16/4/2001

	This document has been re-constructed from a text-recognition program from images of the original pages scanned by Tim Olmstead.
	It it nowhere near completion, however, it is considerably more readable than the plain text form.
	The index and some of the tables are complete. Many of the programs and examples are impossible to reconstruct from the fragments of text.
	If you happen to have access to a DR manual, I would be grateful to receive any corrections that you can find the time to forward.
	I would be most grateful for any help, no matter how small.

Thank you. robin_v@bigpond.com
�11-1-1

PL/I
Language
Reference Manual

Copyright © 1983

Digital Research
P.O. Box 579
160 Central Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All Rights Reserved

1--l
�COPYRIGHT

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
PL/I-80 and PL/I-86 are trademarks of Digital
Research. SP/k is a trademark of the University of
Toronto. IBM is a registered trademark of
International Business Machines, Incorporated.
Digital Equipment Corporation is a registered
trademark of Digital Equipment Corporation. Z80 is
a registered trademark of Zilog, Inc. Intel is a
registered trademark of Intel Corporation.
Microsoft is a registered trademark of Microsoft
Incorporated.

The PL/I Language Reference Manual was prepared
using the Digital Research TEX Text Formatter and
printed in the United States of America.

•		First Edition:		October 1982
•		Second Edition:	June 1983
�Foreword

Digital Research PL/I is a complete software development system for
both applications and system programming. Digital Research has
implemented PL/I for both 8-bit and 16-bit microprocessors. At the
source-code level, the 16-bit implementations are upward compatible
with the 8-bit implementations. Appendix A contains a complete list
of the differences among the various implementations. This manual
describes the PL/I language which is common to all implementations.

Digital Research PL/I runs under any of the Digital Research family
of operating systems. It also runs under the IBM8 Personal Computer
Disk Operating System Version 1.1. This manual assumes you are
already familiar with your operating system, and minimizes
references to any specific system.

The PL/I Language Reference Manual is the formal specification of
the PL/I programming language. This manual is primarily intended to
be a reference document and is therefore not tutorial in nature.
Some previous programming experience with PL/I or with another
language is assumed.

The Language Reference Manual describes the overall structure and
organization of PL/I source programs in the form of blocks and
procedures. There is also a specification of the character set of
the language, rules governing the formation of identifiers,
constants, delimiters, operators, and comments.

This manual explains the various PL/I data types including arrays
and structures, the rules governing conversion between data types,
and the rules governing the scope of data declarations. Assignments
and expressions, sequence control, run-time memory management, and
I/O processing are also described.

There is a complete description all of the PL/I built-in functions
including arithmetic, mathematical, string, conversion, condition,
and miscellaneous functions.

Finally, the manual also describes the internal representation of
data in the various implementations, and conventions for
interfacing PL/I programs with programs written in assembly
language.
�Table of Contents

1		Introduction

1.1		Documentation Set							1-1

1.2		Notation						1-2

2		Program Structure

2.1		High-level Organization			2-1
2.2		Blocks . 				2-2

2.3		Internal vs. External Blocks		2-5
2.4		Scope of Variables			2-6
2.5		Procedure Blocks			2-9
2.6		The CALL Statement		2-10
2.7		The RETURN Statement 		2-10
2.8		Arguments and Parameters 		2-11
2.9		The PROCEDURE Statement		2-13

2.10		Low-level Organization 		2-15

2.11		The Character Set 			2-16

2.12		Identifiers				2-17
2.13		Constants . 				2-18

2.14		Delimiters and Separators 		2-18

2.14.1		Spaces				2-19
2.14.2		operators				2-19
2.14.3		Special Characters			2-20
2.14.4		Comments			2-21

2.15		Preprocessor Statements 			2-22

2.15.1		The %INCLUDE Statement 		2-22
2.15.2		The %REPLACE Statement 		2-22

v
�Table of Contents
	(continued)

3	Data Types and Attributes

3.1	Arithmetic Data				3-1

	3.1.1	FIXED BINARY			3-2
	3.1.2	FLOAT BINARY			3-2
	3.1.3	FIXED DECIMAL			3-3
3.2	String Data					3-4
	3.2.1	Character-string Data				3-5
	3.2.2	Bit-string Data				3-5

3.3	Control Data Items				3-6
	3.3.1	LABEL Data 				3-7
	3.3.2	ENTRY Data 				3-9

3.4	POINTER Data 				3-11

3.5	FILE Data .					3-11

3.6	The DECLARE Statement 			3-11

3.7	Multiple Declarations 				3-12

3.8	Default Attributes 				3-13

4	Data Conversion

4.1	Arithmetic Conversions					4-2

4.2	Arithmetic Conversion Functions 			4-6

	4.2.1	The BINARY BIF				4-6
	4.2.2	The DECIMAL BIF			4-7
	4.2.3	The DIVIDE BIF				4-7
	4.2.4	The FIXED BIF				4-7
	4.2.5	The FLOAT BIF				4-8

4.3	String Conversions				4-8

	4.3.1	Arithmetic to Bit-string Conversion 			4-9
	4.3.2 Arithmetic to Character Conversion 		4-9
	4.3.3 Bit-string to Arithmetic Conversion 		4-10
	4.3.4 Bit to Character-string Conversion 			4-11
	4.3.5 Character to Arithmetic Conversion 		4-11
	4.3.6 Character to Bit-string Conversion 			4-12

vi
�Table of Contents
	(continued)

5		Data Aggregates

5.1		Array Declarations 			5-1

5.2		Array References 			5-3

5.3		Initializing Array Elements 		5-5

5.4		Arrays in Assignment Statements 		5-7

5.5		Structures .				5-8

5.6		Mixed Aggregates 			5-11

5.7		Mixed Aggregate Referencing					5-12

6		Assignments and Expressions

6.1		The Assignment Statement					6-1

6.2		Expressions						6-1

	6.2.1	Prefix Expressions 				6-1
	6.2.2	Infix Expressions 				6-2

6.3		Precedence of Operators 			6-2

6.4		Concatenation 			6-3

6.5		Relational Operators 			6-3

6.6		Bit-string Operators 			6-5

6.7		Exponentiation			6-5

6.8		Pseudo-variables 			6-6

	6.8.1	Character SUBSTR				6-6
	6.8.2	Bit SUBSTR				6-7
	6.8.3	UNSPEC				6-8

vii
�Table of Contents
	(continued)

7	Storage Management

7.1	Storage Classes				7-1

	7.1.1 The AUTOMATIC Storage Class				7-1
	7.1.2 The BASED Storage Class . .					7-2
	7.1.3 The PARAMETER Storage Class				7-3
	7.1.4 The STATIC Storage Class				7-4

7.2	The ALLOCATE Statement			7-5

7.3	Multiple Allocations				7-5

7.4	The FREE Statement			7-7

7.5	The NULL BIF 				7-8

7.6	The ADDR BIF 				7-9

7.7	Storage Sharing 				7-9

7.8	Programming Considerations 			7-10

8	Sequence Control

8.1	The Simple DO Statement						8-1
8.2	The Controlled DO Statement						8-2

	8.2.1 The DO WHILE Statement . . .				8-3
	8.2.2 The DO REPEAT Statement . . .				8-3
	8.2.3 The DO REPEAT WHILE Statement			8-4
	8.2.4 The DO BY WHILE Statement . .				8-6

8.3		The IF Statement				8-6

8.4		The STOP Statement		8-7

8.5		The GOTO Statement		8-7

8.6		The Nonlocal GOTO Statement 		8-8

viii
�Table of Contents
(continued)

9		Condition Processing

9.1		The ON Statement			9-1
9.2		The SIGNAL Statement		9-4
9.3		The REVERT Statement		9-4
9.4		The ERROR Condition		9-4
9.5		Arithmetic Error Conditions		9-6
9.6		The ONCODE BIF				9-7
9.7		Default ON-units . . . 						9-7
9.8		I/O Conditions						9-7

10		Input/Output Processing

10.1		The OPEN Statement		10-1

10.2		Establishing File Attributes			10-5

10.3		The CLOSE Statement		10-8

10.4		The File Parameter Block		10-9

10.5		I/O Conditions			10-10

10.5.1	The ENDFILE Condition			10-10
10.5.2	The UNDEFINEDFILE Condition		10-10
10.5.3	The KEY Condition				10-10
10.5.4	The ENDPAGE Condition			10-11
10.5.5	Default I/O ON-units				10-11

10.6		I/O Condition BIFs			10-11
	10.6.1 The ONFILE Function			10-12
	10.6.2 The ONKEY Function 			10-12
	10.6.3 The PAGENO Function 			10-12
	10.6.3 The LINENO Function 			10-12

10.7		Predefined Files SYSIN and SYSPRINT 	10-12
10.8		I/O Categories 			10-13
	10.8.1	STREAM I/O			10-13
	10.8.2	RECORD I/O 			10-13

ix
�Table of Contents
	(continued)

11	Stream I/O

11.1		LIST-directed I/O			11-2
	11.1.1	The GET LIST Statement		11-3
	11.1.2	The PUT LIST Statement		11-3
11.2		Line-directed I/O			11-4

11.2.1	The READ Varying Statement 			11-4
11.2.2	The WRITE Varying Statement 			11-5

11.3		EDIT-directed I/O 			11-6

11.3.1	The Format List 				11-6
11.3.2	Data Format Items 				11-6
11.3.3	Control Format Items 				11-9
11.3.4	Remote Format Items 				11-10
11.3.5	The FORMAT Statement 			11-11
11.3.6	The Picture Format Item 			11-11
11.3.7	The GET EDIT Statement 			11-19
11.3.8	The PUT EDIT Statement 			11-19

12	Record I/O

12.1		The READ Statement 		12-1

12.2		The READ with KEY Statement 	12-1

12.3		The READ with KEYTO Statement 	12-2

12.4		The WRITE Statement 		12-2

12.5		The WRITE with KEYFROM Statement 	12-2

13		Built-in Functions

13.1		Arithmetic Functions 			13-1

13.2	Mathematical Functions 				13-1

13.3	String-handling Functions 			13-2

13.4	Conversion Functions 				13-3

13.5	Condition-handling Functions 			13-3

x
�Table of Contents
	(continued)

13.6		Miscellaneous Functions				13-3

13.7		List of Built-in Functions						13-4

14		Summary of PL/I Statements

14.1		The ALLOCATE Statement 		14-1
14.2		The ASSIGNMENT Statement 	14-1
14.3		The BEGIN Statement 		14-1
14.4		The CALL Statement 			14-1
14.5		The CLOSE Statement 		14-1
14.6		The DECLARE Statement (for scalar variables)	14-1
14.7		The DECLARE Statement (for array variables)		14-2
14.8		The DECLARE Statement (for structure variables)	14-2
14.9		The DECLARE Statement (for ENTRY data)	14-2
14.10	The FREE Statement			14-3
14.11	The DO Statement 			14-3
14.12	The END Statement			14-3
14.13	The FORMAT Statement		14-3
14.14	The FREE Statement			14-4
14.15	The GET EDIT Statement		14-4
14.16	The GET LIST Statement		14-4
14.17	The GOTO Statement			14-4
14.18	The IF Statement			14-4
14.19	The %INCLUDE Statement 		14-5
14.20	The NULL Statement			14-5

xi
�Table of Contents
(continued)

14.21	The ON Statement 			14-5
14.22	The OPEN Statement			14-5
14.23	The PROCEDURE Statement		14-6
14.24	The PUT EDIT Statement		14-6
14.25	The PUT LIST Statement		14-6
14.26	The READ Varying Statement 		14-6
14.27	The READ Statement 		14-6
14.28	The READ with KEY Statement		14-7
14.29	The READ with KEYTO Statement 	14-7
14.30	The %REPLACE Statement		14-7
14.31	The RETURN Statement		14-7
14.32	The REVERT Statement		14-7
14.33	The SIGNAL Statement		14-8
14.34	The STOP Statement			14-8
14.35	The WRITE Varying Statement 		14-8
14.36	The WRITE Statement 			14-8
14.37	The WRITE with KEYFROM Statement 	14-8

15	Data Attributes

15.1		ALIGNED . 			15-1

15.2		AUTOMATIC . 			15-1

15.3		BASED .				15-1

15.4		BINARY .				15-1

15.5		BIT .				15-2

15.6		BUILTIN .			15-2

xii
�Table of Contents
(continued)

15.7		CHARACTER .			15-2

15.8		DECIMAL .			15-2

15.9		ENTRY .			15-2

15.10	ENVIRONMENT			15-3

15.11	EXTERNAL .			15-3

15.12	FILE .				15-3

15.13	FIXED .				15-3

15.15	INITIAL . 				15-4

15.16	LABEL . 				15-4

15.17	PARAMETER 			15-4

15.18	POINTER .				15-4

15.19	RETURNS .			15-4

15-20	STATIC .				15-5

15-21	VARIABLE .			15-5

15.22	VARYING .			15-5

1-1

xiii
�Appendixes

A	Implementation Notes 			A-1

A.1	DRI PL/I vs. PL/I Subset G 			A-1

A.2	Differences between PL/I-80 and PL/I-86 		A-3

A.3	PL/I Running Under DOS 			A-5

A.4	Summary of Differences 			A-5

B	Internal Data Representation 		B-1

B.1	FIXED BINARY Representation 		B-1

B.2	FLOAT BINARY Representation 		B-2

B.2.1	Single-precision 				B-2
B.2.2	Double-precision 				B-6

B.3	FIXED DECIMAL Representation 		B-8

B.4	CHARACTER Representation 		B-8

B.5	BIT Representation 				B-9

B.6	POINTER . 				B-10

B.7	ENTRY and LABEL Data 			B-10

B.8	File Constant Representation 			B-10

B.9	Aggregate Storage 				B-11

C	Interface Conventions

C.1	Parameter Passing Using a Parameter Block			C-1

C.2	Returning Values in Registers or on the Stack . . . 		C-6

C.2.1 Returning FIXED BINARY Data 			C-6
C.2.2 Returning FLOAT BINARY Data 			C-7
C.2.3 Returning FIXED DECIMAL Data 			C-7
C.2.4 Returning CHARACTER Data 			C-8
C.2.5 Returning BIT Data 				C-8
C.2.6 Returning POINTER Variables 			C-8
C.2.7 Returning ENTRY and LABEL Variables 		C-9

C.3	Direct Operating System Function Calls 		C-12

xiv
�Appendixes
(continued)

D		Compiler Options

E		Error Messages and Condition Codes E-1
E.1 PL/I-80 R1.4 and PL/I-86 R1.0 			E-2
E.2 PL/I-86 Rl.l and PL/I-86 R1.0 under DOS 		E-19
E.3 Condition Categories and Codes 			E-19

F		ASCII and Hexadecimal Conversions F-1

G		PL/I Bibliography 		G-1

H		Glossary . 		H-1

xv
�Tables, Figures and Listings

Tables

2-1.	PL/I Symbols					2-16
2-2.	PL/I Operators					2-20
2-3.	Special Character Delimiters and Separators . .			2-21
3-1.	PL/I Float Binary Numbers				3-3
3-2.	Bit-String Constant Formats				3-6
4-1.	Common Operand Types in Mixed Operand
	Expressions									4-3
4-2.	PL/I BIFs for Conversion Between Arithmetic and
	Nonarithmetic Data Types				4-8
4-3.	Character to Arithmetic Conversion			4-11
6-1.	PL/I Operator Precedence				6-2
6-2.	PL/I Bit-String Operators				6-5
9-1.	Arithmetic Error Condition				9-6
10-1.	External Device Names			10-3
10-2.	PL/I implied Attributes 			10-5
10-3.	Valid File Attributes for each I/O Statement .		10-6
10-4.	PL/I Valid File Attributes			10-7

11-1.	Stream I/O Naming Conventions 		11-2
11-2.	Picture Format Characters 			11-12
11-3.	Picture Output Characters 			11-14
11-4.	Picture Edited Output 			11-17
11-5.	Picture Edited Output 			11-18

A-1.	Built-in Functions Not Implemented			A-2
A-2.	Summary of Implementation Differences 		A-6
D-1.	PL/I Compiler options 				D-1
E-1.	General Errors					E-2
E-2.	Compiler Errors 				E-4
E-3.	Run-time Errors 				E-14
E-4.	PL/I Condition Categories and Subcodes 			E-20

Figures

2-1.	Begin and Procedure Blocks				2-4
2-2.	Internal and External Blocks				2-6
2-3.	Subroutine and Function Invocation			2-10
2-4.	Actual and Formal Parameters 			2-11

xvi
�Tables, Figures and Listings
(continued)

5-1.		Two-dimensional Array			5-2
5-2.		Array Element References			5-4
5-3.		Array Initialization				5-5
5-4.		Hierarchy of Structure Levels			5-10
5-5.		Hierarchy of Structure Levels			5-11
5-7a.		An Array of Structures			5-12
5-7b.		A Structure of Arrays 			5-13
7-1.		Multiple Allocations of a Based Variable . . .		7-6
7-2.		Linked List				7-8
8-1.		Forms of the DO Statement			8-1
8-2.		Forms of the DO WHILE Statement		8-3
8-3.		The DO REPEAT Statement 		8-4
8-4.		The DO REPEAT WHILE Statement 	8-4
8-5.		The DO BY WHILE Statement		8-6
9-1.		On-unit Activation 			9-3
11-1. 	Picture Specification Recognizer 		11-13
B-1.		FIXED BINARY Representation		B-2
B-2.		PL/I-80 Single-precision Floating Point Format 	B-2
B-3.		IEEE Single-precision Floating Point Format . . 	B-4
B-4.		Double-precision Floating Point Format		B-6
B-5.		Bit-string Data Representation			B-10
C-1.		PL/I Parameter Passing Mechanism		C-1
F-1.		ASCII Symbols 			F-1
F-2.		ASCII Conversion Table			F-2

Listings

B-1.		Floating-point Format Conversion Procedure		B-6
C-1.		The DTEST Program . 	C-3
C-2.		DIV2.ASM Assembly Language Program (8080)	C-4
C-3.		DIV2.A86 Assembly Language Program (8086) . . .	C-5
C-4.		DTEST Output (Abbreviated)		C-6
C-5.		The FDTEST Program			C-9
C-6.		FDIV2.ASM Assembly Language Program	C-10
C-7.		FDIV2.A86 Assembly Language Program	C-11

xvii
�Section 1
Introduction

Digital Research PL/I is an implementation of PL/I for
microcomputers that use the 8080, 8086, 8088, or similar processor.
It is formally based on American National Standard X3.74 PL/I
General Purpose Subset (Subset G) . Subset G has the formal
structure of the full PL/I language, but in some ways it is a new
language and in many ways an improved language compared to full
PL/I.

PL/I Subset G is easy to learn and use. It is a highly portable
language because its design usually ensures hardware independence.
It is also more efficient and cost effective. Programs written in
PL/I Subset G are easier to implement, document, and maintain.

1.1 Documentation Set

The PL/I Language Reference Manual presents a detailed but concise
description of the PL/I programming language. It is not a tutorial
on how to program in PL/I; rather, it is a functional description of
the language, its syntax, and semantics. This manual is a reference
document that supplements Digital Research's PL/I Language
Programmer's Guide.

The PL/I Language Programmer's Guide includes sample programs that
illustrate many of the features of PL/I, as well as the mechanical
aspects of compiling and linking programs. If you have not
programmed in PL/I before, read the Programmer's Guide first, while
cross-referencing specific topics in the Reference Manual. If you
are already an experienced PL/I programmer, you might want to read
the Reference Manual only.

The PL/I Language Command Summary lists all the PL/I keywords and
statement forms, data attributes, and error messages. It also
contains a summary of the commands for the compiler.

1-1
�PL/I Reference Manual	1.2 Notation

1.2 Notation

The following notational conventions appear throughout this
document:

Words in capital letters are PL/I keywords.

Words in lower-case letters or in a combination of lower-case
letters and digits separated by a hyphen represent variable
information for you to select. These words are described or
defined more explicitly in the text.

Example statements are given in lower-case.

The vertical bar | indicates alternatives.

JK represents a blank character.

Square brackets [] enclose options.

Ellipses (. . .) indicate that the immediately preceding item can
occur once, or any number of times in succession.

•	Except for the special characters listed above, all other
punctuation and special characters represent the actual
occurrence of those characters.

•	Within the text, the symbol CTRL represents a control
character. Thus, CTRL-C means control-C. In a PL/I source
program listing or any listing that shows example console
interaction, the symbol - represents a control character.

•	The acronym BIF means built-in function.

•	Everything that you type at the keyboard and that appears on
the screen is in colored type.

End of Section 1

1-2
�Section 2
Program Structure

2.1 High-level organization

The following statements comprise every PL/I program:

·	Structural statements
·	Declarative statements
·	Executable statements

Structural statements define distinct, logical units within a
program and therefore determine the overall, high-level
organization. When a program runs, control always flows from one of
these logical units to another. Logical units can contain other
logical units; they can be nested. Structural statements also
determine the hierarchical structure of a program where some logical
units are subordinate to others.

Declarative statements determine the environment of a logical unit.
The environment is simply the names and attributes of variables that
are available or active in a logical unit. Declarative statements
specify the context of variables that can be legally manipulated in
a logical unit.

Executable statements are statements that perform some action. Both
structural statements and declarative statements serve only to
create a context for executable statements. All executable
statements fall into one of the following categories:

·	Assignment statements that assign the value of an expression or
	constant to a variable.

·	Condition handling statements that allow a program to intercept
	and recover from run-time errors.

·	I/O statements that control the flow of data to and from I/O
	devices.

·	Memory management statements that manipulate storage.

·	Null statements that perform no action but function as
	placeholders.

·	Preprocessor statements that execute at compile time and
	manipulate external source files.

·	Sequence control statements that transfer the flow of control
	between logical units.

2-1
�PL/I Reference Manual								2.2 	Blocks

where proc-name identifies the procedure, and statement-1 through
statement-n are any PL/I statements constituting the body of the
block. Section 2.9 describes the PROCEDURE statement.

Note: the proc-name for the END statement is optional, but if
included it must match the proc-name for the PROCEDURE statement.

The essential difference between a BEGIN block and a PROCEDURE block
is how they receive control when the program is running. Control
flows into a BEGIN block in the usual sequential manner. At this
point, the block becomes active. When control transfers,
programmatically, outside the block, or its corresponding END
statement executes, the block terminates.

PL/I skips PROCEDURE blocks during the usual execution sequence, and
they receive control only when invoked (see Section 2.5). Figure 2-1
illustrates the block concept.

�

							2-3
�PL/I Reference Manual				2.3	Internal vs. External Blocks

2.3 Internal vs. External Blocks

Each block is characterized as either internal or external depending
on its relationship with other blocks. An internal procedure is one
that is contained in an encompassing block. An external procedure
is separate from other blocks. The procedure is not contained
(nested) in any other block. Thus, the main procedure is always an
external procedure.

A PL/I program can have one or more external procedures that contain
nested internal procedures or blocks. Each external procedure can
be separately compiled and linked together to form a runnable
program. One of the external procedures forming the program must be
the main procedure.

In Figure 2-2 (a) , blocks Pl, P2, and P3 are all external but the
BEGIN block is internal to P3. In Figure 2-2 (b) , Pl is the external
block, and P2, P3, and the BEGIN block are all internal. The main
procedure has the form:

proc-name:
PROCEDURE OPTIONS(MAIN);

Statement. or Blocks

END [proc-name];

2-5
�PL/I	Reference Manual				2.3	Internal vs. External Blocks

�
Figure 2-2. Internal and External Blocks

The PL/I Language Programmer's Guide contains specific examples of
program structure and how you can separately compile, link, and load
external procedures.

2.4 Scope of Variables

The scope of a variable is the set of blocks in which the variable
is known. Variables can be either local or external relative to a
block in which they appear.

2-6
�PL/I Reference Manual						2.4	Scope of Variables

When you declare a variable in a block, you can reference it in that
block or any contained block. The variable is said to be local to
that block because you cannot reference it outside the block where
you declare it. In a contained block, a reference to a variable
declared in a containing block is called an up-level reference.

The following example illustrates the concept of scope:

Pl:
procedure;
	declare
		(a,b) fixed binary(7);
	a = 2;	/* a is local to Pl
	b = 3;	/* b is local to Pl
P2:
	procedure;
		declare
			b fixed binary(7);
		b = 2;		/* b is local to P2
		a = a*b; /* b here is b in P2, not b in P1
	end P2;

	put list (a,b);

end Pl;

PL/I creates a new variable b in block P2 because it is a declared
variable in that block. The PUT LIST statement is outside P2;
therefore, the value of the variable b of Pl is 3. Because there is
no declaration for the identifier a in P2, a is an up-level
reference to the variable a declared in Pl, and the assignment
statement in P2 changes its value. Thus, this code sequence
produces the values 4 and 3.

Any variable declared as EXTERNAL is known to all blocks in which it
is declared as EXTERNAL and in all contained blocks unless
redeclared without the EXTERNAL attribute. Two declarations of the
same variable name denote separate storage locations unless both
specify the EXTERNAL attribute.

2-7
�PL/I Reference Manual						2.4	Scope of Variables

Pl:
procedure;
	declare
		z fixed binary external;

P2:
procedure;
	declare
		z fixed binary external;

P3:
begin;
	declare
		z float binary; /* not external

	end;
	end P3;
	end P2;
	end Pl;

In this code sequence, the variable z in Pl and P2 refers to the
same external variable, but variable z in P3 is a local variable and
is distinct from the external variable z.

