	General Format of ALIGNED and PACKED Data:


	STORAGE ALLOCATION
	AUTOMATIC Storage
	General Format:

	ENTRYBLOCK Storage
	General Format:

	CONSTANT Storage
	CONST Statements

	BASED Storage
	General Format:

	Explicit Pointer Usage
	General Format:
	General Rules for the Use of Pointers:

	DEFINED ATTRIBUTE AND DEFINED STORAGE
	General Format:
	General Rules for DEFINED Storage:


	INCLUSION STATEMENTS
	%INCLUDEAF Statement
	General Format:

	%INCLUDE Statement
	General Format:
	General Rules for %INCLUDE Statements:


	DATA STATEMENT STRUCTURE SUMMARY

	CHAPTER 5: EXPANDED EXECUTABLE STATEMENT RULES
	PRECISION
	Arithmetic Operations
	Addition and Subtraction
	Multiplication
	Division
	Precision of MOD Operations on Decimal Data
	Results of Arithmetic Operations on BINARY Numbers

	Truncation

	FUNCTIONS
	Built-in Functions
	ABS Built-in Function
	MAX Built-in Function
	MIN Built-in Function
	MOD Built-in Function
	ROUND Built-in Function
	SIGN Built-in Function
	ALPHA Built-in Function
	NUMERIC Built-in Function
	INDEX Built-in function
	SHL Built-in Function
	SHR Built-in Function
	BSTR (pseudo-variable) Built-in Function
	CSTR (pseudo-variable) Built-in Function
	NSTR (pseudo-variable) Built-in Function
	VSTR Built-in Function
	ADDR Built-in Function
	CASE Built-in Function
	LSTR Built-in Function
	BSTM Built-in Function


	PROGRAMMER-DECLARED FUNCTIONS
	General Format:

	PROCEDURES
	General Format of PROCEDURE statements:
	Internal Procedures
	External Procedures

	MACROS
	General Format of Macro Statements:
	General Rules for Macro Statements

	REGISTER LOADING AND STORING
	System Equates in Macro Statements
	General Rules for Loading and Storing
	Sample Application Supported Macros

	PROCEDURE STATEMENTS
	General Format:
	General Rules for PROCEDURE Statements:

	START STATEMENTS
	General Format:
	General Rules for START Statements:

	END STATEMENTS
	General Format:
	General Rules for END Statements:

	CALL STATEMENTS
	General Format:
	General Rules for CALL Statements:

	RETURN STATEMENTS
	General Format:
	General Rules for the RETURN Statement:

	PROGRAM STRUCTURE
	Rules Governing Program Structure:
	Using Procedures Compiled Within the Program


	CHAPTER 6: ALTERNATIVE CODING METHODS
	Efficient Performance
	DATA CONVERSION
	Use of Numeric Character-String (*NCS) Data
	Use of Decimal Data
	Use of BIT-String Data

	AVOIDING POOR PROGRAMMING TECHNIQUES
	Compiler Restriction
	Other Techniques For Efficient Coding
	Initializing a field
	Use of Logical Operations
	Bit Manipulation


	CHAPTER 7: SABRETALK COMPILER OPTIONS
	OPTIONS STATEMENTS
	ALIGN / NOALIGN
	ALPHA
	ANGB3 / NOANGB3
	BAL / NOBAL
	CLEAR / NOCLEAR
	CODE / NOCODE
	DECK/NODECK
	DOLLAR / NODOLR
	GEN / NOGEN
	ICAFYES / ICAFNO
	INCLD / NOINCLD
	MAP / NOMAP
	MLEVEL0 / MLEVEL1 / MLEVEL2
	NUMERIC
	OPT / NOOPT
	PRINT / NOPRINT
	System-Equate-Identifiers Options (GTS, ONL, etc.)
	TERM / NOTERM
	TRACE / NOTRACE
	XREF / NOXREF
	Compiler Support of Variable Block Sizes:
	Changing the Compiler Block Size Options:


	CHAPTER 8: SABRETALK IN AN INTERACTIVE ENVIRONMENT
	Creating a Program
	SYNTAX CHECKING
	The Syntax Checker
	Syntax Checking New Statements
	Syntax Checking Old Statements
	Structure Mode
	Initializing Structure Mode
	Completing the Structure
	Error Handling in Structure Mode
	Rules for Structure Mode

	Coding Standards
	The treatment of statements:
	Unacceptable Statements
	Programmer Declared Functions



	CHAPTER 9: SABRETALK COMPILER MESSAGES
	Severe Programmer Error Messages
	Terminal Error Messages
	Internal Compiler Errors
	Warning Messages
	Information Messages
	Syntax Checker Messages

	APPENDIX A:
	Example Format of an Entry Control Block

	APPENDIX B.
	Special SABRETALK considerations for TPFDF users
	User Macros

	GLOSSARY
	INDEX
	REVISIONS LOG
	7.4	CLEAR option added to compiler options.

	READER'S COMMENTS