2-8
�PL/I Reference Manual	2.4	Scope of Variables

Pl:
procedure options(main);
	declare x float binary;

begin;
	declare x fixed;

end;

P2:
procedure;
	declare x character(10) varying;

end P2;

end Pl;

In this code sequence, the scope of x is limited to each block in
which it is declared. Although the name is identical in each
declaration, the compiler treats each one as a completely different
variable with its own data type, and stores them in different memory
locations.

2.5 Procedure Blocks

In PL/I , there are two types of procedures: subroutines and
functions. Both types perform a specific task and are logically
separate from the rest of the program. Both types can execute the
same sequence of code one or more times without duplicating the code
at each occurrence.

You invoke or call a subroutine and, optionally, pass data items to
it in an argument list. The subroutine then manipulates the data
and, optionally, returns it to the invoking procedure. Control
resumes at the statement immediately following the invocation.

A function is a procedure that manipulates data items and then
returns a single value. You invoke a function by referencing its
function name and argument list in an expression. Control passes to
the function that performs its task and then returns a single value
that replaces the function reference. Control then resumes at the
point of reference.

2-9
�PL/I Reference Manual	2.6	The CALL Statement

2.6 The CALL Statement

The CALL statement has the general form:

CALL proc-name((sub-l,...,sub-n)] [(argument-list)];

where sub-1 through sub-n are optional subscripts that are required
only when proc-name is a subscripted entry variable (Section 3. 3. 2),
and argument-list represents the arguments passed to the procedure.
Figure 2-3 illustrates the invocation of subroutines and functions.

�IMPORT D:\\DRDOS\\FIG2-3.BMP * mergeformat���
Figure 2-3. Subroutine and Function Invocation

example: 	example:

call print_header;	point = 3.14/sin(A);
call compute(base_pay,overtime);	put list (Sum(X, Y));

2.7 The RETURN Statement

The RETURN statement returns control to the point in the calling
block immediately following the procedure invocation. It also
returns a value if the procedure is a function procedure.
The RETURN statement has the form:
RETURN [(return-exp)];

where return-exp is the function value the procedure returns to the
calling point. When necessary, PL/I converts the attributes of the
returned value to conform to the attributes specified in the RETURNS
attribute of the procedure statement. (See Section 4.1.)

The RETURN statement ends the procedure block that contains it. If
the main procedure has the RETURNS attribute, PL/I returns control
to the operating system.
The following are some examples of RETURN statements:

return;
return (X**2);
return (F(A, (B)));
�PL/I Reference Manual	2.8 Arguments and Parameters

2.8 Arguments and Parameters

The data items you pass to a procedure are called the arguments,
while the data items expected by a procedure and defined in the
PROCEDURE statement, are called the parameters. Upon invocation of
a procedure block, PL/I pairs each argument with its corresponding
parameter. Figure 2-4 illustrates this concept.

�
Figure 2-4. Arguments and Parameters

When you pass the argument by reference, the argument and
corresponding parameter share storage. In this case, any changes
made to the parameter in the invoked procedure change the value of
argument of the invoking block.

When you pass the argument by value, the argument and parameter do
not share storage. In this case, PL/I passes a copy of the argument
to the invoked procedure, so that any changes to the parameter
affect only the copy, not the argument's value.

The following example program illustrates parameter passing.

A:
procedure;
	declare
		ACTUAL		fixed binary,
		DUMMY		fixed binary;

		call X(ACTUAL);
		call X((DUMMY));

X:
procedure (FORMAL);
	declare FORMAL fixed binary;
	FORMAL = 3;
	end X;
end A;

2-11
�PL/I Reference Manual	2.8 Arguments and Parameters

PL/I passes ACTUAL by reference. Therefore, the assignment
statement in the procedure X changes the value of ACTUAL throughout
the program. PL/I passes DUMMY by value. Thus the procedure only
changes a copy of the value inside the procedure.

PL/I passes arguments by reference when the data attributes of the
argument are the same as the data attributes of the parameter. PL/I
passes an argument by value when it is one of the following:

·	a constant
·	an entry name
·	an expression consisting of variable references and operators
·	a variable reference enclosed in parentheses
·	a function invocation
·	a variable reference whose data type does not match that of the
	parameter

In the latter case, PL/I converts the argument to the data type,
precision, and scale factor of the parameter. The following program
illustrates this concept:

A:
procedure;
	declare
		X character(7),
		(Y,Z) fixed binary;
	call p(X,(Y),Z);

p:
procedure(A,B,C);
	declare
		A character(7),
		B fixed binary,
		C float binary;

		A = 'Digital';
		B = 100;
		C = 2.5E2;
end p;
end A;

The CALL statement sends the procedure three arguments X, Y, and Z
corresponding to the three parameters A, B, and C. PL/I passes the
first argument by reference because it matches the parameter, and
the second argument by value because it occurs as an expression.
PL/I converts the third argument to the FLOAT binary data type and
passes it by value.

2-12
�PL/I Reference Manual	2.9		The PROCEDURE Statement

2.9 The PROCEDURE Statement

In PL/I, you can define a procedure with a PROCEDURE statement at
any point in a program. However, for readability you should place
all procedures together in a single section at the beginning or the
end of the main program. The main program is a single-procedure
definition.

The PROCEDURE statement identifies the entry point to the procedure,
delimits the beginning of the procedure block, defines the parameter
list, and gives the attributes of the returned value for functions.
The procedure can consist of a sequence of one or more statements
including the corresponding END statement that ends the procedure
definition. The END statement can also be the exit point of the
procedure, although embedded RETURN statements can appear within the
procedure body.

The PROCEDURE statement has the general form:

proc-name:	PROCEDURE[(parameter-list)]
			[OPTIONS(option)] [RETURNS(attribute-list)]
			[RECURSIVE];

where parameter-list are the parameters for the procedure which you
must declare within the procedure body at the principal block level.
A parameter can be any of the following:

	·	a scalar variable
	·	an array
	·	a major structure

but cannot have the attributes:

	·	STATIC
	·	AUTOMATIC
	·	BASED
	·	EXTERNAL

OPTIONS(option,...) defines a list of one or more of the options
MAIN, STACK(b), or EXTERNAL.

	·	The MAIN option identifies the procedure as the first procedure
		to receive control when the program begins execution.

	·	The STACK(b) option sets the size of the run-time stack to the
		number of bytes specified by b. The default value is 512
		bytes.

	·	The EXTERNAL option identifies the procedure as an externally
		compiled procedure. The EXTERNAL option in a procedure heading
		makes the procedure accessible outside the module. It is often
		useful to group separately compiled procedures into a single
		compilation, where the procedures reference the same global
		data. According to the Subset G standard, you must compile

2-13
�PL/I Reference Manual	2.9	The PROCEDURE Statement

each subroutine separately, and duplicate the global data area
in each compilation. You can then combine the individual
modules using the linkage editor to produce the object module.

The following procedure shows an example of using the EXTERNAL
option:

module:
procedure;
declare
	1 global_data static,
		2 a_field character(20) varying initial(''),
		2 b_field fixed initial(0),
		2 c_field float initial(0);
Eset-a:
procedure (c) options(external);
	declare c character(20) varying;
	a_field = c;
end-set a;
set-b:
procedure (x) options(external);
	declare x fixed;
	b_field = x;
Eend-set b;
Eset-c:
procedure (y) options(external);
	declare y float;
	c_field = y;
end-set-c;
sum:
procedure returns(float) options(external);
	return (b_field + c_field);
Eend sum;
display:
procedure options(external);
	put skip list(a_field,b_field,c_field);
Eend display;
end module;

2-14
�PL/I Reference manual	2.9		The PROCEDURE Statement

This code defines five external procedures: set a, set b, set c,
the sum, and display. These procedures are then accessed in
following code sequence:

call ext:
procedure options(main);
	declare
		set_a entry (character(20) varying),
		set_b entry (fixed),
		set_c entry (float),
		sum returns(float),
		display entry;
		call set_a('Johnson,J');
		call set_b(25);
		call set_c(5.50);
		put skip list(sum());
		call display();
end call-ext;

These two modules, when compiled separately and linked together,
form a single, runnable program.

·	The RETURNS attribute for a function procedure gives the
	attributes of the value returned by the function.

·	The RECURSIVE attribute indicates that the procedure can
	activate itself, either directly or indirectly.

2.10 Low-level Organization

The low-level organization of PL/I source text includes a
specification of the character set and the rules for forming
identifiers, both keywords and declared names, operators, constants,
delimiters, and comments.

PL/I is a free-format language. The source program consists of a
sequence of ASCII characters that make up lines delimited by
carriage return characters. You can enter the source text without
regard for column position or specific line format. However, the
source text is easier to read and comprehend if you follow some
basic formatting rules:

·	Place only one statement on a line.

·	Use indentation to show the nesting level of blocks and DO groups.

2-15
�PL/I Reference Manual	2.10	Low-level Organization

You can create the PL/I source program using any suitable text
editor.

Note: all PL/I source programs must have the filetype PLI.

2.11 The Character Set

The PL/I character set consists of both upper- and lower-case
letters, numeric digits, and other symbols. Table 2-1 shows the
symbols recognized by PL/I and briefly describes their use.

Table 2-1. PL/I Symbols

 Symbol		Meaning
	=	equal sign (assignment)
	+	plus sign (addition)
	-	minus sign (subtraction)
	*	asterisk (multiplication)
	/	slash (division)
	(left parenthesis	(delimiter)
)	right parenthesis	(delimiter)
	,	comma (separator)
	.	period (name qualifier)
	%	percent symbol (INCLUDE or REPLACE prefix)
	'	apostrophe (string delimiter)
	;	semicolon (statement terminator)
	:	colon (separator for ENTRY or LABEL constant)
	^	circumflex (logical Not symbol)
	~	tilde (alternative Not symbol)
	&	ampersand (logical And symbol)
	|	vertical bar (logical Or symbol)
	!	exclamation mark	(alternative Or symbol)
	\	backslash (alternative Or symbol)
	>	right angle bracket (greater than)
	<	left angle bracket (less than)
	_	break or underscore (for readablity in identifiers)
	$	dollar sign (valid character in identifiers)
	?	question mark (valid character in identifiers)
�PL/I Reference Manual	2.12 		Identifiers

2.12 Identifiers

An identifier is a string of from one to thirty-one characters that
are either letters, digits, or the underscore. The first character
must be a letter. PL/I always represents letters internally in
upper-case. Therefore, two identifiers that differ only in case
represent the same identifier.

PL/I allows the question mark character to be embedded in
identifiers to allow access to external system entry points.

Note: you should avoid embedded question marks to maintain upward
compatibility with full language implementation.

Every identifier in the source text of a PL/I program must be either
a keyword or a declared name. Keywords are those identifiers that
have a special meaning in PL/I when used in a specific context.
Examples of keywords are the names of built-in functions,
statements, and data attributes. The following is a list of all the
keywords. The PL/I Language Command Summary contains a complete
list of keywords with brief explanations.

A			ABS 		ACOS		ADDR
ALIGNED 	ALLOCATE	ASCII		ASIN
ATAN		ATAND		AUTO		AUTOMATIC
B			Bl			B2			B3
B4			BASED		BEGIN		BIN
BINARY		BIT			BOOL		BUILT-IN
BY			CALL		CEIL 		CHAR
CHARACTER	CLOSE		COLLATE	COLUMN
COS			COSD		DCL			DEC
DECIMAL	DECLARE	DIM 		DIMENSION
DIRECT		DIVIDE		DO			E
EDIT		ELSE		END 		ENDFILE
ENDPAGE	ENTRY		ENV			ENVIRONMENT
ERROR		EXP			EXT			EXTERNAL
F			FILE 		FIXED		FIXEDOVERFLOW
FLOAT		FLOOR		FOFL		FORMAT
FREE		FROM		GET			GO TO
GOTO		HBOUND 	IF			INCLUDE
INDEX		INIT 		INITIAL		INTO
KEY			KEYED		KEYFROM	KEYTO
LABEL		LBOUND		LENGTH		LINE
LINENO		LINESIZE 	LIST 		LOG
LOG2		LOG10		MAIN		MAX
MIN 		MOD		NULL		OFL
ON			ONCODE		ONFILE		ONKEY
OPEN		OPTIONS 	OUTPUT		OVERFLOW
PAGENO		PAGESIZE	POINTER		PRINT
PROC		PROCEDURE	PTR			PUT

2-17
�PL/I Reference Manual	2.12 	Identifiers

R			RANK		READ		RECORD
RECURSIVE	REPEAT		REPLACE		RETURN
RETURNS	REVERT		ROUND		SEQUENTIAL
SET			SIGN		SIGNAL		SIN
SIND		SINH		SKIP		SQRT
STACK		STATIC		STOP		STREAM
SUBSTR		SYSIN		SYSPRINT	TAB
TAN		TAND		TANH		THEN
TITLE		TO			TRANSLATE	TRUNC
UNDEFINEDFILE	UNDF	UNDERFLOW	UFL
UNSPEC		UPDATE		VAR 		VARIABLE
VARYING	VERIFY		WHILE		WRITE
X			ZERODIVIDE

Declared names are identifiers whose use or meaning you define in a
DECLARE statement (Section 3.6). A keyword can appear in a
declaration as a user-defined identifier. The meaning of the
identifier depends on how and where it appears. PL/I determines the
meaning in context. For example, INDEX is a keyword because it is
the name of a PL/I built-in function. However, in the context of
the declaration,

	declare index fixed binary;

index is a declared name and not a keyword.

2.13 Constants

Constants are text items that have a fixed literal meaning which can
not change when the program runs. In PL/I, the basic constants are
the following:

·	arithmetic (Example: 3674-799
·	character string (Example: 'Ada Lovelace')
·	bit string (Example: '0010110'B)

2.14 Delimiters and Separators

Separate items, such as identifiers, must be distinguishable. PL/I
recognizes certain characters as delimiters and separators.

Usually, delimiters enclose one or more text items while separators
mark the end of one item and the beginning of another. In PL/I,
each identifier and arithmetic constant must be preceded and
followed by one or more delimiters or separators. Delimiters can be
either spaces, operators, or certain special characters.

2-18
�PL/I Reference Manual	2.14		Delimiters and Separators

2.14.1 Spaces

In PL/I, a space can be either a blank, or a tab character (CTRL-I)
PL/I ignores any carriage return, line-feed, or carriage return,
line-feed sequence that is embedded in a string constant. For
example, the assignment statement,

string = 'WHEN YOU HAVE A VERY LONG STRING LIKE THIS PL/I ALLOWS
YOU TO PUT SOME OF IT ON ANOTHER LINE';

assigns the specified character string to the variable string. Any
blanks or tabs that follow ALLOWS or precede YOU TO PUT are included
in the string.

2.14.2 Operators

An operator is a symbol for a mathematical or logical operation.
There are four types of operators in PL/I as shown in Table 2-2.

Note: operators that consist of two characters, such as >=, are
called composite operators and must not be separated by blanks or
tabs.

2-19
�PL/I Reference Manual	2.14	Delimiters and Separators

Table 2-2. PL/I Operators

 Symbol 			Meaning
				Arithmetic Operators
	+			addition or prefix plus
	-			subtraction or prefix minus
	*			multiplication
	/			division
	**			exponentiation

				Comparison Operators
	>			greater than
	> or ~>		not greater than
	>=			greater than or equal to
	=			equal to
	^= or ~=		not equal to
	<=			less than or equal to
	<			less than
	^< or ~<		not less than

				Bit-string Operators
	^ or ~		Logical Not
	&			Logical And
	| or ! or \		Logical Or

				The String Operator
	|| or !! or \\ 	concatenate

2.14.3 Special Characters

Table 2-3 shows the special characters that can also function as
delimiters or separators in PL/I. Subsequent sections of the manual
contain examples of their use.

2-20
�PL/I Reference Manual	2.14		Delimiters and Separators

Table 2-3. Special Character Delimiters and Separators

Character	Function

A colon follows ENTRY and LABEL constants.

A semicolon terminates statements.

A comma separates elements of a list.

A period separates items in a qualified
name.

A single apostrophe is a delimiter for the
specification of character and bit-string
constants.

The arrow is a composite operator
consisting of the minus sign and the right
angle bracket. It is a separator in a
pointer qualified reference.

An equal sign is a separator in an
assignment statement.,

Left parenthesis.

Right parenthesis. A left parenthesis
together with a right parenthesis is used
to enclose lists and extents, define the
order of evaluation of expressions, and
separate keywords -from statements and
option names.

2.14.4 Comments

Comments provide documentary text in a PL/I source program. The
compiler ignores comments, so you can place them wherever a
delimiter is appropriate. Precede a comment by the composite pair
/* and end the comment by the reverse composite pair */. For
example,

get list(name); /* read the name */

2-21
�PL/I Reference Manual	2.15	Preprocessor Statements

2.15 Preprocessor Statements

PL/I allows modification of the source program or inclusion of
external source files at compile time through the use of
preprocessor statements. Preprocessor statements are identified by
a leading % symbol before the keyword:

INCLUDE	or 	REPLACE

2.15.1 The %INCLUDE Statement

The %INCLUDE statement copies PL/I source text from an external file
at compile time. The statement is useful for filling in a structure
declaration or format list. The %INCLUDE statement has the form:

%INCLUDE 'filespec';

where filespec designates the file to copy into the source program.
Filespec must be a standard file specification, [d: J filename [. typ] ,
and must be enclosed in single apostrophes. If there is no drive
specification, PL/I assumes the drive containing the source program.
When the compiler encounters the %INCLUDE statement in the source
file, it begins reading the file specified by %INCLUDE. When the
compiler reaches the end of the %INCLUDE file, it resumes reading
the original source file.

The following code sequence is an example of the %INCLUDE statement:

f:
procedure;
declare a fixed binary;
%include 'struc.lib';
declare c float;

end f;

The compiler includes the source text from the file struc.lib at the
point of the %INCLUDE statement.

Note: PL/I does not allow nested %INCLUDE statements.

2.15.2 The %REPLACE Statement

The %REPLACE statement allows you to program with named constants.
The %REPLACE statement has the form:

%REPLACE identifier BY constant;

The compiler replaces every occurrence of the given identifier in
the source text with the specified constant. The constant can be a
signed or unsigned arithmetic constant, a bit string, or a character

2-22
�PL/I Reference Manual	2.15		Preprocessor Statements

string.	You can write multiple %REPLACE statements as a single
%REPLACE statement, with the elements separated by commas.

For example, the statement

%replace true by '1'b;

replaces all occurrences of true by the bit string constant '1'b, so
that the compiler interprets the statement,

do while(true);

do while('l'b);

PL/I requires that all %REPLACE statements occur at the outer block
level before any nested inner blocks.

Note: to facilitate program maintenance and debugging, you should
write all %REPLACE statements directly following the procedure
heading.

End of Section 2

1-1~

2-23
�Section 3
Data Types and Attributes

Data items in a PL/I program are either constants or variables. A
constant is a data item whose value cannot change when the program
runs, while the value of a variable can change.

Every data item is associated with a set of properties called
attributes that include such things as the amount of storage
required, the operations that can be applied, and a range of
subscript values. The DECLARE statement explicitly assigns
attributes to data variables, while in some cases, such as
constants, attributes are implicitly assigned by system defaults
(see Section 3.6).

Data variables can represent single data items. A single data item,
either a variable or constant, is called a scalar. Data variables
can also represent multiple data items called aggregates. (Section
5 describes data aggregates.)

PL/I supports six types of data:

· arithmetic
· string
· label
· entry
· pointer
· file

The following sections describe each of these data types in detail.

3.1 Arithmetic Data

PL/I supports three types of arithmetic data:

·		FIXED BINARY for representing integer values

·		FLOAT BINARY for representing numbers that can range from very
		small to very large, with a floating binary point

·		FIXED DECIMAL for representing decimal numbers that have a
		fixed number of total digits and a fixed number of the digits
		to the right of the decimal point

Each arithmetic data item has an associated precision value
expressed as an integer constant p enclosed in parentheses. The
precision p specifies the total number of decimal or binary digits
that the item can contain.

3-1
�PL/I Reference Manual	3.1	Arithmetic Data

For FIXED DECIMAL numbers, p can optionally be followed by a comma
and an integer constant q called the scale factor. The scale factor
q specifies the number of digits to the right of the decimal point.

If you do not explicitly declare the precision of a variable in a
DECLARE statement, PL/I implicitly supplies it according to default
rules. The default scale factor is 0, meaning no fractional digits.

3.1.1 FIXED BINARY

FIXED BINARY data represents integers. A variable declared as FIXED
BINARY[(p)] is an integer that has p binary digits. The maximum
range of p is

1 <= p <= 15

PL/I internally represents this data type in two's complement form.
Therefore, the range of a FIXED BINARY(15) number is from -32768 to
+32767.

The amount of storage PL/I allocates for a FIXED BINARY number
depends on the precision you declare.

If p <= 7, then PL/I allocates one byte.
If 7 < p <= 15, then PL/I allocates two bytes.

The default precision for FIXED BINARY is 15. Declaring a variable
as FIXED or BINARY, or FIXED BINARY is equivalent to declaring it as
FIXED BINARY(15).

PL/I treats decimal integers in the source program as FIXED BINARY
data only if they appear in contexts that require FIXED BINARY
values, such as subscripts or arithmetic operations involving other
FIXED BINARY data. Otherwise, constants default to FIXED DECIMAL.
In PL/I, conversion from other types of data usually occurs with
truncation (See Section 4 for the conversion rules). For example,
the following code assigns the value 1 to the variable A.

declare A fixed binary;
A = 1.99;

3.1.2 FLOAT BINARY

FLOAT BINARY data is useful in scientific applications for
representing very large or very small numbers. A variable declared
as FLOAT BINARY(p) has three parts: a sign, s; p binary digits that
are the fraction, or mantissa, and represent significant digits of
the number; and an integer exponent e, that represents the scale
factor. For example, the FLOAT BINARY number 3.56E3 has the
following parts:

3-2
�PL/I		Reference Manual		3.1		Arithmetic Data

	sign	mantissa	exponent E

	+	3.56	iii~

PL/I supports both single-precision and double-precision FLOAT
BINARY numbers. Table 3-1 shows the allowed precisions and the
approximate range of magnitudes for each type.

Table 3-1. PL/I FLOAT BINARY Numbers
Type t	Precision p |	Range r
single	1 <= p <= 24	5. 88 × l0-38 <= |x| <= 3.40×1038 (non-IEEE)
					1.18 × 10-38 <= |x| <= 3.40×1038 (IEEE)
double	25 <= p <= 53	9.46 × l0-308 <= |x| <= 1.80×10308 (IEEE)

The default precision for FLOAT BINARY is 24, so declaring a
variable FLOAT is equivalent to declaring it FLOAT BINARY(24).

A FLOAT BINARY constant is a number expressed in scientific notation
as a sequence of decimal digits with an optional decimal point
followed by the letter E, followed by an optionally signed decimal
integer exponent. For example, the code sequence:

A = 2.3E2;
B = -4.67E+5;
C = 1.98E-2;

assigns the value 230 to A, -467000 to B, and 0.0198 to C.

You can mix constants of different data types in an expression.
PL/I automatically converts to the common data type before
evaluating the expression. For example, if p is declared FLOAT
BINARY, in the assignment statement

p = p + 3.14159;

PL/I converts the FIXED DECIMAL constant 3.14159 to FLOAT BINARY
format before performing the addition. (See Section 4.1.)

3.1.3 FIXED DECIMAL

FIXED DECIMAL data is used for calculations where exact decimal
values must be maintained, as for example, in commercial
applications involving dollars and cents. FIXED DECIMAL data with a
zero scale factor can be used to represent integer data.

3-3
�PL/I Reference Manual	3.1		Arithmetic Data

A variable declared as FIXED DECIMAL[(p[,q])] is a decimal number
with a sign, a total of p decimal digits, with q digits to the right
of the decimal point. The maximum number of digits p for FIXED
DECIMAL is 15, and the scale factor q must be nonnegative and less
than or equal to the precision. The range of a FIXED DECIMAL number
x is

-10**(p-q) < |x| < 10**(p-q)

where:

1 <= P <= 15		and	0 <= q <= p

All decimal constants, with or without a decimal point, default to
FIXED DECIMAL. The only exception is when the constant is used in a
FIXED BINARY context. The default precision for a FIXED DECIMAL
variable is 7. The default scale factor for a FIXED DECIMAL
variable is 0. For a FIXED DECIMAL constant, the form implicitly
determines its default precision and scale factor. For example,

3.25 defaults to FIXED DECIMAL(3,2)
302 defaults to FIXED DECIMAL(3,0)

Internally, PL/I represents decimal numbers in ten's complement
packed BCD format. The number of bytes occupied by a FIXED DECIMAL
number depends on its declared precision. If the precision is p,
the number of bytes reserved is the integer part of

(p+2)/2

resulting in a minimum of one byte and a maximum of eight bytes.

PL/I truncates any value whose scale factor is greater than that of
the FIXED DECIMAL variable to which it is assigned. Also, PL/I
signals a FIXEDOVERFLOW condition if a value assigned to the
variable has more significant digits to the left of the decimal
point than the declared precision of the variable allows.

3.2 String Data

PL/I supports two types of string data:

· character string
· bit string

A character string is any sequence of ASCII characters, including
the empty sequence, which is the null string. A bit string is a
sequence of bits. The length of a string is the number of
characters or bits in the string. The following sections describe
each type of string data.

3-4
�PL/I Reference Manual	3.2		String Data

3.2.1 Character-string Data

A variable declared as CHARACTER(n) is a character string of length
n, where n is a value between 1 and 254. For example, the
statement,

declare A character(10);

defines the variable A as a character string ten characters long.
If a character string assigned to A is shorter than A, PL/I pads the
string with blanks on the right to the length of A. If a longer
string is assigned to A, PL/I truncates the string on the right.

Character-string constants are a sequence of characters enclosed in
apostrophes. If an apostrophe is part of the string, it is written
as two consecutive apostrophes. Thus, the string constant whose
value is

	What's Happening?

is written as:

	'What''s Happening?'

The null or empty character string has a length of zero and is
defined by using two consecutive apostrophes.

Character-string variables can also have the VARYING attribute
indicating that the variable can represent varying length strings to
a maximum length of n. For example, the statement,

declare A character(10) varying;

defines A to represent any character-string value whose length can
vary from 0 to 10.

PL/I allows control characters in string constants. The circumflex
character (^) in a string constant indicates a control character.
PL/I masks the high-order three bits of the character to zero, thus
converting the string ^M, or ^m, to a carriage return character.
Similarly, it converts the string ^I to the horizontal tab
character. PL/I translates a double circumflex (^^) within the
string to a single ^ character.

Note: you should avoid using the control character feature if
compatibility is a requirement, because the circumflex escape
convention is not available in other implementations.

3.2.2 Bit-string Data

Bit strings represent logical data items. A bit string containing
all zero-bits is false; a bit string containing any one-bits is
true.

3-5
�PL/I Reference Manual	3.2	String Data

A variable declared as BIT(n) is a bit-string data item containing n
bits, where n is a value between 1 and 16. For example, the
statement,

declare A bit(3);

defines a bit string of length 3. If a bit string assigned to A is
shorter than A, PL/I pads the string with zero-bits on the right to
the length of A. If a longer string is assigned to A, PL/I
truncates the string on the right.

Note:	bit-string variables cannot have the VARYING attribute.

You can write bit-string constants in any of four different formats.
Each format corresponds to a base which is the number of bits used
to represent each digit in the constant. A bit-string constant is a
sequence of digits and letters enclosed in apostrophes followed by
the letter B, and optionally followed by a digit indicating the
base. The default base is 2, indicated by B or Bl. Table 3-2
shows the various formats.

Table 3-2. Bit-String Constant Formats

 Format	 Base	Digits and/or Characters in Representation
	B		2	0,l
	B1		2	0,l
	B2		4	0,1,2,3
	B3		8	0,1,2,3,4,5,6,7
	B4		16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Note: the characters and/or digits used in the sequence must be
valid for the base specified by the format.

The following examples illustrate the equivalence of the optional
formats to the base 2 format:

'101'Bl		is equivalent to	''101'B
'1011B2		is equivalent to	''01000101'B
'101'B3		is equivalent to	''001000001'B
'101'B4		is equivalent to	''000100000001'B
'9A'B4		is equivalent to	'10011010'B
'77'B3		is equivalent to	''111111'B

3.3 Control Data Items

Control data items determine the flow of control when a program
runs. PL/I support two types of control data:

· LABEL data
· ENTRY data

3-6
�PL/I Reference Manual	3.3 Control Data Items

3.3.1 LABEL Data

LABEL data consists of label constants and label variables. A label
constant is a label identifier that prefixes an executable
statement. A label variable is a variable defined in a DECLARE
statement with the LABEL attribute. The form is

DECLARE name LABEL;

and PL/I supplies the VARIABLE attribute by default. A label
variable can take on the value of different label constants when the
program runs.

You cannot explicitly declare a label constant in a DECLARE
statement. However, any name used as statement label constitutes an
implicit declaration of the name as a label constant. PL/I does not
allow labels on the following statements:

· the DECLARE statement

· the statement that begins an ON-unit (see Section 9.1)

· the statement that begins an ELSE or THEN clause (see Section 8.3)

Assignments of label constants or other label variables can be made
to a label variable using the same rules as assignments of other
types of variables.

The only operators that you can use with LABEL data are the equal
(=) and not equal (^= or ~=) comparison operators.

Both label constants and label variables are subject to the same
scope rules as declared names. A LABEL data item is known only
within the block in which it is declared explicitly by a DECLARE
statement, or implicitly by its use as a label constant. The
occurrence of the same label name within any other block, including
a contained block, defines a new declaration local to that block.

You can subscript label constants using a single, optionally signed,
integer constant. All occurrences of subscripted labels with the
same identifier in a single block constitute an implicit declaration
of a constant-label array for that block. Any such implicitly
defined constant-label array is defined only for those subscripts
that occur in its corresponding block. You can explicitly define
label variables to be singly subscripted arrays in a DECLARE
statement.

3-7
�PL/I Reference Manual	3.3 Control Data Items

The following code sequence illustrates a constant-label array:

case-num (1):

case-num(2):

case-num(3):

PL/I treats case-num as if it was declared as an array in the block
containing the subscripted labels. Therefore, you can reference any
element in the array using a GOTO statement (see Section 8.5) such as:

goto case_num(i);

where i is an integer. The value of the variable i represents which
label is to receive control.

Note: PL/I does not treat the labels on FORMAT (see Section 11.3.5)
or PROCEDURE statements as valid labels, but rather as FORMAT
constants and ENTRY constants, respectively. They cannot be the
targets of GOTO statements.

The following code sequence illustrates label variables:

declare do_it label;

if	(answer = 'yes') then
	do_it = geometric_mean;
else
	do_it = arithmetic-mean;

goto do_it;

In this example, the GOTO statement transfers control to either of
the labels geometric - mean or arithmetic-mean depending the current
value of the label variable do it, which is based on the result of
the test in the IF statement.

3-8
�PL/I Reference Manual	3.3		Control Data Items

3.3.2 ENTRY Data

In PL/I all ENTRY data items are either entry constants or entry
variables. Entry constants correspond to either internal
procedures, or to separately compiled external procedures. Entry
variables are data items that can take on entry-constant values when
the program runs.

The calling program must use an ENTRY declaration to define the
characteristics of the parameters and returned values for all
externally compiled procedures.

Note: you must ensure that the ENTRY declaration matches the
externally defined procedure, so that the linkage editor can
properly combine the program segments.

Variables that take on entry constant values are also defined with
an ENTRY declaration. If required by the application, entry
variables can be subscripted, but entry constants cannot. As with
LABEL data, the only operators used with ENTRY data are the equal
and not equal comparison operators.

The declaration of an external entry constant has the form:

DECLARE entry-name	[EXTERNAL]
					[ENTRY[(parameter-list)]
					[RETURNS(return-att)];

The declaration of an entry variable has the form:

DECLARE entry-name	[(bound-pair-l,...,bound-pair-n)]
					[ENTRY[(parameter-list)] VARIABLE
					[RETURNS(return-att)];

where the attributes can be in any order, but must specify either
ENTRY or RETURNS.

The identifiers are given in the following manner:

·		entry-name gives the name of the ENTRY variable or constant.
·		bound-pair-l,...,bound-pair-n gives the optional bound-pair
		list.
·		parameter-list gives the list of parameter attributes.
·		return-att gives return-value attribute.

The EXTERNAL attribute indicates that entry-name is a separately
compiled procedure. The VARIABLE attribute indicates that entry
name is an entry variable that must be assigned an entry constant
value when the program runs. The RETURNS attribute implies that
entry-name is a function rather than a subroutine.

3-9
�PL/I Reference Manual	3.3 Control Data Items

You can omit the list of parameter attributes if the procedure does
not require any parameters. In this case, you can also omit the
ENTRY attribute if you specify the RETURNS attribute. If you
specify a bound-pair list, you must use the VARIABLE attribute. If
you do not specify either EXTERNAL or VARIABLE, PL/I supplies
EXTERNAL as the default.

If a particular parameter has the dimension attribute, it must
appear as the first attribute. If the parameter is a structure, the
structuring information that the level numbers provide must precede
the attribute definition. (See Section 5.5.)

The following are some examples of ENTRY declarations:

declare X entry;
declare Y entry variable;
declare P (0:10) entry(fixed,float) variable;
declare Q entry(l, 2 fixed, 2 float,(5:10) decimal);
declare R returns(character(10));

The following code sequence illustrates entry data items:

	declare
		(X,Y) float binary,
		A entry variable,
		F(3) entry(float) returns(float) variable,
		ZZ entry(float) returns(float);
Pl:
	procedure;
		X=5;
	end Pl;
P2:
	procedure;
		X=25;
	end P2;
	Y=9;
	if Y = 5 then
		A = Pl;
	else
		A = P2;
	call A;
	F(2) = ZZ;
	Y = F(2)(X);
	put list(Y);

3-10
�PL/I Reference Manual	3.4		POINTER Data

3.4 POINTER Data

POINTER data items address specific locations in memory. The value
of a POINTER data item is the address of a variable in the program.
A POINTER variable declaration has the form:

DECLARE X POINTER;

PL/I does not perform conversion between POINTER and other data
types, so an assignment statement can only assign pointer variables
to other pointer variables. Also, pointer variables cannot be
output to a STREAM file (see Section 11) . As with LABEL and ENTRY
data, the only operators defined for POINTER data are the equal and
not equal comparison operators. Two pointers are equal if they
represent identical storage locations.

You can use POINTER data with based variables to dynamically manage
storage. Section 7.2 describes based variables.

3.5 FILE Data

FILE data items consist of file constants and file variables that
access external data. A file constant declaration has the general
form:

DECLARE file-id FILE;

A file variable declaration has the form:

DECLARE file-id FILE VARIABLE;

where file-id is a PL/I identifier assigned to represent the file.
If file-id is not a parameter, PL/I automatically treats the
identifier as EXTERNAL, so that it accesses the same data set in all
modules that declare it EXTERNAL.

If you do not open the file explicitly with an OPEN statement
including the TITLE option, PL/I accesses the disk file named
file-id.DAT on the default drive.

Section 10 presents FILE data in more detail. The PL/I Language
Programmer's Guide contains examples of FILE data use.

3.6 The DECLARE Statement

In PL/I, you must use the DECLARE statement to define all variable
names in a program that are not the names of built-in functions or
pseudo-variables (Section 6.8). File constants and variables must
also be defined in a DECLARE statement. Control constants, such as
statement labels and procedure names, are declared implicitly by
their use in a program.

3-11
�PL/I Reference Manual	3.6	The DECLARE Statement

The DECLARE statement associates each variable name with the proper
attributes for the declared data type. The simple form of the
DECLARE statement for scalar variables is
DECLARE name [attribute-list];

where name is the variable identifier, and attribute-list is one or
more characteristics of the variable name. Multiple attributes can
appear in any order but must be separated by spaces.
The following examples illustrate DECLARE statements:

declare x fixed binary;
declare pi float binary(53);
declare overtime_pay fixed decimal(5,2) initial(000.00);
declare EOF bit(l) initial('l'b);
declare list-head pointer static initial(null);

3.7 Multiple Declarations

For convenience and simplicity, PL/I allows multiple declarations in
a single statement. Usually, you can write any sequence of DECLARE
statements of the form,

DECLARE definition-1;
DECLARE definition-2;

DECLARE definition-n;

in the equivalent form:
DECLARE definition-1, definition-2, ... definition-n;

where each definition item is separated by commas and zero or more
spaces, and the DECLARE statement is terminated by a semicolon.

If several item definitions share the same attributes, you can
factor them to the right. That is, you can write a sequence of
definitions of the form,
item-1 attr-A, item-2 attr-A, ... item-n attr-A
in an equivalent factored form:
(item-1, item-2, ... item-n) attr-A
For example,
declare (first-name,last-name) character(20) varying;

3-12
�PL/I Reference Manual	3.7		multiple Declarations

Repeated applications of this rule are also allowed. For example,
the statement:

	declare ((A,B) fixed binary, C float binary) static external;
	is equivalent to the statement:

declare	A fixed binary static external,
		B fixed binary static external,
		C float binary static external;

3.8 Default Attributes

An attribute list cannot contain conflicting attributes, such as two
data types, or two storage class attributes. If you do not specify
a complete set of attributes in a DECLARE statement, then the
compiler supplies the attributes according to the following default
rules:

·	If no attribute is specified, FIXED BINARY(15) is assumed.

·	If DECIMAL or BINARY is specified without FIXED or FLOAT, then
	FIXED is assumed.

·	If FIXED or FLOAT is specified without BINARY or DECIMAL, then
	BINARY is assumed.

·	If no precision for FIXED BINARY is specified, FIXED BINARY(15)
	is assumed.

·	If no precision and scale factor for FIXED DECIMAL is
	specified, FIXED DECIMAL(7,0) is assumed.

·	If no precision for FLOAT BINARY is specified, then FLOAT
	BINARY(24) is assumed.

·	If no length is specified for BIT, then BIT(l) is assumed.

·	If no length is specified for CHARACTER, then CHARACTER(l) is
	assumed.

End of Section 3

3-13
�Section 4
Data Conversion

Data conversion is the process that changes the representation of a
given value from one type to another. In PL/I, all conversion
involves a source, a target, and a result. The source is the data
item being converted; the target is the type to which the source
item is being converted, and the result is the actual converted
value with the data type of the target.

PL/I performs conversions in the following general categories:

arithmetic to arithmetic (type and precision)
arithmetic to string
string to arithmetic
format specified in EDIT-directed I/O (see Section 13)

PL/I does not perform conversion of ENTRY, FILE, LABEL, or POINTER
values.

Part of the versatility and power of PL/I lies in your freedom to
declare data in a wide variety of types. With this freedom comes a
responsibility to understand how the language converts data from one
type to another, either explicitly or implicitly.

The following list shows some of the contexts in which PL/I performs
default data conversion.

·	In an assignment statement, PL/I converts the expression to the
	type of the variable to which it is assigned.

	variable = expression;

·	In a RETURN statement, PL/I converts the specified value to the
	type specified in the RETURNS attribute of the PROCEDURE
	statement.

proc-name:
PROCEDURE		RETURNS(return-att);

	RETURN (return-exp);
	END [proc-name];
�PL/I Reference Manual	4	Data Conversion

·	In any arithmetic expression, if the operands are not the same
	type, PL/I converts them to a common type before performing the
	operation. For example, if A is FLOAT BINARY and B is FIXED
	BINARY, in any of the following operations

	A + B
	A – B
	A * B
	A / B
	A ** B			<<CHECK ALL >>

	the common type is FLOAT BINARY, and PL/I converts B in each
	case.

·	During I/O processing, PL/I converts to and from character
	string data when using the PUT or GET statements respectively.
	For example, if I is a FIXED BINARY value, in the statement

	PUT LIST(I);

	PL/I converts I to CHARACTER. In the statement:

	GET LIST(I);

	PL/I converts characters in the input stream from CHARACTER to
	FIXED BINARY.

·	PL/I converts values specified in some statements to integer
	values. For example, in the iterative DO-group

	DO control-variable = start-exp TO end-exp BY incr-exp;

	END;

	PL/I converts the start-exp, the end-exp, and the incr-exp to
	integers (FIXED BINARY) value before executing the DO statement.

·	PL/I has built-in functions (BIFS) that perform specific conversions.

4.1 Arithmetic Conversions

PL/I performs arithmetic conversions in several contexts. The first
context is when an assignment statement assigns an arithmetic
expression to an arithmetic variable. PL/I converts the expression
to the precision and scale factor of the target variable.

Another context is when an arithmetic-valued function returns an
arithmetic expression with a RETURN statement. PL/I converts the
expression to the target data type, with the precision and scale

4-2
�PL/I Reference Manual	4.1		Arithmetic Conversions

factor specified in the RETURNS attribute of the function's
declaration.

When any arithmetic infix operator, other than exponentiation, has
operands with different data types, PL/I performs a three-step
process.

Step One

PL/I determines the common type of the two operands.

·	Case A. If one operand is FIXED BINARY and the other is FLOAT
	BINARY, the common type is FLOAT BINARY.

·	Case B. If one operand is FIXED BINARY and the other operand
	is FIXED DECIMAL, the common type is FIXED BINARY.

·	Case C. If one operand is FLOAT BINARY and the other operand
	is FIXED DECIMAL, the common type is FLOAT BINARY.

Table 4-1 summarizes the common type in expressions involving
mixed operands.

Table 4-1. Common Operand Types in Mixed Operand Expressions

Operand 2

FIXED BINARY		FLOAT BINARY	FIXED DECIMAL

Operand I

FIXED BINARY		FIXED BINARY	FLOAT BINARY	FIXED BINARY

FLOAT BINARY		FLOAT BINARY	FLOAT BINARY	FLOAT BINARY

FIXED DECIMAL		FIXED BINARY	FLOAT BINARY	FIXED DECIMAL

Step Two

PL/I converts one of the operands to the common type.

·	Case A. If the common type is FLOAT BINARY then

·	PL/I converts a FIXED BINARY(p) operand to FLOAT BINARY(p)

·	PL/I converts a FIXED DECIMAL(p,q) operand to FLOAT
	BINARY (pl) , where p' = MIN (CEIL (p/3. 322) 53) . MIN and CEIL
	are PL/I BIFs (Section 15).
�PL/I Reference Manual	4.1	Arithmetic Conversions

Case B. If the common type is FIXED BINARY then

PL/I converts a FIXED DECIMAL(p,O) operand to FIXED
BINARY(p'), where p' = MIN(CEIL(p/3.322),15)

Note: PL/I cannot convert a FIXED DECIMAL (p,q) operand to FIXED
BINARY if q ^= 0.

Step Three

After converting to a common type, PL/I derives the precision (and
scale factor) of the result. The result type depends on the common
type.

·	Case A. If the common type is FIXED BINARY, the result is
	FIXED BINARY. If p1 is the precision of the first operand, and
	P2 is the precision of the second operand, PL/I derives the
	precision of the result pl depending on the operation.

	For addition or subtraction,

	p' = MIN (15, MAX (p1, p2) +1)

	For multiplication,

	p' = (MIN(15,p1+p2+1))

	For division, you must use the DIVIDE BIF with a scale factor
	of zero to produce an integer FIXED BINARY result, because PL/I
	Subset G does not support a FIXED BINARY data type with a non
	zero scale factor.

·	Case B. If the common type is FLOAT BINARY, the result is
	FLOAT BINARY. The precision of the result is MAX (p1, p2), where
	p1 and p2 are the precisions of the two operands.

·	Case C. If the common type is FIXED DECIMAL, the result is
	FIXED DECIMAL. If the first operand has precision and scale
	factor(p1,q1), and the second operand has precision and scale
	factor (p2 q2), PL/I derives the precision and scale factor of
	the result (p',q') depending on the operation.

	For addition or subtraction,

	p' = MIN(l5,MAX(p1-q1,p1-q2) + MAX(q1,q 2)+l)

	q' = MAX(q1,q2)

	For multiplication,

	p' = MIN(15, p1+p2+1)

	q' = (q1+q2)

4-4
�PL/I Reference Manual	4.1		Arithmetic Conversions

	For division,

	p' = 15

	q' = 15-(p1+q1-q1) ??? << CHECK >>

	Note: use caution when dividing FIXED DECIMAL values. The
	precision and scale factor of the operands must be such that
	the divide operation does not produce a negative scale factor.
	You can use the DIVIDE BIF to control the precision of the
	quotient.

	If the infix operator is that of exponentiation, expressed as
	X**Y, there are two cases.

·	Case A. Y is a decimal integer constant. If X is FIXED BINARY
	with precision p and ((p+l)*Y-1) <= 15, then the result is
	FIXED BINARY with precision

	p' = ((p+1)*Y-l)

	If X is FIXED DECIMAL with precision and scale factor (p,q) and
	((p+l)*Y-1) <= 15, then the result is FIXED DECIMAL with
	precision and scale factor (p',q'):

	p' = (p+1)*Y-l

	q' = q*Y

·	Case B. If either operand is FLOAT BINARY, PL/I converts the
	other operand to FLOAT BINARY and the result is FLOAT BINARY
	with precision p' = MAX(p1, p2) where p1 and p2 are the
	precisions of the operands.

In any arithmetic operation involving conversion, PL/I truncates the
result if the declared precision of the target is insufficient to
hold the value. Truncation occurs on the right for FLOAT BINARY
data items, and fractional digits are lost in FIXED DECIMAL
computations. In FIXED BINARY computations, unpredictable results
occur if the absolute value of any intermediate value exceeds 32767.

The default precision for floating-point values is FLOAT BINARY(24).
However, if you declare a literal constant with more than 7
significant decimal digits, PL/I automatically stores it as double
precision. In expressions involving FLOAT BINARY operands of
different precisions, PL/I performs conversion to the greater
precision. For example, if A is FLOAT BINARY(24) and B is FLOAT
BINARY(53), in the expression:

A = A + B;

4-5
�PL/I Reference Manual	4.1	Arithmetic Conversions

PL/I first converts A to double precision, performs the addition,
and then converts the result back to single precision.

Note: use caution when performing assignments involving mixed
precision expressions. The largest positive number representable as
a single-precision value is 3.40 * 1038, whereas the largest
positive number representable as a double-precision value is 1.80 * l0308.
Therefore, if 3.40 * 1038 < N <= 1.80 * 10308, and you
assign N to a single-precision variable, the run-time system signals
the arithmetic error condition

OVERFLOW(2)

Conversely, the smallest positive number representable as a single
precision value is 5.88 * 10-39, whereas the smallest positive
number representable as a double-precision value is 9.46 * 10-308
If 5.88 * 10-39 < N <= 9.46 * 10-308, and you assign N to a
single-precision variable, the run-time system signals the
arithmetic error condition:

UNDERFLOW(2)

4.2 Arithmetic Conversion Functions

PL/I provides a number of BIFs to control conversion from one
arithmetic data type to another. They are

·	BINARY
·	DECIMAL
·	DIVIDE
·	FIXED
·	FLOAT

The following sections describe these functions.

4.2.1 The BINARY BIF

The BINARY BIF has the form:

BINARY(X[,p]) | BIN(X[,p])

where X is the arithmetic variable or string expression to be
converted to a BINARY arithmetic data type, and p is the target
precision.

When converting arithmetic variables, if X is FIXED BINARY or FIXED
DECIMAL, the result is FIXED BINARY. If X is FLOAT BINARY, the
result is FLOAT BINARY.

4-6
�PL/I Reference Manual	4.2		Arithmetic Conversion Functions

If you do not specify p, then the result is as follows:

X FLOAT BINARY(p) returns FLOAT BINARY(p)
X FIXED BINARY(p) returns FIXED BINARY(p)
X FIXED DECIMAL(p,q) returns FIXED BINARY(MIN(CEIL((p-q)*3.322)+1,15))

4.2.2 The DECIMAL BIF

The DECIMAL BIF has the form:

DECIMAL(X[,p[,q]]) | DEC(X[,p[,q]])

where X is the arithmetic variable or expression to be converted to
a FIXED DECIMAL arithmetic data type, and p and q are the precision
and scale factor of the result. A non-zero scale factor is valid
only if X is FIXED DECIMAL. If you do not specify p and q, then the
result is as follows:

X FIXED BINARY(p)		returns	FIXED DECIMAL(CEIL(p/3.322)+1,0)
X FLOAT BINARY(p)		returns	FIXED DECIMAL(MIN(CEIL(p/3.322),15),0)
X FIXED DECIMAL(p,q)		returns	FIXED DECIMAL(p,q)

4.2.3 The DIVIDE BIF

The DIVIDE BIF controls the precision and scale factor of results
for divide operations. The DIVIDE BIF has the form:

DIVIDE(X,Y,p[,q])

where X and Y are arithmetic expressions, and X is to be divided by
Y. p is a FIXED BINARY expression indicating the desired precision,
and q is a FIXED BINARY expression indicating the desired scale
factor. if you do not specify q, the default is 0. A nonzero scale
factor is valid only if X and Y are FIXED DECIMAL.

PL/I requires the DIVIDE function for FIXED BINARY division. In the
full language FIXED BINARY division can generate a nonzero scale
factor, but PL/I Subset G does not support non-zero scale factors
for FIXED BINARY values.

4.2.4 The FIXED BIF

The FIXED BIF has the form:

FIXED(X[,p[,q]])

where X is the arithmetic variable or expression to be converted to
a FIXED arithmetic data type, and p and q specify the target
precision and scale factor.

4-7
�PL/I Reference Manual	4.2	Arithmetic Conversion Functions

If X is FIXED DECIMAL, the result is FIXED DECIMAL. Otherwise, the
result is FIXED BINARY. If X is FIXED BINARY, you must specify q
0. A nonzero scale factor is valid only if X is FIXED DECIMAL.

If you do not specify p or q, then the result depends on the
precision and scale factor of X as follows:

X FIXED BINARY(p)	returns	FIXED BINARY(p)
X FLOAT BINARY(p)	returns	FIXED BINARY(MIN(15,p)
X FIXED DECIMAL(p,q)	returns	FIXED DECIMAL(p,q)

4.2.5 The FLOAT BIF

The FLOAT BIF has the form:

FLOAT(X[,p])

where X is the arithmetic variable or expression to be converted to
a FLOAT arithmetic data type, and p is the target precision. If you
do not specify p, then the result is as follows:

X FIXED BINARY(p) returns FLOAT BINARY(p)
X FLOAT BINARY(p) returns FLOAT BINARY(p)
X FIXED DECIMAL(p,q) returns FLOAT BINARY(MIN(CEIL((p-q)*3.322),53))

4.3 String Conversions

PL/I performs conversion between arithmetic and nonarithmetic string
data items when they are combined in expressions. Table 4-2 shows
the built-in functions used for converting between arithmetic and
nonarithmetic data types.

Table 4-2. PL/I BIFs for Conversion
Between Arithmetic and Nonarithmetic Data Types

Conversion			PL/I BIF

Arithmetic to Bit		BIT(S[,L])
Arithmetic to Character	CHARACTER(S[,Ll)
Bit to Arithmetic		BINARY(X[,P])
Bit to Character		CHARACTER(S[,L])
Character to Arithmetic	BINARY(X[,P])
					FLOAT(X[,p])
					DECIMAL(X[,p[,q]])
Character to Bit		BIT(S[,L])

The following sections describe these PL/I BIFs and the various
conversion rules for string operands.

4-8
�PL/I Reference Manual	4.3		String Conversions

4.3.1 Arithmetic to Bit-string Conversion

The BIT BIF has the form:

BIT(S[,L])

where S is an arithmetic or string expression, and L is a positive,
FIXED BINARY expression.

PL/I first converts ABS(S) to FIXED BINARY according to the
arithmetic conversion rules. It then converts the FIXED BINARY
intermediate value to a bit string of length L.

If the target length is longer than L, PL/I pads the intermediate
result on the right with zero-bits. If the target length is less
than L, it truncates the right excess bits of the intermediate
result.

4.3.2 Arithmetic to Character Conversion

The CHARACTER BIF has the form:

CHARACTER | CHAR(S[,L])

where S is an arithmetic or string expression, and L is a positive,
FIXED BINARY expression.

PL/I first converts the various arithmetic data types to
intermediate character strings as follows:

·	FIXED BINARY(p)

	PL/I converts the source to FIXED DECIMAL(p'), where p' =
	CEIL (p/3.322) +1, and then converts the FIXED DECIMAL (p') result
	to a character string of length p'+3 with the format described
	above.

	For example, converting a FIXED BINARY(15) data item with value
	-32 results in the character string VVVVVV-32.

·	FLOAT BINARY(p)

	PL/I converts the fractional part to a FIXED DECIMAL (p') where
	p' = CEIL(p/3.322). The resulting character string is of
	length p'+6 for single precision, or p'+7 for double precision
	in scientific notation format. That is, the first character is
	a minus sign if the source value is negative, otherwise the
	position contains a space.

	The next position contains the most significant digit of the
	value, followed by a decimal point, and the remaining p-l
	fractional digits. The exponent indicator E follows, with an

4-9
�PL/I Reference Manual	4.3	String Conversions

	exponent sign and an exponent value. Single precision
	exponents have two digits, and double precision exponents have
	three digits.

	For example, converting a FLOAT BINARY(24) data item with value
	250.1E1 results in the character string V2.5010000E+03.

·	DECIMAL(p,q), q = 0

	The resulting character string is length p+3. The characters
	are composed of the digits of the source, without leading
	zeros, preceded by a minus sign if the source value is
	negative, and padded on the left with blanks to produce a
	character string of length p+3.

	For example, converting a FIXED DECIMAL (3) data item with value
	330 results in the character string VV330, where V denotes a
	blank position. Converting the value zero produces five blanks
	and a single zero digit result.

·	DECIMAL(p,q), q > 0

	The resulting character string is also of length p+3, with the
	same string format as above, except that the decimal point and
	the fractional digits are included.

	For example, converting a FIXED DECIMAL(5,2) data item with
	value -13.25 results in the character string VV-13.25. PL/I
	omits leading zeros except for the one immediately preceding
	the decimal point.

	After performing the intermediate conversions, PL/I pads the
	string on the right with blanks if the target length is greater
	than the length of the intermediate result. Conversely, if the
	target length is shorter than the intermediate result, PL/I
	truncates the string on the right to produce the shorter
	length.

4.3.3 Bit-string to Arithmetic Conversion

The BINARY BIF is described in Section 4.2.1. When used to convert
a bit string of length n (0 <= n <= 15) to an arithmetic data type,
PL/I first converts the string to its FIXED BINARY(15) equivalent.
PL/I then converts the FIXED BINARY intermediate value to the target
value according to the rules discussed in Section 4.1.

For example, '1101'B converted to FIXED BINARY(15) yields the value 13.

4-10
�PL/I Reference Manual	4.3		String Conversions

4.3.4 Bit to Character-string Conversion

The CHARACTER BIF is described in Section 4.3.2. when used to
convert a bit string of length n (0 <= n <= 15) to a character
string of length n, PL/I converts a zero-bit to a 0 character and a
one-bit to a 1 character. If the target length is longer than the
source, PL/I pads the target on the right with blanks. If the
target length is shorter than the source length, PL/I truncates the
excess characters on the right.

4.3.5 Character to Arithmetic Conversion

The conversion functions apply as follows:

·	FIXED(X[,p[,q]]) or DECIMAL(X[,p[,q]]) returns a FIXED DECIMAL
	value. If you do not specify p, the default is 15.

·	BINARY(X[,p]) returns a FIXED BINARY value. If you do not
	specify p, the default is 15. The result is only the integer
	part of X.

·	FLOAT(X[,p]) returns a FLOAT BINARY value. If you do not
	specify p, the default is 53. If X is null or contains all
	blanks, the converted value is zero. If the target is not
	declared with sufficient precision to hold the converted value,
	the run-time system signals OVERFLOW(2) or UNDERFLOW(2).

When performing character to arithmetic conversion, the character
string must contain a valid arithmetic constant value. PL/I signals
the ERROR(l) condition if the character string is not a valid
arithmetic representation.

The following examples illustrate various conversions from character
to arithmetic data types:

Table 4-3. Character to Arithmetic Conversion

Character 	Target			Result
'00987'	FIXED BINARY(1,5) 	987
'9.87'	FIXED DECIMAL(6,2)	0009.87
'-9.87E2'	FLOAT BINARY(24)	-9.87E2
'-9.87E2'	FIXED DECIMAL(9,2)	0000987.00
'-9.87E2'	FIXED DECIMAL(5.0)	00987
'-987.372'	FIXED DECIMAL(4,2)	ERROR
'2X36'	FIXED BINARY(15) 	ERROR
		FIXED BINARY(15) 	0
		FIXED BINARY(15) 	0

4-11
�PL/I Reference Manual	4.3	String Conversions

4.3.6 Character to Bit-string Conversion

The BIT BIF is described in Section 4.3.1. When used to
convert a character string, PL/I converts each 0 character
to a zero-bit, and each 1 character to a one-bit. When
performing character to bit string conversion, the source
character string must contain only the characters 0 and 1.
It can also contain leading or trailing blanks, but not
any embedded blanks. PL/I signals the ERROR(l) condition
if the character string is not a valid bit representation.

If the target length is greater than the source length,
then PL/I pads on the right with zero-bits. If the target
length is shorter than the source length, then it truncates
on the right. If the source is the null string, or
contains all blanks, then the result is a string of zero-bits.

End of Section 4

4-12
�Section 5
Data Aggregates

An aggregate is a grouping of multiple data items. In PL/I, there
are two kinds of aggregates: arrays and structures.

·	An array is an ordered collection of data items called elements
which all have the same attributes. The elements of an array
can be scalar data items or structures. PL/I allows you to
reference an entire array by name, or to reference an
individual element of an array by using integer subscripts that
denote the relative position of the element in the array.

·	A structure is a collection of data items called members which
can have different data types. The members of a structure can
be arrays. PL/I allows you to reference an entire structure by
name, or to reference an individual member of a structure with
a qualified reference that gives both the name of the structure
and the name of the member.

A variable that represents a data aggregate is called either an
array variable or a structure variable.

5.1 Array Declarations

You define an array variable by specifying its attributes in terms
of the number of elements in the array and the organization of the
elements. These attributes are called the dimensions of the array.
The general form of an array variable declaration is

DECLARE name(bound-pair) [attribute-list];

where name is any valid PL/I identifier. Each bound-pair specifies
the number of elements in each dimension of the array and has the
format:

[L:U]

where L is the lower-bound of the array, and U is the upper-bound.
The values L and U can be any integer values such that L is less
than or equal to U.

The attribute-list is the set of data attributes that apply to all
the elements in the array. The ordering of attributes is
unimportant, but the bound-pair list must precede the attribute
list.

5-1
�PL/I Reference Manual	5.1 Array Declarations

The number of elements in each dimension is the extent, and is given
by

(upper bound) - (lower bound) + 1

The total number of elements in an array is the product of the
extents of each dimension.

For example, the following statements are equivalent:

declare A(3,4) character(2);
declare A(1:3,1:4) character(2);

Both statements define an array whose dimension is two, and whose
elements are character strings of length two. The extent of the
first dimension is 3, and the extent of the second dimension is 4.
Thus, you can visualize A as an array with three rows and four
columns whose elements are character strings of length two.

�

Figure 5-1. Two-dimensional Array

The statement

declare B(-2:5,-5:5,5:10) fixed binary;

defines the array B to be a three-dimensional array whose subscripts
range from -2 to 5, -5 to 5, and 5 to 10, respectively. The
corresponding extents are eight, eleven, and six, respectively.
Thus, B contains 528 data items of FIXED BINARY data type.
�PL/I Reference Manual	5.1 Array Declarations

The following rules apply when specifying dimensions in an array:

·	In PL/I, there is no formal limit to the number of dimensions
an array can have. However, the practical limit is limited by
the total amount of available data storage, and the overall
complexity of any expression that you use to reference an
individual element within the array.

·	All bounds must be integer constants.

·	The lower bound must be less than or equal to the upper bound.

·	At run-time, an out-of-bound array reference produces
	unpredictable results.

5.2 Array References

In PL/I , any reference to an individual array element must be
subscripted. The list of subscripts must be enclosed in
parentheses. In multidimensional arrays, the number of subscripts
must match the number of dimensions.

A subscripted reference to an array element can be any variable or
expression that PL/I converts to an integer value. For example,

declare scores(20) fixed binary;
declare (counter, total) fixed binary;
total = 0;
do	counter = 1 to 20;
	total = total + scores(counter);
end;

Figure 5-2 illustrates the concept of subscripted array references.

�
Figure 5-2. Array Element References

5-3
�PL/I Reference Manual	5.2	Array References
�
Figure 5-2. (continued)

5-4
�PL/I Reference Manual	5.3		Initializing Array Elements

5.3 Initializing Array Elements

You can use the INITIAL attribute with an array declaration to
specify values for the elements before execution. For example, the
statement

declare	colors(4) character(10) varying
		static initial ('RED','BLUE','GREEN','YELLOW');

assigns a value to each of the elements of the array as shown in
Figure 5-3.

�
Figure 5-3. Array Initialization

If you assign each element of an array the same value, the INITIAL
attribute can specify an iteration factor in the form:

	INITIAL(value[,value] ...
	where value has the form:

[(iteration-factor)] constant-expression

The iteration factor is an unsigned decimal constant indicating the
number of times to use the specified constant. The constant
expression can be any reference to an arithmetic or string constant
or to the NULL built-in function, and must be compatible with the
data being initialized.

For example, the statement:

	declare	test-scores(100) fixed binary
			static initial((100)0);
initializes all the elements of the array test-scores to 0.
The statement:

	declare	grid(15) pointer;
			static initial((15)null);
initializes the array grid with null pointer values.

5-5
�PL/I Reference manual	5.3	Initializing Array Elements

The statement:

declare	numbers(10) character(10)
		static initial((10)'0123456789');

initializes all ten elements of numbers with the character string
constant '0123456789' (see Appendix A). <<IT DOES??>>
The statement:

declare	numbers(10) character(10)
		static initial((5)'0123456789',(5)'0');

initializes five elements of numbers with the constant '0123456789',
and five elements with the constant '0'.

PL/I stores the elements of an array internally in row-major order.
That is, the far right subscript varies the most rapidly. If you
declare the array with the INITIAL attribute, or reference the
entire array in a GET or PUT statement, PL/I accesses the elements
in the same order.
For example, using the array declaration:

	declare test-scores(2,2,2)	fixed static
						initial (l,2,3,4,5,6,7,8);
PL/I assigns values to the elements in the following order:

test scores(1,1,1) = 1
test scores(1,1,2) = 2
test scores(1,2,1) = 3
test scores(1,2,2) = 4
test scores(2,1,1) = 5
test scores(2,1,2) = 6
test scores(2,2,1) = 7
test-scores(2,2,2) = 8

PL/I uses the same order to output the elements in a PUT statement,
such as:

do i = 1 to 2;
	do j = 1 to 2;
		do k = 1 to 2;
			put list(test-scores(i,j,k));
		end;
	end;
end;

5-6
�PL/I Reference Manual	5.4		Arrays in Assignment Statements

5.4 Arrays in Assignment Statements

Only in certain restricted cases does PL/I allow an array variable
to be the target of an assignment statement. Any statement of the
form:

array-variable A = array_variable B;

is valid if the arrays are identical in dimension and data type, and
the storage for both arrays is connected. In this case, each
element in array-variable-A is assigned the corresponding element in
array-variable-B. For example,

declare A(20) fixed binary;
declare B(20) fixed binary;
A = B;

Individual elements of an array can also be targets of assignment
statements. For example, in the following code sequence the
elements of one array are assigned values computed using the
elements in another array.

declare	array_A(10) float binary;
declare	array_B(10)fixed binary static
			initial (0,l,2,3,4,5,6,7,8,9);
declare		i fixed binary;
do i = 1 to 10;
	array_A(i) = sqrt(array_B(i));
	end;

Array variables cannot be operands for arithmetic operators such as
+ and – . For example, any statement of the form:

	C= A + B;
is invalid if A, B, and C are array variables.

DRI PL/I does not allow any statement of the forms:

	· array-variable = constant;
	· array-variable = expression;

For example, the following code sequence is illegal in PL/I:

declare A(10) fixed binary;
declare n fixed binary static initial(2);
A = n;
�PL/I Reference Manual	5.4 Arrays in Assignment Statements

However, you can obtain the same effect with the sequence:

declare A(10) fixed binary;
declare n fixed binary static initial(2);
declare i fixed binary;
do i = i to 10;
	A(i) = n;
	end;

5.5 Structures

A structure is an aggregate that can contain items of different data
types. You can use structures to represent data that more closely
reflect real-life objects.

The data items contained in the structure are called its members.
Structures can contain scalar data items, arrays of scalar items, or
other structures called substructures. Structures are ordered
hierarchically. The main structure is called the major structure
and any substructure is called a minor structure.

A structure declaration defines the organization of levels and the
names of the members on each level in the structure. Every
structure declaration must contain the following:

·	a name for the major structure,

·	the names and data attributes of its members,

·	and a level number for each name to define its level in the
hierarchical order.

A structure variable declaration has the form:

DECLARE [level] name [attribute-list] ...
	[,[level] name [attribute-list]];

Level numbers precede the names and must be separated from them by
one or more spaces. The level number of a major structure is always
one. The definitions of each member, including its level number,
name, and attributes, must be separated by commas. The level
numbers of the members of a minor structure must be greater than the
level number of the minor structure. However, because level numbers
precede their member names, they are factored to the left. A
sequence of the form:

level-k item-1, level-k item-2, ... level-k item-n

is equivalent to the sequence:

level-k (item-1, item-2, ... item-n)

5-8
�PL/I Reference Manual	5.5 		Structures

For example, the statement:

declare 1 A based,
		2	(B fixed binary,
			C character(2));
is equivalent to:

declare 1 A based,
		2	B fixed binary,
		2	C character(2);

Note: Level 1 structure names cannot have data type attributes, but
can have a dimension attribute. Level 1 structure names can also
have the BASED, AUTOMATIC, EXTERNAL, PARAMETER, or STATIC
attributes.
The following statement is an example of a structure declaration:

declare 1 bill,
		2	name,
			3 last name character(20),
			3 firs-E name character(20),
			3 middle initial character(l),
		2	address,
			3 street character(20),
			3 city character(10),
			3 state character(3),
			3 zip character(5),
		2	charges,
			3 shop fixed decimal(10,2),
			3 snack bar fixed decimal(10,2),
			3 misc fixed decimal(10,2),
			3 dues fixed decimal(10,2);

Figure 5-4 shows the hierarchy of levels corresponding to this
declaration.

1-1-1

5-9
�PL/I Reference Manual		5.5		Structures

�
Figure 5-4. Hierarchy of Structure Levels

Both level numbers and names can be factored. Ambiguities can arise
when referencing the members of structures because the name of a
structure member can occur as the name of the member of another
structure, or as the name of a data item in a substructure of the
same structure. These ambiguities arise only with member names in a
common scope of definition.

To resolve such ambiguities, use qualified names to reference
members of structures. In a qualified name, the member name is
preceded by a list of structure names in ascending order of level
number, each followed by a period and zero or more blanks. The only
structure names required are those that determine a unique reference
to the member name.

For example, in the structure:

declare 1 A,
		2 B,
			3 C fixed,
			3 D fixed,
		2 BB,
			3 C fixed,
			3 D fixed;

a reference to item C, or D, or A.C, or A.D is ambiguous. The
qualified names B.C, or B.D, or BB.C, or BB.D uniquely identify the
structure elements. The fully qualified names are

A.B.C
A.B.D
A.BB.C
A.BB.D

5-10
�PL/I Reference Manual	5.5 		Structures

Figure 5-5 shows the hierarchy of levels.

�
Figure 5-5. Hierarchy of Structure Levels

5.6 Mixed Aggregates

A mixed aggregate is either an array whose elements include
structures, or a structure whose members include arrays. You can
define an array whose elements are a single type of structure by
giving the major structure name a dimension attribute in the
structure declaration. You can also give minor structures a
dimension attribute. When you declare a structure with a dimension
attribute, each member of the structure inherits the dimension and
becomes an array.

For example, the statement:

declare 1 student list(100),
		2 student name,
			3 last name character(10),
			3 first name character(10),
			3 middle initial character(l),
		2 social_security_number character(9),
		2 country character(10),
		2 grades(5) character(2);

defines an array of structures whose major structure name is
student - list. Figure 5-6 shows an array of these structures with
their elements.

5-11
�PL/I Reference Manual		5.6	Mixed Aggregates

�
Figure 5-6. An Array of Structures

Each structure element of the array has the subarray grades as a
member. To reference an entry in the array, you must use a
qualified name together with subscripts for the structure names that
have a dimension attribute, and the member name if it has a
dimension attribute. The subscripts do not have to appear with
their corresponding name, but must occur in parentheses separated by
commas and in correct order.

For example, any of the following forms is a fully qualified,
unambiguous reference to the third grade entry for the sixty-first
entry of the array student-list:

student list(61).grade(3)
student list.grade(61,3)
student-list(61,3).grade

5.7 Mixed Aggregate Referencing

You can reference an entire mixed aggregate by name. A reference to
data items inside a mixed aggregate can be partially subscripted,
and/or partially qualified. Any such reference to a mixed aggregate
must identify connected storage (see Appendix A) . Connected storage
means the data elements occupy consecutive storage locations.

5-12
�PL/I Reference Manual	5.7 Mixed Aggregate Referencing

For example, consider how PL/I stores the data elements for the
declaration:

DECLARE 1 COLOR(100),
			2 HUE CHARACTER (10) VARYING,
			2 INTENSITY FIXED BINARY;

HUE(1)
INTENSITY(l)

HUE(2)
INTENSITY(2)

-(3)
t4SMY
COLOR(3)		INTIE	COLOR.HUE

COLOR.HUE(100)			HUIE1100)
		INTEN$11TY1100),
	Figure 5-7a. An Array of Structures

5-13
�PL/I Reference Manual	5.7 Mixed Aggregate Referencing

Now, the similar declaration,

declare 1	color,
		2 hue(100) character(10) varying,
		2 intensity(100) fixed binary;
stores the data elements as shown in Figure 5-7b.

COLOR.HUE ~

INTENSITY(2)

INTENSITY(3)

INTENSITY(100)

Figure 5-7b. A Structure of Arrays

In Figure 5-7a, color is dimensioned and each of its members, hue
and intensity, inherits the declared dimension. Therefore, each
appears as an array, but the elements do not occupy consecutive
storage locations.

In Figure 5-7b, color has two members, both of which are
dimensioned. The elements of each array occupy consecutive storage
locations.

5-14
�PL/I Reference Manual	5.7 Mixed Aggregate Referencing

Referring to Figure 5-7a, the storage for color(3), or
color.hue(100) is connected storage, but the storage for color.hue
is unconnected. However, in Figure 5-7b, the storage for color.hue
is connected.

Each type of declaration has its advantages and disadvantages. The
specific application and method of access in a program determine the
type of declaration and the storage that results.

End of Section 5

5-15
�Section 6
Assignments and Expressions

6.1 The Assignment Statement

The assignment statement sets a variable equal to the value of an
expression or constant. The assignment statement has the general
form:

variable = expression;

where variable is a scalar element, an array, a structure name, or a
pseudo-variable (Section 6.8) . The assignment statement contains no
distinctive keyword.

PL/I does not allow multiple assignments in a single statement. For
example,

	A, B, C = 5;
	is invalid.
	PL/I does allow statements such as:

A = (B = C);

In this context, PL/I treats the equal (=) sign inside the
parentheses as a relational operator (see Section 6.5). Thus, if
the variable B has the same value as the variable C, the relation is
true and PL/I assigns the bit-string value 111b to the variable A

6.2 Expressions

An expression is any valid combination of operands and operators
that PL/I computes at run-time to produce a value.

Various syntactic rules govern the arrangement of references,
operators, and parentheses in an expression. A reference can be a
constant, a variable, or a function. An operator defines the
computation to perform, using the operands to which it is applied.
Parentheses enclose various portions of the expression.

The following sections present the proper formulation of operands,
operators, and parentheses.

6-1
�PL/I Reference Manual	6.2 	Expressions

6.2.1 Prefix Expressions

A prefix expression consists of a unary prefix operator followed by
an expression called the operand. PL/I first evaluates the operand
and then applies the unary operator to the result.

The following are two examples of prefix expressions:

^A		/* logical Not of A */
-SQRT(B)	/* minus square root of B */

6.2.2 Infix Expressions

An infix expression consists of two expressions called operands
separated by an infix operator. PL/I first evaluates the operands,
that can be expressions, and then applies the operator to the
result.

The following are two examples of infix expressions:

A+B 	/* sum of A and B) */
C**2	/* C squared) */

6.3 Precedence of Operators

In any unparenthesized expression or subexpression, PL/I applies
operators according to a set of precedence rules. Table 6-1 shows
the fixed order of precedence from highest to lowest with operators
of equal precedence listed on the same line.

Table 6-1. PL/I Operator Precedence

Operator				Symbol	Priority

Exponentiation 		**			1
Logical Not			^ or ~		1
Prefix Operators		+ -			1
Multiplication, Division	* /			2
Addition, Subtraction	+ -			3
Concatenation			|| or !! or \\ 	4
Relational Operators 	<=, >=		5
Logical And			&			6
Logical Or			| or !, or ???	7

When evaluating an unparenthesized expression, PL/I inserts a
balanced parentheses pair around the highest precedence operators
and their corresponding operands first. It continues descending to
lower precedence operators and their operands until the entire
expression is properly parenthesized.

6-2
�PL/I Reference Manual	6.3		Precedence of Operators

When equal precedence operators occur at the same level, PL/I
evaluates prefix operators and exponentiation from right to left,
with the remaining operators evaluated from left to right.

For example, the compiler treats the unparenthesized expression:

2 + z * X ** Y		2		5 	Q

as the expression:

(2 + ((Z * (X		(Y	2))) / 5)) 	Q
I		L-	1 	1

6.4 Concatenation

The infix operator 11 concatenates either bit strings or character
strings. Both operands must be of the same type, and the result is
the same type as the operands. The length of the resulting string
is always the sum of the lengths of the operands.

For character-string concatenation, if either operand has the
VARYING attribute, then the result has the VARYING attribute. For
example, the code sequence:

declare
	A character(3),
	B character(6) varying,
	C character(20);
A = 'ABC';
B = 'ABCDEF';
C = A || B;

assigns the character string ABCABCDEF of length 9 to the variable C.

6.5 Relational Operators

In PL/I, relational operators are infix operators that compare the
relationship between two operands in an algebraic sense.
Computational values can be compared according to general algebraic
rules, but noncomputational values can only be compared for equality
or inequality.

Character string, bit string, and arithmetic data items can be
compared using any relational operator. ENTRY, FILE, LABEL, and
POINTER data can only be compared using the equal and not equal
operators.

6-3
�PL/I Reference Manual	6.5	Relational operators

ENTRY values are equal only if they identify the same entry point in
the same block activation.

LABEL values are equal only if they identify the same statement in
the same block activation. A LABEL value that identifies a label on
a null statement is not equal to a LABEL value on any other
statement.

POINTER values are equal only if they identify the same storage
location, or they are both null values.

FILE values are equal only if they identify the same File Parameter
Block (see Section 10.4).

If the operands differ in data type, PL/I first converts them to a
common type before making the comparison, and then produces a bit
string of length one with the value '1'B, true, if the operands are
equal, and 'O'B, false, if the operands are not equal (see Section 4).

PL/I compares character strings by extending the shorter operand on
the right with blanks until it is the same length as the longer
operand. It makes the comparison character-by-character from left
to right using the ASCII collating sequence (see Appendix C). In
this sequence, the value of any upper-case letter is less than any
lower-case letter, and the value of any numeric character is less
than any alphabetic character.

For example, given the two strings JACK and JACKSON, PL/I first pads
the shorter string with blanks and then compares the strings
starting on the left as shown, V denotes a blank:
J A C K V V V
4A 41 43 4B 20 20 20
I I I I I I I
J A C K S O N

4A 41 43 4B 53 4F 4E

Because S, 53h, is greater than a blank, 20h, JACKSON is greater
than JACK.

PL/I compares bit strings by extending the shorter string on the
right with zero-bits. Comparison is then made bit by bit from left
to right with zero considered less than one. For example
'00010000'B is less than '00010001'B.

6-4
�PL/I Reference Manual	6.6		Bit-string operators

6.6 Bit-string Operators

Table 6-2 shows the PL/I bit-string operators.

Table 6-2. PL/I Bit-string Operators

Operator 					Symbol

Complement	(logical Not)	^ or ~
Inclusive Or	(logical Or)	| or ! or ???
And 		(logical And) 	&

PL/I performs bit-string operations on a bit-by-bit basis. The
unary Not operator reverses each bit value in the bit-string
operand, changing a zero-bit to a one-bit, and a one-bit to a zero
bit. For example, given the bit string A = '01110010'B, then ^A yields
'10001101'B.

The Or and And operators require two bit-string operands. If the
operands are of unequal length, PL/I extends the shorter one on the
right with zero-bits until it is equal in length to the other
operand. The resulting string length equals the longer of the two
operands.

The Or and And operators follow the rules of Boolean algebra:
x	y	x|y		x	y	X&Y
0	0	0		0	0	0
0	1	1		0	1 	0
1	0	1		1	0	0

Additional Boolean functions are easily constructed using the BOOL
built-in function (see Section 13.3).

6.7 Exponentiation

PL/I computes exponentiation as a series of multiplications if the
exponent is a nonnegative integer constant. Otherwise, it evaluates
the operation using the built-in LOG and EXP transcendental
functions. When evaluating an exponential expression, PL/I treats
the following as special cases:

6-5
�PL/I Reference Manual	6.7 	Exponentiation

·	If X=0 and Y>0, then X**Y = 0.

·	If X=0 and Y<0, then the run-time system signals the ERROR(3)
condition.

·	If X^=0 and Y=0, then X**Y = 1.

·	If X<0 and Y is not an integer, then the run-time system
signals the ERROR(3) condition.

6.8 Pseudo-variables

SUBSTR and UNSPEC are the names of two PL/I built-in functions
(BIFs) that you can use as source operands in expressions. However,
you can also use SUBSTR and UNSPEC as the target operands on the
left side of assignment statements. In this case SUBSTR and UNSPEC
are called pseudo-variables because they appear to act like simple
program variables.

6.8.1 Character SUBSTR

The SUBSTR built-in function allows you to access a substring of a
string. It takes one of the following two forms:

SUBSTR(char-variable,i)
SUBSTR(char-variable,i,j)

where char-variable is an optionally subscripted reference to
CHARACTER variable or CHARACTER VARYING variable, and i and j are
FIXED BINARY expressions.

SUBSTR with two arguments extracts the substring starting at
position i and continuing to the end of the string. (Position 1 is
the first character of the string, position 2 the second, and so
on.) The result is undefined if i exceeds the string length.

SUBSTR with three arguments extracts the substring starting at
position i and continuing for j characters. The result is undefined
if either i or i+j exceeds the string length, where the length is
the declared fixed size for CHARACTER variables, and the current
length for CHARACTER VARYING variables.

For example, if the variable word contains the character string
'Josephine', then the following assignments result in the strings
indicated.

x = SUBSTR(word,l); /* x = 'Josephine' */
y = SUBSTR(word,5); /* y = 'phine' */
z = SUBSTR(word,1,4); /* z = 'Jose' */

6-6
�PL/I Reference Manual	6.8 		Pseudo-variables

The SUBSTR pseudo-variable is similar to the SUBSTR built-in
function, except that it appears on the left of an assignment, and
it must appear alone. That is, SUBSTR cannot be embedded in a
string expression when it serves as the target of a string
assignment. SUBSTR appears in this context as one of the following
forms:

SUBSTR(char-variable,i)	= char-exp;
SUBSTR(char-variable,i,j)	= char-exp;

The SUBSTR pseudo-variable with two arguments assigns the character
expression given by char-exp to the substring in the char-variable,
starting at position i, and extending through the length of the
char-variable.

The SUBSTR pseudo-variable with three arguments assigns the
character expression given by char-exp to the substring in the char
variable, starting at position i and continuing for j characters.
The values of i and i+j must be within the current or fixed string
length, otherwise undefined results might occur.

The same char-variable can appear on both the left and right side of
an assignment statement without partial substring overwrite during
the assignment.

For example, if the variable word contains the character string
'Collegiate', then following the statement,

substr(word,7) = substr(word,10,1);

the variable contains the string 'College���'.

6.8.2 Bit SUBSTR

In PL/I, bit substring operations are similar to the character
SUBSTR shown in Section 6.8.1, with some restrictions. First, PL/I
limits bit strings to the precision range 1 through 16,
corresponding to single- and double-byte values. To account for the
intermediate precision values during compilation, the length of a
bit substring operation must be constant.

Thus, the forms for bit substring are

SUBSTR(bit-variable,k)
SUBSTR(bit-variable,i,k)

where the bit-variable is an optionally subscripted BIT variable
reference; k is an integer constant in the range 1 to 16, and i is a
FIXED BINARY expression.

6-7
�PL/I Reference Manual	6.8 	Pseudo-variables

The effect of using SUBSTR with bit strings is identical to the
character operation described, except PL/I selects a bit string of
length k when SUBSTR appears in an expression, and assigns it when
SUBSTR appears on the left as a target of a bit-string store
operation.

The following section gives an example of bit SUBSTR.

6.8.3 UNSPEC

The UNSPEC BIF returns a bit-string value of the internal
representation of the argument. The UNSPEC BIF has the form:

variable = UNSPEC(argument);

where the argument is an optionally subscripted reference to a data
item that occupies a single- or double-byte memory location.

Note:	PL/I does not allow an expression as the argument to UNSPEC.

When UNSPEC appears as a pseudo-variable on the left of an
assignment statement, PL/I converts the assigned value to a bit
string and directly stores it into the single- or double-byte
location of the variable. Thus, UNSPEC allows you to access single
and double-byte variables as if they are 8-bit and 16-bit string
data items.

The UNSPEC pseudo-variable is often used as an escape mechanism when
the usual features of the language do not appear to allow access to
the underlying facilities. Do not use UNSPEC instead of a more
appropriate high-level language facility, because UNSPEC is
implementation-dependent. In fact, whenever it seems necessary to
use UNSPEC, examine the problem in a more general way to see if its
use can be avoided.

The following example shows two memory locations being accessed.
The UNSPEC operation loads two absolute addresses into two pointer
variables. Two based variables, in turn, overlay these two memory
locations so they can be accessed as 16- and 8-bit quantities. The
bit SUBSTR pseudo-variable is then applied to move a substring from
one location to the other.

6-8
�PL/I Reference Manual	6.8 		Pseudo-variables

declare
	(P, Q) pointer,
	A bit(16) based(P),
	B bit(8) based(Q),
	I fixed;

I = 4;
unspec(P) = 'FF80'b4;
unspec(Q) = 'FFF0'b4;

substr(B,4,2) = substr(A,I,2);

End of Section 6

6-9
�Section 7
Storage Management

7.1 Storage Classes

Every variable in a PL/I program is associated with a storage class.
The storage class determines how and when PL/I allocates storage for
a variable, and whether the variable has its own storage or shares
storage with another variable.

PL/I supports four different storage classes:

·	AUTOMATIC (the PL/I default)
·	BASED
·	PARAMETER
·	STATIC

For the AUTOMATIC and STATIC storage classes, the compiler allocates
storage before execution by generating code that automatically
associates the variable name with a given storage location at run
time. For the BASED and PARAMETER storage classes, the compiler
maintains the variable name and attributes, but does not allocate
any storage for it. The run-time system allocates and frees BASED
and PARAMETER storage when the program runs.

To improve performance, PL/I treats AUTOMATIC storage the same as
STATIC storage, except in procedures marked as RECURSIVE.

Storage class attributes are properties of elements, arrays, and
major structure variables. Entry names, filenames, or members of
data aggregates cannot have these attributes.

7.1.1 The AUTOMATIC Storage Class

The compiler allocates storage for a variable belonging to the
AUTOMATIC storage class before execution of the main procedure. The
storage remains allocated until the program ends. Variables
belonging to the AUTOMATIC storage class can have their data values
initialized with the INITIAL attribute (see Section 7.1.4).

Usually, the AUTOMATIC storage class forces data storage allocation
upon entry to the PROCEDURE or BEGIN block in which the variable
appears. In PL/I, AUTOMATIC storage is statically allocated to
improve performance.

The only exception is in the case of recursion, where the AUTOMATIC
variables must use the dynamic storage mechanism to prevent data
overwrite on recursive calls.

7-1
�PL/I Reference Manual	7.1	Storage Classes

7.1.2 The BASED Storage Class

A based variable is a variable that describes storage that must be
accessed with a pointer (see Section 3.4) . The pointer is the
location where the storage for the based variable begins, and the
based variable itself determines how PL/I interprets the contents of
the storage beginning at that location. Thus the based variable
together with a pointer is equivalent to a nonbased variable.

You can visualize a based variable as a template that overlays the
storage specified by its base. Thus a based variable and pointer
can refer to storage allocated for the based variable itself, or to
storage allocated for other variables.

The BASED variable declaration has the form:

DECLARE name BASED [(pointer-reference)];

where the pointer reference is an unsubscripted POINTER variable, or
a function call, with zero arguments, that returns a POINTER value.

A pointer-qualified reference can be either implicit or explicit.
When you declare a variable as BASED without a pointer reference,
each reference to the variable in the program must include an
explicit pointer qualifier of the form:

pointer-exp -> variable

where pointer-exp is a pointer-valued expression.

When you declare a variable as BASED with a pointer reference, you
can reference it without a pointer qualifier. The run-time system
reevaluates the pointer reference at each occurrence of the
unqualified variable using the pointer expression given in the
variable declaration.

The following example illustrates the difference between explicit
and implicit, pointer-qualified reference.

Main:
procedure options(main);
declare
	list_A(100) fixed binary based,
	list_B(100) fixed binary based(list_B_ptr),
	(list_A-ptr,list_B_ptr) pointer;

	list_A-ptr -> list_A(47) = 0;	/* explicit reference */
	list_B(47) = 0;				/* implicit reference */

end main;

7-2
�PL/I Reference Manual	7.1		Storage Classes

You can declare the same pointer name in a different environment,
and use it to make an implicit pointer-qualified reference.
However, PL/I takes the pointer variable name or pointer-valued
function name given in the pointer reference from the scope of the
original BASED declaration. The following example illustrates this
concept.

A:
procedure options(main);
	declare
		(i,j) fixed binary,
		p pointer,
		x fixed binary based(p);
	p = addr(i);
	x = 2; /* implicit reference; x refers to i */
B:
procedure;
	declare
		p pointer; /* local to B */
	p = addr(j);
	x = 12; /* implicit reference; x still refers to i */
	p -> x = 3; /* explicit reference; x now refers to j */
end B;

end A;

The following statements are examples of BASED variable
declarations:

declare A character(8) based;
declare B pointer based(Q);
declare C fixed based(P);
declare D bit(8) based(FO);

7.1.3 The PARAMETER Storage Class

If a variable appears in a parameter list, the compiler assigns it
the PARAMETER storage class. Storage for parameters is allocated by
the calling procedure when it passes the parameters to the called
procedure.

See Appendix A for restrictions on the use of the PARAMETER storage
class.

7-3
�PL/I Reference Manual	7.1		Storage Classes

7.1.4 The STATIC Storage Class

The compiler allocates storage for a variable belonging to the
STATIC storage class before execution of the main procedure. The
storage remains allocated until the program ends. Variables
belonging to the STATIC storage class can have their data values
initialized with the INITIAL attribute.

The INITIAL attribute directs the compiler to assign initial
constant values to STATIC data items upon storage allocation. The
general form of the INITIAL attribute is

INITIAL (valuef,value] ...

where value has the form:

[(iteration-factor)] constant-expression

The optional iteration-factor is an integer that specifies the
number of times the constant is repeated. The constant-expression
must be a literal constant value that is compatible with the data
type being initialized. It consists of either an optionally signed
arithmetic constant, a string constant, or a NULL pointer value.

You can initialize array data items with a single statement. The
statement must begin with the first element of the array, and
continue in row-major order until the end of the set of initialized
constants. The number of constants should not exceed the size of the
initialized array. Structure members must be individually
initialized.

The assignment of constants follows the rules for assignment
statements. For example, if you assign a character string to a
variable that is longer than the string, PL/I pads the string with
blanks on the right.

Note: only STATIC variables can have the INITIAL attribute to be
compatible with the ANSI Subset G PL/I standard.

The following code sequence illustrates the STATIC storage class and
the INITIAL attribute:

declare A fixed binary static initial(0);
declare B(8) character(2) initial((8)'AB') static;
declare
	1 fcb static,
		2	fcb_drive	fixed(7)	initial(0),
		2	fcb_name	character(8) initial('EMP'),
		2	fcb_type	character(3) initial('DAT'),
		2	fcb_ext	bit(8)	initial('00'B4),
		2	fcb_fill(19) bit(8);					<< CHECK >>

7-4
�PL/I Reference Manual	7.1		Storage Classes

The following statements are examples of BASED variable
declarations:

declare A character(8) based;
declare B pointer based(Q);
declare C fixed based(P);
declare D bit(8) based(Fo);

7.2 The ALLOCATE Statement

The ALLOCATE statement explicitly allocates storage for a variable
with the BASED attribute. The ALLOCATE statement has the form:

ALLOCATE based-variable SET(pointer-variable);

The ALLOCATE statement directs the run-time system to obtain a
segment of storage from the dynamic storage area that is large
enough to hold the value of the based-variable. If a segment of the
requested size is not available, the run-time system signals
ERROR(7).

The based-variable must be an unsubscripted variable reference,
where the variable is declared with the BASED attribute in the scope
of the ALLOCATE statement. The run-time system stores the
allocation address into the pointer- variable named in the SET
clause.

Storage allocated in this manner remains allocated until a
corresponding FREE statement is executed, using the allocation
address held by the pointer-variable as an operand.

7.3 	Multiple Allocations

The ALLOCATE statement allocates storage each time it is executed in
the program. A program can allocate storage for a single based
variable more than once, and as long as each allocation has a unique
pointer, the program can reference all of them. For example,
�PL/I Reference Manual	7.3 Multiple Allocations

declare names(5) character(10) based;
declare (P,Q) pointer;
allocate names set(P);
P -> names(l) = 'John';

allocate names set(Q);
Q -> names(3) = 'Smith';

In this example, there is no compile-time storage allocation for the
array variable names. The compiler automatically allocates storage
for the pointers P and Q at compile time. At run-time, the ALLOCATE
statements obtain two different allocations for names that can then
be referenced with the appropriate pointer. Figure 7-1 illustrates
this concept.

	STORAGE
STATEMENT 	ALLOCATED

DECLARE NAMES (5) CHARACTER (10) EASED; NO STORAGE

DECLARE (P,Q) POINTER;

ALLOCATE NAMES SET (P)
P -> names(l) = 'John , i

ALLOCATE NAMES SET (Q)
Q -> names(3) = 'Smith

Figure 7-1. Multiple Allocations of a BASED Variable

7-6
�PL/I Reference Manual	7.3 Multiple Allocations

Note: when multiple allocations of a based variable all have the
same pointer, the pointer only references the most recent
allocation, and not any preceding ones.

7.4 The FREE Statement

Storage for a BASED variable remains allocated until released with
the FREE statement. The FREE statement has the form:

FREE [pointer-variable ->] based-variable;

where the pointer variable addresses an allocation of storage that
must have been previously obtained from the dynamic storage area
using the ALLOCATE statement. Unpredictable results can occur if a
program attempts to free unallocated storage.

If the pointer variable is not given in the FREE statement, then the
based variable must be declared with the pointer reference option.
In this case, the run-time system returns the storage addressed by
the pointer reference to the dynamic storage area.

The run-time subroutines that maintain the dynamic storage area
automatically coalesce contiguous storage segments as they are
released using the FREE statement.

Note: when the FREE statement releases a storage allocation, both
the pointer and the contents of the storage area become undefined.
Unpredictable results can occur if the program makes any subsequent
reference to the freed storage.

The following code sequence illustrates the FREE statement:

declare
	(P, Q, R) pointer,
	A character(10) based,
B fixed based(R);

allocate A set(P);
allocate B set(R);
allocate A set(Q);

free P A;
free Q A;
free B;

7-7
�PL/I Reference Manual	7.5	The NULL BIF

7.5 The NULL BIF

The NULL BIF returns a pointer value that is a unique, nonvalid
storage address. This address is useful in marking various pointer
values as empty, and is especially useful in the construction of a
linked list.

A linked list is a data structure composed of elements that not only
contain a data area but also contain a pointer to the next element
in the list. In such a list, the last element has no following
element, and its pointer has an invalid (null) value. Figure 7-2
shows a linked list.

POINTER	ITEM	ITEM	ITEM	ITEM
TO LIST	1	2	N-1	N
	POINTER	POINTER	POINTER	NULL
	to	to	to	POINTER
		ITEM 3	~IT I M 'N"
ITEM 2 	_I

Figure 7-2. Linked List

The NULL built-in function has the form:

NULL[()]

Pointer values do not necessarily begin with a null value when
program execution begins. However, pointer values can be given a
null value by using the value returned by NULL in the variable
declaration INITIAL option.

NULL is an invalid pointer qualifier for a based variable. For
example, the following code sequence is invalid in PL/I:

declare A pointer;
declare list(10) fixed binary based(A);

* = null();
* -list(10) = 32767;	/*	this is invalid!! */

Section 10 in the PL/I Language Programming Guide contains sample
programs that illustrate the use of BASED variables and the NULL
function.

7-8
�PL/I Reference manual	7.6		The ADDR BIF

7.6 The ADDR BIF

The ADDR BIF returns a pointer to the memory address occupied by the
variable name given as the argument. The ADDR BIF has the form:

ADDR(variable name)

Note: the variable name must have an assigned memory address, and
cannot be a temporary result created through the application of
functions and operators, nor can it be a constant or a named
constant such as a FILE, ENTRY, or LABEL constant.

7.7	Storage Sharing

Use of BASED variables in conjunction with the ADDR BIF allows
storage sharing in PL/I. With storage sharing, the based variable
is not explicitly given storage with the ALLOCATE statement.
Rather, the based variable acts as a template that overlays the
storage for an existing variable.

To share storage, you must use the ADDR BIF to set the pointer base
for the based variable to the address of the existing variable.
Subsequent access to the based variable then accesses the overlayed
variable. The only requirement is that the length of the based
variable, in bits, be less than or equal to the length of the
existing variable, in bits.

The following program illustrates storage sharing. Here, the value
of a character string is overlayed by a bit-string vector. The
output from the program is the character-string value, written in
hexadecimal bit-string form.

declare
	i fixed binary,
	ptr pointer,
	word character(8),
	bit vector(8) bit(8) based(ptr);
ptr = addr(word);
get list(word);
do i = 1 to 8;
	put edit(bit-vector(i)) (x(2),b4(2));
end;

If you enter the word Digital at the console, the storage location
allocated for the variable word appears as shown:
_F
D	g	t			I	a 	sp

7-9
�PL/I Reference Manual	7.7	Storage Sharing

The based variable bit vector is simply a template that overlays the
storage for word as ~Eown:

where x denotes a single bit. Thus on output, the program reads the
bit string starting at the location of word and converts it to a
hexadecimal representation of the individual characters stored in
word.

Note: there is an important consideration involved in this type of
storage sharing. The preceding example depends on knowledge of the
internal data representation used by PL/I; namely, eight bits
represent a character. Thus, the program is implementation
dependent. This runs counter to the Subset G philosophy of writing
transportable programs. PL/I allows such storage sharing using
based variables, but the resulting code might not be transportable
to a different implementation.

7.8 Programing Considerations

Based variables and pointers are powerful tools because they give
you direct access to memory. However, use them with caution.
Remember that storage obtained with the ALLOCATE statement remains
allocated until it is freed or the program ends. Any based
variables and pointers that refer to the allocated storage remain
active only as long as the block in which they are declared remains
active. When control passes out of the block, the storage becomes
inaccessible.

Note: PL/I cannot tell if the size of a based variable does not
correspond to the size of the storage to which it refers. If a
program assigns a value to a pointer-qualified reference whose size
does not match the allocated storage, then the contents of adjacent
storage locations can be destroyed.

The following errors are common when using based variables and
pointers:

·	assigning a pointer the NULL value somewhere in the program and
	subsequently using it elsewhere in a pointer-qualified
	reference.

·	using a pointer to reference a based variable whose storage has
	been freed.

·	using a pointer whose value has been lost because of the
	deactivation of the block in which it was declared.

End of Section 7

7-10
�Section 8
Sequence Control

PL/I program statements usually execute sequentially. You can use
sequence control statements to alter this normal flow with
conditional and unconditional branching and controlled looping, as
discussed below. Procedure invocations including function calls
also alter the normal execution sequence, and are thus considered
sequence control statements (see Section 2.5).

8.1 The Simple DO Statement

A DO-group is a sequence of statements that begins with a DO
statement and ends with an END statement. The statements must be
executable. A DO-group cannot define variables whose environment is
limited to the body of the DO-group. A DO-group can occur in one of
two forms: the simple, noniterative DO-group, and the controlled,
iterative DO-group.

The simple DO statement has the form shown in Figure B-1 where
Statement-1 through Statement-n constitute the body of the DO-group.

DO;

END;

Figure 8-1. Forms of the DO Statement

8-1
�PL/I Reference Manual	8.1	The Simple DO Statement

The following code sequence illustrates the simple DO-group:

do;
	x = 3.14/2;
	y = sin(x);
	z	+ y;
end;

8.2 The Controlled DO Statement

The controlled DO statement has one of two general forms:

DO WHILE(condition);
DO control-variable = do-specification;

where the control-variable is a scalar variable; the condition is a
Boolean expression, and the do-specification is one of the
following:

start-exp [TO end-exp] [BY incr-exp] [WHILE(condition)]
start-exp [BY incr-exp] [TO end-exp] [WHILE(condition)]
start-exp [REPEAT repeat-exp] [WHILE(condition)]

In these general forms, start-exp is an expression specifying the
initial value of the control -variable; end-exp is an expression
representing the terminal value of the control-variable; incr-exp is
an expression added to the control-variable after each execution of
the loop, and the repeat-exp is the expression that is assigned to
the control-variable after each iteration. Condition is an
expression yielding a bit-string value that is considered true if
any of the bits in the string are one-bits.

If the TO end-exp form is included but the BY incr-exp is omitted,
then PL/I assumes the incr-exp to be one. The two forms using TO
and BY execute in exactly the same manner, and differ only in the
order of these two elements in the program text.

PL/I evaluates the WHILE expression each time before executing the
DO-group. If the condition is false, the loop execution terminates,
and control passes to the statement following the balanced END
statement.

With the exception of the REPEAT expression and the WHILE
expression, PL/I evaluates expressions in the do-specification
before executing the loop, so that changes made to the start, end,
or incremental values do not affect the number of times a loop
executes.

8-2
�PL/I Reference Manual	8.2		The Controlled DO Statement

In the case of the REPEAT option however, PL/I recomputes the
repeat-exp after each iteration. It then assigns this recomputed
expression to the control-variable and evaluates the WHILE test, if
there is one.

PL/I defines the actions of iterative groups by a sequence of
equivalent IF and GOTO statements. Expressions e1, e2, e3, and e4
are appropriate start-exp, end-exp, incr-exp, repeat-exp, and
condition values, while i represents a valid control-variable.

8.2.1 The DO WHILE Statement

DO WHILE(e1);

END;

is equivalent to the sequence of statements:

DO WHILE(E),

END,

Figure 8-2. The DO WHILE Statement

8.2.2 The DO REPEAT Statement

DO i = e1 REPEAT(e2);

END;

is equivalent to the sequence of statements shown in Figure 8-3.

8-3
�PL/I Reference Manual	8.2		The Controlled DO Statement

DO I + E1 REPEAT(E2);

END;
L*
Figure		8-3. The DO REPEAT Statement

Note: in this case, the loop proceeds indefinitely until terminated
by an embedded GOTO or STOP statement.

8.2.3 The DO REPEAT WHILE Statement

DO i = e1 REPEAT(e2) WHILE(e3);

	END;
	is equivalent to the sequence of statements shown in Figure 8-4.

DO I = E1 REPEAT(E2) WHILE(U);

I-E2

END;

	F
E3

T

Figure 8-4. The DO REPEAT WHILE Statement

8-4
�PL/I Reference Manual	8.2		The Controlled DO Statement

Thus, the simple iterative DO-group:

DO i = e1 TO e2;

END;

is equivalent to the sequence of statements:

DO i = e1 TO e2 BY e3;

END;

where e3 =1, that can be expressed as the equivalent sequence:

i = e1;
LAST = e2;
	INCR = e3;
	LOOP:
IF endtest THEN
GO TO ENDLOOP;

i		i + INCR;
	GOTO LOOP;
	ENDLOOP:;

where the IF statement containing the endtest compares the control
variable with the value of LAST. The comparison is based on the
sign of the incrementing value INCR. If INCR is negative, the END
test is

IF i < LAST THEN
	GOTO ENDLOOP;

Otherwise, the END-test becomes

IF i > LAST THEN
	GOTO ENDLOOP;

8-5
�PL/I Reference Manual	8.2		The Controlled DO Statement

8.2.4 The DO BY WHILE Statement

DO	e1 TO e2 BY e3 WHILE(e4);

END;

is equivalent to the sequence of statements shown in Figure 8-5.

	F
E4
DO I E I TO E2 BY E3 WH I LE(E4),

T
F

T

END,
I-E1

tF
E1-E2
	T

,E3

Figure 8-5. The DO BY WHILE Statement

In these equivalent sequences, the value of LAST and INCR take on
the characteristics of the expressions e2 and e3. Arithmetic
conversions and comparisons take place at each step according to
PL/I rules.

8.3 The IF Statement

The IF statement allows conditional execution of a statement or
statement group, based upon the true or false value of a Boolean
expression. The optional ELSE clause provides an alternative
statement or group of statements to execute when the Boolean
expression produces a false value.

8-6
�PL/I Reference Manual	8.3		The IF Statement

The IF statement has the general form:

IF expression THEN action-1 [ELSE action-2]

where the expression is a scalar expression that yields a bit-string
value. Action-1 and action-2 can be either simple statements, or
compound statements contained within a DO-group or BEGIN block. If
either action-1 or action-2 is a simple statement, it cannot be a
DECLARE, END, ENTRY, FORMAT, or PROCEDURE statement. The statements
in action-1, and action-2 if included, must terminate with a
semicolon; therefore, the semicolon is not included in the preceding
general statement form shown.

PL/I evaluates the expression to produce a bit string. If any bit
in the string is equal to one, then PL/I performs action-1.
Otherwise, control passes to action-2, if included, or to the next
statement in sequence following the IF statement.

IF statements can be nested, in which case PL/I pairs each ELSE with
the innermost unmatched IF THEN pair. You can use null statements
to force the desired IF ELSE pairing. For example, in the following
code sequence containing nested IF statements, the null statement
following the second ELSE corresponds to the second IF THEN test.

if A = Y then
	if Z = X then
		if W > B then
			C = 0;
		else
			C = 1;
	else;
else A = Y2;

8.4 The STOP Statement

The STOP statement unconditionally stops the program, closes all
open files, and returns control to the operating system. You can
use the STOP statement anywhere you want to stop the program.

The STOP statement has the form:

STOP;

8.5 The GOTO Statement

The GOTO statement unconditionally transfers control to a specific
labeled statement. The GOTO statement has either of the forms:

GOTO label constant label variable;
GO TO label constant label variable;

where the label constant is a literal label that appears as the
prefix of some labeled statement, and label variable is a simple or

8-7
�PL/I Reference Manual	8.5	The GOTO Statement

subscripted label variable that is assigned the value of a label
constant.

The evaluated label constant must label a statement in the scope of
the GOTO statement, and cannot be within an embedded iterative DO
group of any sort. The following example illustrates this kind of
invalid transfer.

A: proc options(main);

goto no-no;

-do i=l to 10;

	no-no:;	/* invalid transfer!!
end;

end A;

Transferring control with a GOTO statement is valid only when the
target label is known in the block containing the GOTO statement.
Thus, transfer of control using GOTO statements and labels is
limited to the currently active block or a containing block.

The following are examples of GOTO statements:

goto labl;
goto where;
go to L(J);

8.6 The Nonlocal GOTO Statement

In a nonlocal GOTO statement, the evaluated target label constant
occurs outside the innermost block containing the GOTO statement.

Usually, you should avoid the nonlocal GOTO because it makes the
program harder to debug and maintain.

There are situations when the nonlocal GOTO is appropriate. With
nonrecoverable error conditions, it is often useful to branch
directly to a global error recovery label where program execution
recommences. In such a case, PL/I automatically reverts all
embedded ON-units and discards procedure return information.

8-8
�PL/I Reference Manual	8.6 The Nonlocal GOTO Statement

The following code sequence shows an instance of a nonlocal GOTO
from within a procedure definition:

p: procedure;

on endfile(sysin)
	begin;
	goto eof;
	end;
	i = 1;
	do while ('l I b)
	get file(sysin) list(a(i));
i		+
	end;
end p;

call p;
eof;

End of Section 8

111-N,

8-9
�Section 9
Condition Processing

PL/I supports run-time interception of conditions that would usually
end the program. The ON, REVERT, and SIGNAL statements provide this
facility.

A condition is any occurrence that interrupts the program's normal
flow of execution. A condition can be signaled by the run-time
system or by the program itself, at which point control passes to a
preestablished logical unit for that condition.

Certain conditions are nonrecoverable. This means that the
specified logical unit cannot return control to the point where the
condition was signaled, but instead must execute a GOTO to a
nonlocal label. Other conditions are recoverable, so that the unit
can perform some local action and then return control to the point
of the signal.

PL/I recognizes the following general categories of conditions:

* a general error condition (ERROR)

* arithmetic error conditions such as

	- FIXEDOVERFLOW
	- OVERFLOW
	- UNDERFLOW
	- ZERODIVIDE

* and I/O conditions such as

	- ENDFILE
	- ENDPAGE
	- KEY
	- UNDEFINEDFILE

9.1 The ON Statement

The ON statement defines the action to take when the specified
condition is signaled.

The ON statement has the general form:

ON condition-name ON-unit;

where the condition-name can be one of the preceding listed
conditions.

9-1
�PL/I Reference Manual	9.1	The ON Statement

An ON-unit is enabled when it is ready to intercept a condition. An
ON-unit is active when it is processing a signaled condition. An
ON-unit can be a PL/I statement, or several PL/I statements
contained in a BEGIN block. PL/I processes the ON-unit when the
particular condition named in the ON statement is signaled.

Exit from an ON-unit cannot be through a RETURN statement, although
this restriction does not preclude a procedure definition within a
BEGIN block.

Once all the statements of the ON-unit are executed, the flow of
control resumes at the point where the condition was signaled,
provided that the condition is recoverable. Alternatively, the ON
unit can execute a nonlocal GOTO and transfer control to some label
outside the ON-unit.

An ON-unit remains active until the program executes a corresponding
REVERT statement, or control leaves the block containing the ON
statement. You can establish more than one ON-condition in the same
block. For example, ERROR(l) and ERROR(2) are different conditions.
However, if you establish more than one ON-unit for the same
condition in the same block, PL/T automatically reverts the previous
ON-unit before establishing the new one.

9-2
�PL/I Reference Manual	9.1 The ON Statement

A:

PROCEDURE OPTIONS(MAIN);

ON ENDFILE
ON ENDPAGE
ON ERROR(1)

B:
PROCEDURE;

ON ERROR(1)

REVERT ERROR(1)

-END B;

-END A;

Figure 9-1. ON-unit Activation

In Figure 9-1, PL/I first enables the ON-units for the ENDFILE,
ENDPAGE, and ERROR(l) conditions. At this point, there are three
ON-units enabled. When control flows into procedure B, PL/I enables
the second ON-unit for the ERROR(l) condition and associates it with
the activation of procedure B. There are now four enabled ON-units.

Executing the REVERT statement reverts the current ON-unit for
ERROR(l), the one associated with procedure B. This reestablishes
the ON-unit for ERROR(l) in the encompassing procedure, A, and again
leaves three enabled ON-units. Note that if B returns control to A
without executing the REVERT statement, PL/I automatically reverts
the ON-unit.

9-3
�PL/I Reference Manual	9.2	The SIGNAL Statement

9.2 The SIGNAL Statement

The SIGNAL statement causes a particular condition to occur
programmatically and invokes a corresponding ON-unit, if one is
enabled. If no ON-unit for the condition is enabled, the PL/I
default action occurs. If the condition is nonrecoverable the
default action prints a traceback and terminates the program.
The SIGNAL statement has the form:
	SIGNAL condition-name;

where		the condition-name is one of the conditions listed previously.
For example, the statement:
	signal zerodivide;
invokes the current ZERODIVIDE ON-unit.

9.3 The REVERT Statement

The REVERT statement disables the current ON-unit for a specific
condition and reestablishes the one that preceded it, if it exists.
The REVERT statement has the form:
REVERT condition-name;
where the condition-name is one of the conditions listed previously.
For example, the statement:
revert overflow;
disables the current ON-unit for the OVERFLOW condition.

Note: upon exit from a PROCEDURE block, PL/I automatically reverts
any ON-units enabled within the block.

9.4 The ERROR Condition

The ERROR condition is the broadest category of all PL/I conditions.
It includes through its subcodes, both system-defined and user
defined conditions. There are four groups of ERROR condition
subcodes:

(A)	0	-	63	Reserved for PL/I	(Nonrecoverable)
(B)	64	-	127	User-defined		(Nonrecoverable)
(C)	128	-	191	Reserved for PL/I	(Recoverable)
(D)	192	-	255	User-defined		(Recoverable)

9-4
�PL/I Reference Manual	9.4		The ERROR Condition

Usually, the error codes are implementation-specific. See the PL/I
Language Programmer's Guide for the codes currently assigned in
group A.

The ON statement with the ERROR condition has the forms:

ON ERROR[(integer-expression)] on-body;
SIGNAL ERROR[(integer-expression)];
REVERT ERROR[(integer-expression)];

where integer expression is a specific subcode in the range 0-255.
For example, the statement:
ON ERROR(3) ... ;

intercepts the ERROR condition with the subcode 3.

The forms:

ON ERROR on-body;
ON ERROR(()) on-body;

intercept any error condition, regardless of the subcode.

The following code sequence shows a simple example of the ERROR
condition:

on error(l)
	begin;
		put skip list('Invalid Input:');
		goto retry;
	end;
retry:
get list(x);

The GET statement reads variable x from the SYSIN file, and if the
data is invalid, the run-time system signals ERROR(l) . In this
case, control passes to the ON-body, which writes an error message
to the console, and recommences execution at the retry label.

You can use the SIGNAL statement with the ON statement to intercept
either nonrecoverable or recoverable conditions. For example, the
statement:
signal error(64);

signals the ERROR(64) condition, and if there is an ON-unit enabled
for ERROR(64), then the corresponding ON-body receives control.
Otherwise, the program ends with an error message. The statement:
signal error(255);

performs a similar action except that the program does not end if an
ON-unit for the ERROR(255) condition is not enabled.

9-5
�PL/I Reference Manual	9.5	Arithmetic Error Conditions

9.5 Arithmetic Error Conditions

PL/I handles several arithmetic error conditions. These conditions
are

• FIXEDOVERFLOW[(i)]
• OVERFLOW[(i)]
• UNDERFLOW[W]
• ZERODIVIDE[(i)]

where i is an optional integer expression denoting a specific error
subcode. Similar to the ERROR function, the ON, REVERT, and SIGNAL
statements can specify any of the preceding conditions.

If you do not specify an integer expression, PL/I assumes a value of
zero. An ON statement with subcode of zero intercepts any subcode
from 0-255. PL/I divides the arithmetic condition subcodes into
system-defined and program-defined values, analogous to the ERROR
function.

Note: all arithmetic error conditions are nonrecoverable. When
setting an ON condition for an arithmetic exception, the ON-body
should transfer control to a global label. Otherwise, the program
ends upon return from the ON-unit.

Table 9-1 shows the system codes for arithmetic error conditions.

Table 9-1. Arithmetic Error Condition Codes

Condition 	Meaning
FIXEDOVERFLOW(l)	Decimal Operation
OVERFLOW(l)	Floating-point operation
OVERFLOW(2)	Float Precision Conversion
UNDERFLOW(l)	Floating-point operation
ZERODIVIDE(l)	Decimal Divide
ZERODIVIDE(2)	Floating-point Divide
ZERODIVIDE(3)	Integer Divide

9-6
�PL/I Reference Manual	9.6		The ONCODE BIF

9.6 The ONCODE BIF

The ONCODE BIF returns a FIXED BINARY(15) value representing the
type of error that signaled the most recent condition. If a signal
is not active, ONCODE returns a zero. After an ON-unit is
activated, ONCODE can determine the exact source of the error. The
following code sequence illustrates the use of ONCODE.

on error
begin;
declare
code fixed;
code = oncode();
if code = 1 then
do;
put list('Bad Input:');
goto retry;
end;
put list('Error#',code);
end;
retry:

9.7 Default ON-units

PL/I has default ON-units for each of the condition categories that
usually output an appropriate error message and end the program.
PL/I does not signal the FIXEDOVERFLOW condition for FIXED BINARY
overflow, although it does for FIXED DECIMAL overflow.

9.8 I/O Conditions

During I/O processing, the run-time system can signal several
conditions relating to the access of a particular file. These
conditions are the following:

ENDFILE(file-reference)
UNDEFINEDFILE(file-reference)
KEY(file-reference)
ENDPAGE(file-reference)

where file-reference denotes a file-valued expression. The file
value that results need not denote an open file. Section 10.5
describes each of the I/O conditions in detail.

End of Section 9

9-7
�Section 10
Input and Output Processing

PL/I provides a device- independent input/output system that allows a
program to transmit data between memory and an external device such
as a console, a line printer, or a disk file.

The collection of data elements transmitted to or from an external
device is called the data set. A corresponding internal file
constant or variable is called a file.

As with other data items, you must declare all files before you use
them in a program. The general form of a file declaration is

DECLARE file-id FILE [VARIABLE];

where file id is the file identifier. The declaration defines a
file constant if you do not include the VARIABLE attribute.
Including the VARIABLE attribute defines a file variable that can
take on the value of a file constant through an assignment
statement. I/O operations on file variables are valid only after
you assign a file constant to a file variable.

Note: by default, PL/I assigns the EXTERNAL attribute to a file
constant. Unless you declare a file variable as EXTERNAL, PL/I
treats it as local to the block where you declare it.

10.1 The OPEN Statement

PL/I requires that a file be open before performing any I/O
operations on the data set. You can open a file explicitly, by
using the OPEN statement, or implicitly by accessing the file with
one of the following I/O statements:

• GET EDIT
• PUT EDIT
• GET LIST
• PUT LIST
• READ
• WRITE
• READ Varying
• WRITE Varying

Sections 11 and 12 contain detailed descriptions of the various I/O
statements.

10-1
�PL/I Reference Manual	10.1	The OPEN Statement

The OPEN statement has the form:

OPEN FILE(file-id) [file-attributes];

where file id is the identifier that appears in a FILE declaration
statement, and file-attributes denotes one or more of the following
PL/I keywords:

o 	STREAM 	RECORD
o 	PRINT
o	INPUT	OUTPUT | UPDATE
o	SEQUENTIAL | DIRECT
•	KEYED
•	TITLE
•	ENVIRONMENT
•	PAGESIZE
•	LINESIZE

All the attributes are optional and you can specify them in any
order. Multiple attributes on the same line are conflicting
attributes so you can only specify one. The first one listed is the
default attribute. PL/I Subset G requires any implementation
specific information to be isolated in the TITLE and ENVIRONMENT
attributes. See Appendix A.

A STREAM file contains variable length ASCII data. You can
visualize it as a sequence of ASCII character data, organized into
lines and pages. Each line in a STREAM file is determined by a
linemark, that is a line-feed or a carriage return line-feed pair.
Each page is determined by a pagemark, or form-feed. Some text
editors automatically insert a line-feed following each carriage
return, but files that PL/I creates can have line-feeds without
preceding carriage returns. PL/I then senses the end of the line
when it encounters the line-feed.

A RECORD file contains binary data. PL/I accesses the data in
blocks determined by a declared record size, or by the size of the
data item you use to access the file. A RECORD file may also have
the KEYED attribute, and you can use FIXED BINARY keys to directly
access the fixed-length records.

PRINT applies only to STREAM files, and indicates that the data is
for output on a line printer.

For an INPUT file, PL/I assumes that the file already exists when it
executes the OPEN statement. For an OUTPUT file, PL/I creates the
file when it executes the OPEN statement. If the file already
exists, PL/I first deletes the old one, then creates a new file.

You can read from and write to an UPDATE file. PL/I creates an
UPDATE file if it does not exist when executing the OPEN statement.
An UPDATE file must have the RECORD attribute and cannot have the
STREAM attribute.

10-2
�PL/I Reference Manual	10.1		The OPEN Statement

SEQUENTIAL files are accessed sequentially from beginning to end.
DIRECT files are accessed randomly using keys. PL/I automatically
gives DIRECT files the RECORD and KEYED attributes. PL/I requires
you to declare all UPDATE files with the DIRECT attribute so that
you can locate the individual records.

A KEYED file is simply a fixed-length record file. The key is the
relative position of the record in the file based upon the fixed
record size. You must use keys to access a KEYED file. PL/I
automatically gives KEYED files the RECORD attribute.

The LINESIZE attribute applies only to STREAM OUTPUT files, and
defines the maximum input or output line length in characters. The
default is LINESIZE(80).

The PAGESIZE attribute applies only to STREAM PRINT files, and
defines the number of lines per page. The default is PAGESIZE (60) .

The TITLE(c) attribute defines the programmatic connection between
an internal filename and an external device or a file in the
operating system's file system. If you do not specify a TITLE
attribute, the external filename defaults to the value of the file
reference, with the filetype DAT. For example,

TITLE('file-id.DAT')

The character string c can specify either an external device name or
a disk filename. Usually, the names of external devices are
implementation specific. The following table shows the names of
external devices used in different implementations.

Table 10-1. External Device Names

Implementation
External Device		CP/Ma	IBM DOS
System 		Console	$CON	CON:
System 		List Device	$LST	LPT1: or PRN:
System 		Reader	$RDR	AUX or COM:l
System 		Punch	$PUN	AUX or COM:l

If the character string c is a disk filename, it must be in the
form:

d:filename.typ;password

The drive specification d:, the filetype typ, and the password are
optional. If you specify a password in the TITLE attribute, the
ENVIRONMENT attribute (described later in Section 10.1) defaults to
ENVIRONMENT(Password(Read)).

10-3
�PL/I Reference Manual	10.1 The OPEN Statement

Note: not all implementations support password protection. See
Appendix A.

Either the filename, filetype, or both, can be $1 or $2. If you
specify $1 then PL/I takes the first default name from the command
line and fills it into that position of the title. Similarly, $2 is
taken from the second default name and filled into the position
where it occurs.

You must specify the filename, and you cannot use an ambiguous, or
wildcard, reference in the filename, filetype, or the drive
specification. You can open a physical I/O device only as a STREAM
file. A reader device must have the INPUT attribute, and a punch or
list device must have the OUTPUT attribute.

The ENVIRONMENT attribute defines fixed- and variable-length record
sizes for RECORD files, internal buffer sizes, the file open mode,
and password protection level.

The ENVIRONMENT attribute has the form:

ENVIRONMENT(option....)

where option is one or more the following:

•		Locked I L
•		Readonly I R
	Shared 1 5
	Password[(level)) I P[(level)]
• Fixed(i) 	F(i)
• Buff(b) 	B(b)

You can specify options in the ENVIRONMENT attribute in any order
with the exception that Fixed(i) must precede Buff(b).

The default mode for opening a file is locked mode, and prevents
other users from accessing the file while it is open. Readonly
allows more than one user to open the file for Read/Only access.
Shared, or unlocked, mode means that more than one user can open the
file and access it. In Shared mode, you can apply the LOCK and
UNLOCK built-in functions to individual records in the file. You
can abbreviate each of the open modes with a single character.
Thus, you can specify either Locked or L, Readonly or R, and Shared
or S.

The option Password[(level) defines the password protection level
of the file. The valid protection levels are the following:

Read	R
Write	W
Delete ~ 	D

10-4
�PL/I Reference Manual	10.1 The OPEN Statement

Read means that the password is required to read the file; this is
the default mode. Write means that the file can be read but the
password is required to write to the file. Delete means that the
file can be read or written to, but the password is required to
delete the file. You can abbreviate each of the protection levels
with a single character. Thus, you can specify Read or R, Write or
W, and Delete or D.

The option Buff(b) directs the I/O system to buffer b bytes of
storage, where b is a FIXED BINARY expression that PL/I will round
to the next higher multiple of 128 bytes. If the Buff(b) option is
specified and the Fixed(i) option is not specified, the I/O system
assumes that the file has variable-length records and therefore
cannot have the KEYED attribute because the record size is not
fixed.

The option Fixed(i) defines a file with fixed-length records
containing i bytes each, where i is a FIXED BINARY expression that
PL/I internally rounds to the next multiple of 128 bytes. If you
use this option, you must also specify the KEYED attribute. When
using this option, the default buffer size is i bytes, rounded to
the next higher multiple of 128 bytes.

The options Fixed (i) Buff (b) defines a file containing fixed-length
records of i bytes, rounded as described previously, with a buffer
size of b bytes, again, rounded. You can specify a fixed-length
record larger than the buffer size. When using these options, you
must also specify the KEYED attribute.

10.2 Establishing File Attributes

When executing the OPEN statement, PL/I establishes the file
attributes before associating the file with an external data set.
If the OPEN statement does not specify a complete set of attributes,
PL/I augments them with implied attributes. Table 10-2 shows the
implied attributes for each specified attribute.

Table 10-2. PL/I Implied Attributes

Specified Attribute	Implied Attribute(s)
	DIRECT		RECORD KEYED
	KEYED		RECORD
	PRINT		STREAM OUTPUT
	SEQUENTIAL	RECORD
	UPDATE		RECORD

Note: the OPEN statement cannot contain conflicting attributes
either explicitly or by default through the mechanisms that give the
implied attribute.

10-5
�PL/I Reference Manual	10.2	Establishing File Attributes

Each type of I/O statement implicitly determines a specific set of
file attributes. If you use the OPEN statement to explicitly
specify the attributes, the attributes implied by the I/O statement
cannot conflict with the attributes supplied in the OPEN statement.
Table 10-3 summarizes the valid attributes for each of the I/O
statements.

Table 10-3. Valid File Attributes for each I/O Statement

I/O Statement						Valid Attributes

GET FILE(f) LIST					STREAM	INPUT
PUT FILE(f) LIST					STREAM	OUTPUT
GET FILE(f) EDIT					STREAM	INPUT
PUT FILE(f) EDIT					STREAM	OUTPUT
READ FILE(f) INTO(x)				STREAM	INPUT
READ FILE(f) INTO(x)				RECORD	INPUT SEQUENTIAL

READ FILE(f) INTO(x) KEYTO(k)		RECORD INPUT SEQUENTIAL
	KEYED ENVIRONMENT(Fixed(i))

READ FILE(f) INTO(x) KEY(k)			RECORD INPUT DIRECT KEYED
	ENVIRONMENT(Fixed(i))
	RECORD UPDATE DIRECT KEYED
	ENVIRONMENT(Fixed(i))
WRITE FILE(f) FROM(v)				STREAM OUTPUT
WRITE FILE(f) FROM(x)				RECORD OUTPUT SEQUENTIAL

WRITE FILE(f) FROM(x) KEYFROM(k)	RECORD OUTPUT DIRECT KEYED
	ENVIRONMENT(Fixed(i))

RECORD UPDATE DIRECT KEYED
ENVIRONMENT(Fixed(i))

10-6
�PL/I Reference Manual	10.2		Establishing File Attributes

Table 10-4 summarizes the valid attributes that can be associated
with any file either through an explicit OPEN statement, or
implicitly by an I/O access statement.

Table 10-4. PL/I Valid File Attributes
Type 		F		Attribute
STREAM		INPUT	ENVIRONMENT TITLE
STREAM		OUTPUT	ENVIRONMENT TITLE LINESIZE
STREAM		PRINT	ENVIRONMENT TITLE LINESIZE PAGESIZE
RECORD		INPUT	SEQUENTIAL ENVIRONMENT TITLE
RECORD		OUTPUT	SEQUENTIAL ENVIRONMENT TITLE
RECORD		INPUT	SEQUENTIAL KEYED ENVIRONMENT TITLE
RECORD		OUTPUT	SEQUENTIAL KEYED ENVIRONMENT TITLE
RECORD		INPUT	DIRECT KEYED ENVIRONMENT TITLE
RECORD		OUTPUT	DIRECT KEYED ENVIRONMENT TITLE
RECORD		UPDATE	DIRECT KEYED ENVIRONMENT TITLE

Note: once established, the set of attributes applies only to the
current opening of the file. You can close the file and reopen it
with a different set of attributes.

The following are some examples of the OPEN statement. In each
case, there is a source statement with the default and augmented
attributes shown after the statement. Each file is assumed to be
declared as a file constant.

Statement:	open file(fl);

Attributes:	STREAM INPUT ENVIRONMENT(Locked,Buff(128))
			TITLE('fl.DAT') LINESIZE(80)

10-7
�PL/I Reference Manual	10.2	Establishing File Attributes

Statement:	open file(f2) print env(r);
Attributes:	STREAM OUTPUT PRINT ENVIRONMENT(Readonly,Buff(128))
			TITLE(lf2.DAT') LINESIZE(80) PAGESIZE(60)

Statement:	open file(f3) sequential
			title('new.fil;John');
Attributes:	RECORD INPUT SEQUENTIAL
			ENVIRONMENT(Locked,Password(Read),Buff(128))
			TITLE('new.fil;john')

Statement:	open title('a:' || c) file(f4)
			direct keyed env(s,f(2000));
Attributes:	RECORD DIRECT INPUT KEYED
			ENVIRONMENT(Shared,Fixed(2048),Buff(2048))
			TITLE('a:' || c)

Statement:	open update keyed file(f5)
			env(locked,f(300),b(100));
Attributes:	RECORD DIRECT UPDATE KEYED
			ENVIRONMENT(Locked,Fixed(384),Buff(128))
			TITLE ('f5.DATI)

Statement:	open file(f6) input direct
			title('d:accounts.new;topaz')
			env(shared,p(d),f(100),b(2000));
Attributes:	RECORD DIRECT INPUT KEYED
			ENVIRONMENT(Shared,Password(Delete),Fixed(128),Buff(2048))
			TITLE('d:accounts.new;topaz')

In each of the preceding examples, PL/I allows integer expressions
wherever a constant appears. Thus, the statement:

open file(fl) linesize(k+3) pagesize(n-4) env(b(x+128));

is a valid OPEN statement.

10.3 The CLOSE Statement

The CLOSE statement disassociates the file from the external data
set, clears and frees the internal buffers and permanently records
the output files on the disk. The CLOSE statement has the form:

CLOSE FILE(file-id);

10-8
�PL/I Reference Manual	10.3		The CLOSE Statement

where file-id is a file reference. You can subsequently reopen the
file using the OPEN statement previously described. If the file is
not open, PL/I ignores the CLOSE statement.

10.4 The File Parameter Block

PL/I associates every file constant with a File Parameter Block
(FPB). A FPB is a statically allocated segment of memory containing
information about the file. A file variable has no corresponding
FPB until you assign it a file constant. Each FPB contains the
following information:

•	the file title naming the external device or data set
	associated with the file

•	the column position that the run-time system maintains to
	locate the next position to get or put data in a STREAM file

•	current line count in STREAM OUTPUT files

•	current page count for PRINT files

•	current record position

•	line size

•	page size

o	fixed record size

•	internal buffer size

•	File Descriptor containing one of the valid sets of file
	attributes as previously described

While the file is open, the run-time system maintains an entry in a
data structure called the Open List, which is allocated from the
free storage area. Also, while the file is open, the FPB contains a
pointer to the address of the operating system File Control Block
(FCB).

10-9
�PL/I Reference Manual	10.5	I/O Conditions

10.5 I/O Conditions

During I/O processing, the run-time system can signal several
conditions relating to the access of a particular file. The
conditions are

ENDFILE(file-reference)
UNDEFINEDFILE(file-reference)
KEY(file-reference)
ENDPAGE(file-reference)

where file reference is a file constant or a file variable that does
not yet have to be open.

10.5.1 The ENDFILE Condition

The run-time system signals the ENDFILE condition whenever it reads
an end-of-file character, CTRL-Z, from a STREAM file, or it
encounters the physical end-of-file in a RECORD file being processed
in SEQUENTIAL mode. A read operation on a DIRECT file using a key
beyond the end-of-file also signals the ENDFILE condition. Output
operations that exceed the disk storage capacity signal the
ERROR(14) condition.

10.5.2 The UNDEFINEDFILE Condition

The run-time system signals the UNDEFINEDFILE condition whenever a
program attempts to open a file for INPUT, and the file does not
exist on the specified disk. The run-time system also signals the
UNDEFINEDFILE condition if a program attempts to open a password
protected file without the correct password. The run-time system
also signal this condition if the program attempts to access a
physical I/O device as a KEYED or UPDATE file.

10.5.3 The KEY Condition

The run-time system signals the KEY condition when a program uses an
invalid key value during an I/O operation.

10-10
�PL/I Reference Manual	10.5		I/O Conditions

10.5.4 The ENDPAGE Condition

The run-time system signals the ENDPAGE condition for PRINT files
when the value of the current line reaches the PAGESIZE for the
specified file. The current line always begins at zero, and the
run-time system increases it by one for each line-feed that is sent
to the file. If the file is initially opened with PAGESIZE (0) , then
the run-time system never signals the ENDPAGE condition. The run
time system resets the current line to one whenever:

• 	a form-feed is sent to the output file
• 	a PUT statement with a PAGE option is executed
• 	the default system action for ENDPAGE is performed

If the run-time system signals the ENDPAGE condition during
execution of a SKIP option, the SKIP processing ends.

If an ON-unit intercepts the ENDPAGE condition, but does not execute
a PUT statement with the PAGE option, then the current line is not
reset to one. That is, until the program executes a PUT statement
with the PAGE option, the run-time system continues to increment the
current line, and does not signal the ENDPAGE condition. The
current line counts up to 32767 and then begins again at 1.

10.5.5 Default I/O ON-units

If an ON-unit receives control for the ENDFILE, UNDEFINEDFILE, or
KEY conditions and returns to the point where the signal occurred,
the run-time system terminates the current I/O operation, and passes
control to the statement following the I/O statement that signaled
the condition.

If there is no ON-unit enabled for the ENDFILE, UNDEFINEDFILE, or
KEY condition, the default system action ends the program and
outputs an appropriate error message.

If there is no ENDPAGE ON-unit enabled, the default system action
performs a PUT PAGE on the output file, and continues processing.

10.6 I/O Condition BIFs

PL/I has several built-in functions which are useful in I/O
handling. They are

o ONFILE
o ONKEY
• PAGENO
• LINENO

10-11
�PL/I Reference Manual	10.6	I/O Condition BIFs

10.6.1 The ONFILE Function

The ONFILE function returns a character string value of the internal
filename involved in the last I/O operation that signaled a
condition. With a conversion error, the ONFILE function produces
the name of the file that is active at the time. If a signaled
condition does not involve a file, then ONFILE returns a null
string. The following code sequence illustrates the use of ONFILE.

on error(l)
Fbegin;
put list('Bad Data in file:',onfile());
goto retry;
end;
retry:

10.6.2 The ONKEY Function

The ONKEY function returns the value of the key involved in the I/O
operation that signaled the KEY condition. ONKEY is valid only in
the ON-body of the activated ON-unit. The following code sequence
illustrates the use of ONKEY.

on key(newfile)
	put skip list('bad key',onkey());

10.6.3 The PAGENO Function

The PAGENO function returns the current page number for the PRINT
file named as the parameter. When the ENDPAGE condition is signaled
as the result of a PUT statement, the line number is one greater
than the page size for the file.

10.6.4 The LINENO Function

The LINENO function returns the current line number for the PRINT
file named as the parameter. When the ENDPAGE condition is signaled
as the result of a PUT statement, the line number is one greater
than the page size for the file.

10.7 Predefined Files SYSIN and SYSPRINT

PL/I contains two predefined file constants called SYSIN and
SYSPRINT. You do not have to declare these file constants unless
you make an explicit file reference to them with an OPEN, GET, PUT,
READ, or WRITE statement.

10-12
�PL/I Reference Manual		10.7	Predefined Files SYSIN and SYSPRINT

Otherwise, PL/I opens SYSIN with the default attributes:

STREAM INPUT ENVIRONMENT(Locked,Buff(128)) TITLE('$CON')
LINESIZE(80)
and SYSIN becomes the console keyboard.
Note: TITLE under IBM DOS is 'CON:'.

PL/I opens SYSPRINT with the default attributes:

STREAM PRINT ENVIRONMENT(Locked,Buff(128)) TITLE('$CON')
LINESIZE(80) PAGESIZE(0)
and SYSPRINT becomes the console output display.
Note: TITLE under IBM DOS is 'CON:'.

10.8 I/O Categories

PL/I supports two general categories of file access:

o STREAM I/O (sequential access only)
o RECORD I/O (sequential or random access)

10.8.1 STREAM I/O

A STREAM file is a sequence of ASCII characters, possibly containing
linemarks and pagemarks. When transmitting the data in a STREAM
file to and from external devices, PL/I can format the data and
perform conversion to other data types. Section 11 contains
complete descriptions of the STREAM I/O statements.

10.8.2 RECORD I/O

In RECORD I/O, individual data items are called records, and they
vary in size according to the data declaration. PL/I does not
perform data conversion when transmitting data using the RECORD I/O
statements (see Section 12), but just transfers the internal
representation of the data item.

Note: different computers use different internal representations
for PL/I data. Do not assume that you can interchange file between
two different computers.

End of Section 10

10-13
�Section 11
Stream I/O

PL/I supports three forms of STREAM I/O:

LIST-directed; transfers data items without format specifications.

EDIT-directed; allows formatted access to character data items
(see Section 11.3).

Line-directed; allows access to variable length character data
in an unedited form. Note that PL/I provides line-directed
STREAM I/O using READ and WRITE statements that may or may not
be available in other implementations of PL/I.

The following rules apply to all STREAM I/O:

The column position, line number, and page number for a file
are initially 1.

Each occurrence of a linemark or pagemark resets the column
position to 1.

If the input or output character is a special character, the
column position advances by one.

On output, if the column position exceeds the line size, the
run-time system writes a linemark, increments the line number
by one, and resets the column position to one.

When the line number exceeds the page size, the run-time system
signals the ENDPAGE condition. If no ENDPAGE ON-unit is
enabled, the run-time system writes a pagemark, increments the
page number, and resets the column position and line number to
one.
�PL/I Reference Manual	11 Stream I/O

The naming conventions in Table 11-1 appear throughout this section
when describing the various STREAM I/O statements.

	Table 11-1. Stream I/O		Naming Conventions
Name	_T 	Meaning
file-id	The file identifier.
nl	A FIXED BINARY expression that defines the
number of linemarks to skip on input, or the
number of linemarks to write preceding the data
item on output.

input-list	A list of variables separated by commas, to
which PL/I transmits the data items from the
input stream. The input-list determines the
number and order of the variables assigned by
the input data in the stream. In PL/I, the
variables must be scalar values. You can
include iterative DO-groups in the input-list
but they require an extra set of parentheses.
The DO header format is the same as the DO
statement except that the REPEAT clause is not
allowed. The general format is (item
1,...,item-n DO iteration). For example, the
following are equivalent:

do	i = 1 to 10;
	put list(A(i));
end;
put list((A(i) do i = 1 to 10));

output-list	A list of output items consisting of constants,
variables, or expressions separated by commas.
The output-list can also include iterative DO
groups.

11.1 LIST-directed I/O

The following constraints apply to the input stream for list
directed I/O:

•	Data items in the stream can be arithmetic constants,
character-string constants, or bit-string constants.

•	Each data item must be followed by a separator, which consists
of a series of blanks, a comma optionally surrounded by blanks,
or an end-of-line character.

11-2
�PL/I Reference Manual	11.1		LIST-directed I/O

•	PL/I treats an embedded tab character (CTRL-I) as a blank.

•	Character string data that actually contain blanks or commas
must be enclosed in apostrophes. Otherwise, PL/I treats the
blanks or commas as separators.

•	A comma as the first, nonblank character in the input line, or
two consecutive commas optionally separated by one or more
blanks indicate a null field in the input stream. The null
field indicates that no data is to be transmitted to the
associated data item in an input-list. Thus, the value of the
target data item remains unchanged.

11.1.1 The GET LIST Statement

The GET LIST statement reads data using list-directed STREAM I/O.
The GET LIST statement has the form:

GET [FILE(file-id)] [SKIP [(n1)]] LIST(input-list);

You can specify the options FILE or SKIP in any order; LIST must
appear last. If you do not specify the FILE option, PL/I assumes
FILE (SYSIN) . In a GET statement with the SKIP option, the run-time
system ignores nl linemarks. If you do not specify n1 with the SKIP
option, then nl defaults to 1, and the run-time system ignores 1
linemark.

After transmission of all data items to the variables named in the
input-list, the column position in the input stream remains at the
character following the last data item read.

You can optionally enclose character strings in the input stream in
apostrophes. If you do so, the run-time system does not transmit
the enclosing apostrophes to the input variable. Likewise, for bit
string constants, the run-time system does not transmit the
enclosing apostrophes and the trailing B to the input variable.

PL/I limits input strings to one line. Thus, string input from the
console only requires the leading apostrophe when the string ends
with a carriage return.

11.1.2 The PUT LIST Statement

The PUT LIST statement writes data using list-directed STREAM I/O.
The PUT LIST statement has the form:

PUT [FILE(file-id)] [SKIP[(nl)]] [PAGE] LIST(output-list);

You can specify the options FILE, SKIP, or PAGE in any order; LIST
must appear last. If you do not specify the FILE option, PL/I
assumes FILE(SYSPRINT).

11-3
�PL/I Reference Manual	11.1	LIST-directed I/O

If you do not specify nl with the SKIP option, then nl defaults to
1. If nl = 0, the run-time system does not write a linemark but
resets the column position to 1. In either case using the SKIP
option, the run-time system resets the column position to 1.

The PAGE option is valid only for PRINT files. Whenever the run
time system writes a pagemark, both the column position and line
number are reset to 1.

When writing data items to a STREAM file, PL/I converts the items in
the output-list to their character-string representation. The run
time system uses blanks to separate the data on the output line. If
the data item is longer than the number of characters left on the
output line, the run-time system writes the item at the beginning of
the next line. If the length of the character string representation
of the data item exceeds the line size, the run-time system writes
the data item by itself on a single line that extends past the line
size.

If the output transmission exceeds the page size, PL/I signals the
ENDPAGE condition.

PL/I usually writes character strings enclosed in apostrophes. Each
embedded apostrophe is written as a pair of apostrophes, ' ' .
However, if the file has the PRINT attribute, the additional
apostrophes are omitted. PL/I always writes bit-string data
enclosed within apostrophes followed by the letter B.

11.2 Line-directed I/O

PL/I supports two forms of the READ and WRITE statement for
processing variable-length ASCII records in a STREAM file. The two
forms, called READ Varying and WRITE Varying, are not usually
available in other implementations. PL/I programs should avoid
using these statements if compatibility is important.

11.2.1 The READ Varying Statement

The READ Varying statement reads variable length STREAM INPUT files.
The READ Varying statement has the form:

READ [FILE(file-id)] INTO(v);

where v is a CHARA
CTER VARYING string variable. I
f you do not
specify the FILE option, PL/I assumes FILE(SYSIN).

READ Varying reads data from the input file until it reaches the
maximum length of v, or it reads a line-feed character. READ
Varying sets the length of v to the number of characters read,
including the line-feed character.

11-4
�PL/I Reference Manual	11.2		Line-directed I/O

Note:	if you do not explicitly OPEN the file, the READ Varying
statement causes an implicit OPEN with the file attributes STREAM
and INPUT.
Given the declaration:

declare
	F file,
	1 buffer,
	2 buffch character(254) varying;

the statement:
	read file(F) into(buffer);

produces RECORD data transmission because the target is a structure,
not a CHARACTER VARYING variable. However, PL/I interprets the
statement:
read file(F) into(buffch);

as ASCII STREAM INPUT data transmission because the target variable
is CHARACTER VARYING.

The READ Varying statement is differentiated from the READ statement
only by the fact that the target variable has the attributes,
CHARACTER VARYING.

11.2.2 The WRITE Varying Statement

The WRITE Varying statement writes variable length ASCII STREAM
data. The WRITE Varying statement has the form:

WRITE [FILE(file-id)] FROM(v);

where v is a CHARACTER VARYING string variable. If you do not
specify the file option, PL/I assumes file (SYSPRINT).

PL/I adds no additional control characters to the output string. If
the application requires control characters, you must include them
in the string. Recall that PL/I allows embedded control characters
as a part of string constants, denoted by a preceding ^ in the
string.

Note: if you do not explicitly OPEN the file, the WRITE Varying
statement causes an implicit OPEN with the file attributes STREAM
and OUTPUT.

For example, given the previous declaration, PL/I interprets the
statement:
write file(F) from(buffer);
as RECORD data transmission. PL/I interprets
write file(F) from(buffch);

11-5
�PL/I Reference Manual	11.2	Line-directed I/O

as a WRITE Varying statement, operating on an ASCII STREAM OUTPUT
file, because the source variable is CHARACTER VARYING.

The WRITE Varying statement differs from the WRITE statement only by
the fact that the source variable has the attributes, CHARACTER
VARYING.

11.3 EDIT-directed I/O

The input-list and the output-list for EDIT-directed I/O are
analogous to those for LIST-directed I/O. However, EDIT-directed
I/O uses a format list to specify how PL/I reads and writes the
data.

11.3.1 The Format List

The format-list is a list of format items, separated by commas.
There are three types of format items:

•	Data format items which describe the data items to be read.

•	Control format items which specify the placement of the data
	items in the stream.

•	Remote format items which reference another format-list.

The format-list has the form:

[n] fmt-item ... [,[n] fmt-item]

where n is an integer constant value in the range 1 to 254 giving
the repetition factor of the following fmt-item. If omitted, PL/I
assumes a repetition factor of one. The fmt-item is either a data
format item or a control format item.

An fmt-item can also be a remote format item. In PL/I, however, a
remote format item must be the only format in the list, and cannot
be preceded by a repetition factor.

11.3.2 Data Format Items

Data format items read or write numeric or character fields to or
from an external STREAM data set. PL/I supports the following data
format items:

11-6
�PL/I Reference Manual	11.3		EDIT-directed I/O

The A[(w)] Format

This format reads or writes w characters of character string data.
With GET EDIT, you must include w to be compatible with full PL/I.
However, PL/I allows you to omit w with GET EDIT, and the A format
reads the remainder of the current line up to, but not including the
carriage return line-feed.

Input Value	Format	Input Result
	byte	A(6)	'byte'
	Napoleon	A(10)	'Napoleon'
	string	A	'string'

With PUT EDIT, if you omit w, then the A format assumes w to be the
length of the output string. If w is greater than the output string
length, then the A format adds blanks on the right. If w is less
than the output string length, the A format truncates the string in
the rightmost positions.

Value	Format	Output Result
abcdef	A(6)		abcdef
abcdef	A(3)		abc
		A(4)		1312(bw

The B[nl[(w)] Format

This format reads or writes bit-string data. With GET EDIT, you
must include w. n gives the number of bits to be used for each
digit. If you omit n, the default is 1, so B is equivalent to Bl
and only 0 and 1 can be in the input stream; otherwise PL/I signals
the ERROR(l) condition. The valid digits for each value of n are
the following:

n	valid digits
1	0,1
2	0,1,2,3,
3	0,1,2,3,4,5,6,7
4	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Input Value	Format	Input Result
	00101	B(5)		'00101'B
	22		B2(2)	'1010'B
	7C4		B4(3)	'011111000100'B

11-7
�PL/I Reference Manual	11.3	EDIT-directed I/O

With PUT EDIT, the B format first converts the variable to a bit
string type, and then converts it to its character string
representation. If you do not include w, the B format outputs the
resulting character string. If you include w and it is longer than
the character string, then the B format pads the string, with
blanks, on the right. If the resulting character string is longer
than w, the run-time system signals the ERROR(l) condition.

Value	Format	Output Result

100'B	B		00
'1'B		B(4)		0001
'011101'B	B3(2)	35

The E(w[,d]) Format

This format reads and writes floating-point data. With GET EDIT,
the E format converts the input characters to FLOAT BINARY values.
w is the field width and d is the number of digits to the right of
the decimal point.

Input Value	Format	Input Result
bb]Zfb(E(4)		0
2.9E7		E(5,3)	.29E+8
345678		E(6,2)	.345678E+4

With PUT EDIT, the E format converts the data item to FLOAT BINARY
and represents it in scientific notation. w must be at least 7 more
than d, because the output field appears as +n.ddddE+eee, where +
represents sign positions, n is the leading digit, dddd represents
the fractional part of length d, and E+eee represents the exponent
field.

Value	Format	Output Result
0		E(11,3)	V0.000E+000
4.7E-10	E(11,3)	W4.700E-010
-30		E(15)	W-3.000000E+001

The F(w[,d]) Format

This format reads and writes fixed-point arithmetic data. w is the
width, the number of characters in the field, and d is the number of
characters to the right of the decimal point.

With GET EDIT, the F format reads as many characters as specified by
W. If the character string contains a decimal point, then the
decimal point determines the scale factor. Otherwise, d determines

11-8
�PL/I Reference Manual	11.3		EDIT-directed I/O

the scale factor. The F format ignores leading and trailing blanks.
If the field contains only blank characters, the F format reads the
value zero.

	Input Value	Format	Input Result
	IM2fO b16	F(5)		0
	12f- 6 lzr		F(4)		-6
	13.09		F(5)		14

With PUT EDIT, the F format converts the data item to FIXED DECIMAL,
and then uses d to specify the scale factor of the output value. If
d is omitted, the scale factor is zero. The F format rounds the
output value unless the variable has precision 15. The F format
suppresses leading zeros except for one immediately to the left of
the decimal point.

Value	Format	Output Result
	0	F(5,1)	bb0.0
	-27	F(5,1)	-27.0
	.39	F(6,2)	bb0.39

11.3.3 Control Format Items

Control format items are used for line, page, and space placement.
PL/I processes control format items as they are encountered in the
format-list, and ignores any items that remain after the input-list
or output-list is exhausted. PL/I supports the following control
format items.

COLUMN(nc)

This item moves the format pointer to column nc in the input or
output data stream. With GET EDIT, COLUMN ignores those characters
passed over by positioning the format pointer to column nc. If the
current column position is less than nc, the format pointer moves to
column position nc. If the current column position is greater than
nc, the pointer first moves to the next line, and then moves to the
new column position nc. If nc exceeds the rightmost position on the
line, the format pointer moves to the first column of the new line.
With GET EDIT, movement of the format pointer discards input
characters.

With PUT EDIT, COLUMN writes blanks in the process of positioning to
column nc. Also, if the current position is greater than nc, the
run-time system outputs a linemark, then outputs blanks until it
reaches column nc of the new line. If nc exceeds line size, the
run-time system writes a linemark and sets the column position to 1.

11-9
�PL/I Reference Manual	11.3	EDIT-directed I/O

LINE(ln)

This item applies only to PRINT files and specifies the line number
of the next data item to be written. The constant ln must be
greater than zero. If the current line number is equal to ln,
LINE(ln) has no effect. If the current line number is less than ln,
then the run-time system outputs linemarks until the current line
number equals ln. PL/I signals the ENDPAGE condition if sufficient
linemarks are issued to exceed the current page size.

PAGE

This item is used only with PRINT files and it causes the run-time
system to write a pagemark, increment the page number by one, and
set the line number and column position to 1.

SKIP[(nl)]

This item specifies the number of linemarks (nl) to be skipped or
written. If omitted, n1 defaults to 1. The run-time system sets
the column position to 1.

With GET EDIT, nl is the number of linemarks to skip before moving
to the next format item. The run-time system discards the first
line, if the program executes a SKIP(l) as the first format item
immediately following an explicit or implicit OPEN operation.
SKIP(0) is undefined for input streams.

With PUT EDIT, nl is the number of linemarks to be written. If the
page size is exceeded in the process of writing linemarks in a PRINT
file, the run-time system signals the ENDPAGE condition and, upon
return from the ON-unit, stops processing the SKIP operation.

X(sp)

This item advances the format pointer sp positions in the input or
output data stream. With GET EDIT, sp is the number of characters
to be advanced. The run-time system ignores linemarks, and
continues the operation on the next line. With PUT EDIT, sp is the
number of blanks to be written. If the end of the line is reached,
the run-time system writes a linemark, and the blank fill operation
continues on the next line.

11.3.4	Remote Format Items

The remote format item uses the format-list of a FORMAT statement in
place of the format item. The remote format item has the form:

R(format-label)

where the format-label is the label constant preceding a FORMAT

11-10
�PL/I Reference Manual	11.3		EDIT-directed I/O

put edit(a,b,c) (r(elsewhere));

11.3.5 The FORMAT Statement

The FORMAT statement defines a remote format item, and has the
general form:

format-label: FORMAT(format-list);

where the format-label is the label constant corresponding to the
FORMAT, and the format-list is a list of format items analogous to
those described in the previous section. For example, the FORMAT
statement:

	Ll: format(a(5), f(6,2),skip(3),a(2));
	is referenced as a remote format by the statement:

get edit (a,b,c) (r(Ll));

11.3.6 The Picture Format Item

The picture data format item is used on output to edit numeric data
in fixed-point decimal form. The value resulting from such an edit
is a character string whose form is determined by the numeric value
and the Picture specification in the picture format item.
The following is the form of a Picture format item:

P'picspec'

where picspec is a character-string constant describing the Picture
specification.

The Picture format item can appear in a PUT EDIT statement like any
other data format item.

Picture		Syntax

The character-string constant that describes the Picture
specification must consist of one or more special characters as
shown in Table 11-2.
�PL/I Reference Manual	11.3	EDIT-directed I/O

Table 11-2. Picture Format Characters

 Character		Purpose
	$ + S 	static or drifting characters
	* Z		conditional digit characters
	9		digit character
	V		decimal point position character
	/ , : B	insertion characters
	CR DB	credit and debit characters

These characters must satisfy certain rules of syntax. Insertion
characters can occur anywhere in a valid Picture specification, with
the exception that they must not separate the characters of either
Picture character pair, CR and DB.

If all insertion characters of a Picture specification are removed,
the resulting string must be acceptable to the nondeterministic,
finite-state machine recognizer illustrated in Figure 11-1. That
is, it must be possible beginning with the START node to trace
through this diagram to ACCEPT, where transitions across an edge are
allowed if the edge is unlabeled, or if the edge is labeled by the
next character in the Picture specification.

The following character string constants define valid Picture
specifications:

'BB$***,***V.99BB'

'$----,999V.99BCR'

99: 99: 99

I:BBB$SSSS,SSS.VSSBBB:l

11-12
�PL/I Reference Manual	11.3		EDIT-directed I/O

U
U

U
M-T-U.
6

AN

F_

Figure 11-1. Picture Specification Recognizer

11-13
�PL/I Reference Manual	11.3 EDIT-directed I/O

Picture Semantics

The types of Picture characters appearing in the specification
determine how a Picture specification edits a numeric value into a
character-string value.

In the Picture specification, certain characters occur as either
static or drifting characters. These characters are

dollar sign
plus sign
minus sign
upper-case S

Such a character is static if it appears only once in the Picture
specification; otherwise, it is drifting. If it is drifting, all
its occurrences except for one correspond to conditional digit
positions.

In either case, these Picture characters, together with the sign of
the numeric value, determine an output character that occupies one
position in the output. These output characters are shown in Table
11-3.

Table 11-3. Picture Output Characters

Sign	Static/Drifting Characters
	S + $
POS	+ + 'b' $
neg	'b' $

If the Picture character is static, the output character appears in
the corresponding position of the output.

If the Picture character is drifting, then the output character
appears exactly one position to the left of the first nonzero digit
over which the Picture character drifts, or in the last position
over which it drifts. All other occurrences of the drifting
character are replaced by spaces, corresponding to the suppression
of a zero digit in the numeric value.

The * and Z Characters

The characters * and Z are called conditional digit Picture
characters or zero suppression characters. Each such character in
the Picture specification is associated with a digit in the numeric
value.

11-14
�PL/I Reference Manual	11.3 EDIT-directed I/O

If the digit is a zero, the output character is an * or a blank. If
the digit is nonzero, the output is the digit character.

The B, /, ., :, and , Characters

The Picture characters B, /, .' :, and , are called insertion
characters. B is the space insertion character. The : is not an
insertion character defined in the ANSI Standard, but is added in
PL/I to display numeric data that represents time.

PL/I outputs insertion characters in the corresponding output
position, unless the insertion character occurs in the field of a
drifting character, or zero suppression character. If the insertion
character occurs in the field of a drifting or zero suppression
character that causes the suppression of numeric digits, then PL/I
suppresses the insertion character following the preceding rules.

Note: in some PL/I implementations, B is an unconditional
insertion character that always causes a space in the corresponding
position of the output. According to the ANSI Standard, such a
space in the output can be overwritten by a drifting character or,
*, the zero suppression character.

The 9 Character

The Picture character 9 specifies that the corresponding digit in
the numeric value occurs in the corresponding position of the
output. Thus, 9 is an unconditional digit position.

The V character

The V character establishes the correspondence between digits in the
numeric value and the numeric digit positions in the Picture
specification. This character only specifies the position where
integral digits end and fractional digits begin. Thus, the V
character specifies the alignment of the Picture specification to
the numeric value.

If you omit the V character, PL/I assumes that all the digit
positions implied by the Picture specification refer to integral
digit positions. Any fractional digits in the numeric value do not
appear in the result.

Note: the V Picture character is the only character that does not
correspond to a character position in the result. Thus, the length
of the resulting string equals the length of the Picture
specification if V is omitted, but is one character less if V
appears.

11-15
�PL/I Reference Manual	11.3	EDIT-directed I/O

The V character also affects the suppression of characters. PL/I
never suppresses fractional digits unless it suppresses all of the
digits.

Beyond the V character PL/I turns OFF suppression if it is ON. As a
result, PL/I does not suppress any insertion character occurring
beyond the V Picture character, such as a decimal point, unless it
suppresses everything.

The CR and DB Characters

The character pairs CR and DB, represent credit and debit. They act
as sign characters. If either of them appear in the Picture
specification, and if the sign of the numeric value is negative,
then the specified pair occurs in the result. If the numeric value
is positive, then the positions corresponding to these character
pairs are replaced by two spaces.

Default Rules

If the numeric value is zero and if the Picture specification does
not contain a 9 Picture character, then the resulting output is all
*s if the Picture character * occurs at all. Otherwise, the output
is all spaces. This rule takes precedence over the other rules.

If the sign of the numeric value is negative, and if the Picture
specification does not contain any of the characters S,	CR, or
DB, then PL/I signals a conversion error, ERROR(l).

Each Picture specification implies a precision and scale factor for
the numeric value in the result according to the following rules:

•	Insertion characters and the character pairs CR and DB have no
	effect on precision and scale factor.

•	The precision of the result equals one less than the number of
	static/drifting characters; or the number of zero suppression
	characters, plus the number of 9 characters.

•	The scale factor of the result is zero if no V occurs.

•	If V occurs, the scale factor of the result equals the number
	of drifting characters, the number of zero suppression
	characters, or the number of 9 characters occurring after the V
	character.

The examples shown in Tables 11-4 and 11-5 illustrate some of the
rules involving the use of Picture data format items.

11-16
�PL/I Reference Manual									11.3	EDIT-directed I/O

Table 11-4. Picture Edited Output

 Value� picspec�Output Result������ 0.00�BB$***,***V.99BB�$*******.00�� 0.01�BB$***,***V.99BB�$*******.0l�� 0.25�BB$***,***V.99BB�$*******.25�� 1.50�BB$***,***V.99BB�$******1.50�� 12.34�BB$***,***V.99BB�$*****12.34�� 123.45�BB$***,***V.99BB�$****123.45�� 1234.56�BB$***,***V.99BB�$**1,234.56�� 12345.67�BB$***,***V.99BB�$*12,345.67��123456.78�BB$***,***V.99BB�$123,456.78������ 0.00�$$$$$B$$$V.99� $.00�� 0.01�$$$$$B$$$V.99� $.01�� 0.25�$$$$$B$$$V.99� $.25�� 1.50�$$$$$B$$$V.99� $1.50�� 12.34�$$$$$B$$$V.99� $12.34�� 123.45�$$$$$B$$$V.99� $123.45�� 1234.56�$$$$$B$$$V.99� $1 234.56�� 12345.67�$$$$$B$$$V.99� $12 345.67��123456.78�$$$$$B$$$V.99� 1$123 456.78������ 0.00�99/99/99�00/00/00�� 0.01�99/99/99�00/00/00�� 0.25�99/99/99�00/00/00�� 1.50�99/99/99�00/00/02�� 12.34�99/99/99�00/00/12�� 123.45�99/99/99�00/01/23�� 1234.56�99/99/99�00/12/35�� 12345.67�99/99/99�01/23/46��123456.78�99/99/99�12/34/57������ 0.00�**:**:**�********�� 0.01�**:**:**�********�� 0.25�**:**:**�********�� 1.50�**:**:**�*******2�� 12.34�**:**:**�******12�� 123.45�**:**:**�****1:23�� 1234.56�**:**:**�***12:35�� 12345.67�**:**:**�*1:23:46��123456.78�**:**:**�12:34:57������ 0.00�/++++,+++.V++/��� 0.01�/++++,+++.V++/�/ +01/�� 0.25�/++++,+++.V++/�/ +25/�� 1.50�/++++,+++.V++/�/ +1.50/�� 12.34�/++++,+++.V++/�/ +12.34/�� 123.45�/++++,+++.V++/�/ +123.45/�� 1234.56�/++++,+++.V++/�/ +1,234.56/�� 12345.67�/++++,+++.V++/�/ +12,345.67/��123456.78�/++++,+++.V++/�/+123,456.78/��
							11-17
�PL/I Reference Manual									11.3	EDIT-directed I/O

Table 11-5. Picture Edited Output

 Value� picspec� Output Result������ 0.00�S***B***.V**�***********�� -0.01�S***B***.V**�***********�� 0.25�S***B***.V**�+********25�� -1.50�S***B***.V**�-******1.50�� 12.34�S***B***.V**�+*****12.34�� -123.45�S***B***.V**�-****123.45�� 1234.56�S***B***.V**�+**l 234.56��-12345.67�S***B***.V**�-*12 345.67��123456.78�S***B***.V**�+123 456.78������ 0.00�$SSSSBSSSV.SS��� -0.01�$SSSSBSSSV.SS�$ -.01�� 0.25�$SSSSBSSSV.SS�$ +.25�� -1.50�$SSSSBSSSV.SS�$ -1.50�� 12.34�$SSSSBSSSV.SS�$ +12.34�� -123.45�$SSSSBSSSV.SS�$ -123.45�� 1234.56�$SSSSBSSSV.SS�$ +1 234.56��-12345.67�$SSSSBSSSV.SS�$ -12 345.67��123456.78�$SSSSBSSSV.SS�$+123.456.78������ 0.00�***.***S�********�� -0.01�***.***S�*******-�� 0.25�***.***S�*******+�� -1.50�***.***S�******2-�� 12.34�***.***S�*****12+�� -123.45�***.***S�****123-�� 1234.56�***.***S�**1.235+��-12345.67�***.***S�*12.346-��123456.78�***.***S�123.457+������ 0.00�$***,***V**CR�************�� -0.01�$***,***V**CR�$*******O1CR�� 0.25�$***,***V**CR�$*******25�� -1.50�$***,***V**CR�$******150CR�� 12.34�$***,***V**CR�$*****1234�� -123.45�$***,***V**CR�$****12345CR�� 1234.56�$***,***V**CR�$**1,23456��-12345.67�$***,***V**CR�$*12,34567CR��123456.78�$***,***V**CR�$123,45678������ 0.00�/++++,+++.V++/��� -0.01�/++++,+++.V++/�/ 0l/�� 0.25�/++++,+++.V++/�/ +25/�� -1.50�/++++,+++.V++/�/ 1.50/�� 12.34�/++++,+++.V++/�/ +12.34/�� -123.45�/++++,+++.V++/�/ 123.45/�� 1234.56�/++++,+++.V++/�/ +1,234.56/��-12345.67�/++++,+++.V++/�/ 12,345.67/��123456.78�/++++,+++.V++/�/+123,456.78/��
							11-18
�PL/I Reference Manual									11.3	EDIT-directed I/O

11.3.7 The GET EDIT Statement

The GET EDIT statement reads data using a format-list. The GET EDIT
statement has the form:

GET [FILE(file-id)] [SKIP[(nl)]]
EDIT(input-list)(format-list);

You can specify the options FILE or SKIP, in any order. EDIT must
appear last. If you do not specify the FILE option, PL/I assumes
file(SYSIN).

The GET EDIT statement reads data items from the input stream into
the variables given in the input-list until the input-list is
exhausted or the end-of-file is reached. The GET EDIT statement
pairs each input-list item with the next sequential format-list
item, applying control format items as they are encountered in the
process. If the GET EDIT statement exhausts the input-list before
the end of the format-list, remaining format items are ignored. If
the GET EDIT statement exhausts the format-list before the end of
the input-list, the format-list is reprocessed from the beginning

11.3.8 The PUT EDIT Statement

The PUT EDIT statement writes output data items according to a
format list. The PUT EDIT statement has the form:

PUT [FILE(file-id)] [SKIP[(nl)ll [PAGE]
EDIT(output-list)(format-list);

You can specify the options, FILE, SKIP, or PAGE, in any order.
EDIT must appear last. If you do not specify the FILE option, PL/I
assumes the file(SYSPRINT).

The PUT EDIT statement pairs output expressions from the output list
with format items from the format-list. The PUT EDIT statement also
applies any control format items encountered during this process.
The PUT EDIT statement ignores unprocessed format items at the end
of the statement. If the PUT EDIT statement encounters the end of
the output-list during processing, the format list restarts from the
beginning.

End of Section 11

							11-19
�Section 12
Record I/O

Record files contain binary data that PL/I transmits to or from an
external device without conversion. There are two kinds of RECORD
files:

·	SEQUENTIAL, where PL/I accesses the records in the order they
appear in the file.

·	DIRECT, where PL/I randomly accesses the records through keys.

In the following discussion of RECORD I/O statements, file-id is a
file variable or file constant; x is a scalar, or connected
aggregate data type that does not have the attributes CHARACTER
VARYING, and k is a FIXED BINARY key value or variable.

12.1 The READ Statement

The READ statement reads fixed or variable length RECORD files. The
READ statement has the form:

READ FILE(file-id) INTO(x);

If you do not use the OPEN statement to open the file, the READ
statement performs an implicit OPEN with the attributes RECORD,
SEQUENTIAL, and INPUT.

The READ statement reads the number of bytes determined by the
length of x. If you open the file with the ENVIRONMENT option
specifying the size of the fixed-length record, the READ statement
reads the amount of data according to the declared record size. If
the length of x does not match the declared record size, the READ
statement either pads x with zero-bits or truncates it on the right.

12.2 The READ with KEY Statement

The READ statement with the KEY option directly accesses individual
records in a file. The READ with KEY statement has the form:

READ FILE(file-id) INTO(x) KEY(k);

where k is a FIXED BINARY expression that defines the relative
record to access. Key values start at zero, and continue until the
key value multiplied by the fixed-record length reaches the capacity
of the disk.

If you do not use the OPEN statement to open the file, the READ with
KEY statement performs an implicit OPEN with the attributes RECORD,
INPUT, DIRECT, and KEYED. PL/I does not allow the READ with KEY
statement to access variable length records.

							12-1
�PL/I Reference Manual				12.3	The READ with KEYTO Statement

12.3 The READ with KEYTO Statement

The READ statement with the KEYTO option extracts key values from an
input file during sequential access. The program can save the key
values in memory or in another file, and subsequently perform direct
access on the records of the input file using the key values.

The READ with KEYTO statement has the form:

READ FILE(file-id) INTO(x) KEYTO(k);

where k is a FIXED BINARY variable assigned to the relative record
number of the record being read.

If you do not use the OPEN statement to open the file, the READ with
KEYTO statement performs an implicit OPEN with the attributes
RECORD, INPUT, SEQUENTIAL, and KEYED.

12.4 The WRITE Statement

The WRITE statement writes data from memory to the external data set
without conversion. The WRITE statement has the form:

WRITE FILE(file-id) FROM(x);

If you do not use the OPEN statement to open the file, the WRITE
statement performs an implicit open with the attributes RECORD,
OUTPUT, and SEQUENTIAL.

The output record size is exactly the length of x. If you open the
file with the ENVIRONMENT option specifying the fixed-length record
size, the WRITE statement writes the amount of data according to the
declared record size. If the length of x does not match the
declared record size, the WRITE statement either pads x with zero
bits or truncates it on the right.

12.5 The WRITE with KEYFROM Statement

The WRITE with KEYFROM statement directly accesses a file for
output. The WRITE with KEYFROM statement has the form:

WRITE FILE(file-id) FROM(x) KEYFROM(k);

where k denotes a FIXED BINARY expression yielding a key value that
PL/I treats like the READ with KEY option shown in Section 12.2.

If you do not use the OPEN statement to open the file, the WRITE
with KEYFROM statement performs an implicit OPEN with the attributes
RECORD, DIRECT, OUTPUT, and KEYED.

End of Section 12

							12-2
�Section 13
Built-in Functions

A built-in function (BIF) is a computational subroutine provided as
part of the PL/I Run-time Subroutine Library (RSL). You can use a
BIF reference as a user-defined function reference.

You do not have to declare the name of a BIF. If you redeclare the
name of a BIF in the program, you cannot reference it as a BIF
within the scope of that declaration. However, you can use a BIF in
a contained block by redeclaring the name with the attribute
BUILTIN.

PL/I built-in functions are divided into the following categories:

·	Arithmetic		·	Conversion
·	Mathematical		·	Condition Handling
·	String Handling	·	Miscellaneous

13.1 Arithmetic Functions

The arithmetic functions are

ABS 		FLOOR	MOD	TRUNC
CEIL 		MAX	ROUND
DIVIDE		MIN 	SIGN

The arithmetic BIFs return information about the attributes of
specified arithmetic values, and perform common arithmetic
calculations.

13.2 Mathematical Functions

The mathematical functions are

ACOS		COS		LOG		SIND	TAND
ASIN		COSD	LOG2	SINH	TANH
ATAN		COSH	LOG10	SQRT
ATAND		EXP		SIN		TAN

The mathematical BIFs perform mathematical calculations in floating
point arithmetic. The mathematical functions include

·	the most commonly used trigonometric functions and their
	inverses

·	base 2, base e (natural) , and base 10 (common) , logarithmic
	functions

							13-1
�PL/I Reference Manual						13.2	Mathematical Functions

·	the natural exponent function

·	hyperbolic sin and cos functions

·	the square root function

Each of these functions accepts a single FLOAT BINARY argument and
returns a FLOAT BINARY result. The precision of the result depends
on the precision of the argument. If the argument is single
precision, the result is single-precision. If the argument is
double-precision, the result is double-precision. If the argument
is an expression containing operands of different precisions, PL/I
first performs conversion according to the rules stated in Section 4.2.

You can also specify a argument that is not FLOAT BINARY, but PL/I
automatically converts it.

All of the function subroutines, with the exception of SQRT, use
algorithms based on the Chebyshev polynomial approximations. The
SQRT function subroutine is based on Newton's method.

Typically these algorithms scale the given argument into a finite
interval, usually -1 <= X <= 1, and then evaluate the Chebyshev
approximation using an appropriate recurrence relation. The
greatest source of error in these routines results from the
truncation of significant digits during the scaling process. Except
for this, the subroutines have an average accuracy of 7 significant
decimal digits for single-precision, 15 digits for double-precision.

13.3 String-handling Functions

The string-handling functions are

·	BOOL
·	COLLATE
·	COPY
·	INDEX
·	LENGTH
·	REVERSE
·	SEARCH
·	SUBSTR
·	TRANSLATE
·	TRIM
·	VERIFY

The string-handling BIFs perform character-string and bit-string
manipulation.

							13-2
�PL/I Reference Manual					13.4	Conversion Functions

13.4 Conversion Functions

The conversion functions are

·	ASCII
·	BINARY
·	BIT
·	CHARACTER
·	DECIMAL
·	FIXED
·	FLOAT
·	RANK
·	UNSPEC

The conversion BIFs convert data from one type to another. PL/I
uses these functions internally to perform automatic conversion.

13.5 Condition-handling Functions

The condition-handling functions are

·	ONCODE
·	ONFILE
·	ONKEY

The condition-handling BIFs return information about conditions
signaled by the run-time system. These functions do not have
parameters and return a value only when executed in an ON-unit. The
ON-unit can be entered when the specified condition is
programmatically signaled, or as the result of an interrupt caused
by the occurrence of the specified condition.

13.6 Miscellaneous Functions

The miscellaneous BIFs are

·	ADDR
·	DATE
·	DIMENSION
·	HBOUND
·	LBOUND
·	LINENO
·	LOCK
·	NULL
·	PAGENO
·	TIME
·	UNLOCK

							13-3
�PL/I Reference Manual				13.6	Miscellaneous Functions

The miscellaneous BIFs return information about based variables,
date and time, the current line number and page number of a file,
information about array dimensions, and provide the ability to lock
and unlock individual records within a file.

13.7 List of Built-in Functions

The following sections describe the specific format, parameter
attributes, purpose, and properties of each built-in function.

ABS

Category:		Arithmetic
Format:		ABS(X)

Parameters:	X can be any arithmetic expression.

Result:		Returns the absolute value of X.
Algorithm:	If X >= 0 then return X, otherwise return -X.

Result type:	Same as X.

Examples:		ABS(-100) returns 100
			AB(18.78) returns 18.78

							13-4
�PL/I Reference Manual					13.7	List of Built-in Functions

ACOS

Category:		Mathematical
Format:		ACOS(X)
Parameter:	X is an arithmetic expression, -1 <= X <= 1.
Result:		Returns the arc cosine of X; for example, ACOS(X) is
			the angle in radians, whose cosine is X such that 0
			<= ACOSW <= PI.

Result type:	FLOAT BINARY.

Algorithm:	ACOS(X) equals PI/2 - ASIN(X).
Error
Condition:	If X is not in the interval -1 <=X <= 1 the run-time
			system signals the ERROR(3) condition.
Examples: 	ACOS(0.866) returns 5.236490E-01
			ACOS(0.86603) returns 5.235897302627563E-001

ADDR

Category:		Miscellaneous
Format:		ADDR(X)
Parameter:	X is a reference to a variable with connected
			storage.
Result:		Returns a pointer that identifies the storage
			location of the variable X.

Result type: 	POINTER

							13-5
�PL/I Reference Manual					13.7	List of Built-in Functions

ASCII

Category:		Conversion
Format:		ASCII(I)
Parameter:	I is a FIXED BINARY expression.
Result:		Returns a single character whose position in the
			ASCII collate sequence corresponds to I (see
			Appendix F for ASCII codes).

Result type: 	CHARACTER(l)

Algorithm:	ASCII(1) equals SUBSTR(COLLATEorMOD(I, 128)+1,1).
Remark:		ASCII (I) is the inverse function of RANK (I) ; that is,
			ASCII (Rank(C))=C, for any character C.
Examples: 	ASCII(88) returns 'X'
			ASCII(40) returns '('

ASIN

Category:		Mathematical
Format:		ASIN(X)
Parameter:	X is an arithmetic expression, -1 <= X <= 1.
Result:		Returns the arc sine of X; for example, ASIN(X) is
			the angle in radians, whose sine is X, such that -
			PI/2 <= ASIN(X) <= PI/2

Result type:	FLOAT BINARY

Algorithm:	Chebyshev polynomial approximation
Error
Condition:	If X is not in the interval -1 <= X <= 1, the run
			time system signals the ERROR(3) condition.
Examples: 	ASIN(0.866) returns 1.0471462E+00
			ASIN(0.86603) returns 1.047206282615661E+000

							13-6
�PL/I Reference Manual					13.7	List of Built-in Functions

ATAN

Category:			Mathematical
For-mat:			ATAN(X)
Parameter:		X is any arithmetic expression.
Result:			Returns the arc tangent of X; for example, ATAN (X) is
				the angle in radians, whose tangent is X, such that
				-PI/2 <= ATAN(X) <= PI/2

Result type:		FLOAT BINARY

Algorithm:		Chebyshev polynomial approximation

Examples: 		ATAN(0.577) returns 5.2333600E-01
				ATAN(0.57735) returns 5.235985517501830E-001

ATAND

Category:		Mathematical
Format:		ATAND(X)
Parameter:	X is any arithmetic expression.
Result:		Returns the arc tangent of X in degrees; for example,
			the angle, in degrees, whose tangent is X, such that
			-90 <= ATAND(X) <= 90

Result type:	FLOAT BINARY

Algorithm:	ATAND(X) equals 180/PI * ATAN(X)

Examples: 	ATAND(0.577) returns 2.9984940E+01
			ATAND(0.57735) returns 2.999998664855957E+001

							13-7
�PL/I Reference Manual					13.7	List of Built-in Functions

BINARY

Category:		Conversion
Format:		BINARY (X [,p])
Parameter:	X is an arithmetic expression, or a string expression
			that can be converted to an arithmetic value. If X
			is DECIMAL with a nonzero scale factor, then p must
			be given, where p is an integer constant that
			specifies the precision of the result.
Result:		Returns a BINARY arithmetic value equivalent to X.
Result type:	If X is FLOAT BINARY, the result is FLOAT BINARY;
			otherwise it is FIXED BINARY.
Examples: 	If x = 12.675 FIXED DECIMAL(6,3)
			then
			BINARY(X,15) returns 12
			BINARY(12.675,15) returns 1.2000000E+01

BIT

Category:		Conversion
Format:		BIT(S[,Ll)
Parameter:	S is an arithmetic or string expression. L is a
			positive FIXED BINARY expression.
Result:		Converts S to a bit string of length L when L is
			specified. Otherwise, it converts S to a bit string
			whose length is determined by the conversion rules
			in Section 4.3.3.
Result type:	BIT
Examples: 	BIT(3,8) returns 00000110
			BIT(-4,16) returns 0000100000000000

							13-8
�PL/I Reference Manual					13.7	List of Built-in Functions

BOOL

Category:		String
Format:		BOOL(X,Y,Z)
Parameters:	X is a bit expression.
			Y is a bit expression.
			Z is a bit-string constant, four-bits long.
Result:		Returns a Boolean function on X and Y, specified by
			the bit-string constant Z as follows. Let
			Zl,Z2,Z3,Z4 be the bit values in Z, reading left to
			right. Then bit values A,B and the four-bit string
			Z determine the Boolean function BOOL(A,B,Z):

A		B		BOOL(A,B,Z)
__

0		0		Z1
0		1		Z2
1		0		Z3
1		1		Z4

This then induces the function BOOL(X,Y) on bit
strings X and Y as follows. If X and Y do not have
the sane length, the shorter string is padded on the
right with zero-bits until they have the same
length. Then BOOL(X,Y,Z) is defined to be the bit
string whose Nth bit is obtained from the preceding
table by letting A be the Nth bit of X and B the Nth
bit of Y.

Result type:	BIT(n) where n equals MAX(LENGTH(X), LENGTH(Y)).
Examples: 	BOOL(10011'B,'0101'B,'1001'B) returns '1001'B
			BOOL('01011'B,'11'B,11001'B) returns '01100'B

							13-9
�PL/I Reference Manual					13.7	List of Built-in Functions

CEIL

Category:		Arithmetic
Format:		CEIL(X)
Parameter:	X is any arithmetic expression.
Result:		Returns the smallest integer >= to X.
Algorithm:	-FLOOR(-X)

Result type:	An integer value of the same type as X.

Examples: 	CEIL(7.9) returns 8
			CEIL((5/3)) returns 2
			CHARACTER
Category:		Conversion
Format:		CHARACTER(S[,Ll)	___'N'
Parameter:	S is an arithmetic or string expression, L is a
			positive FIXED BINARY expression.
Result:		S is converted to a character string of length L when
			L is specified; otherwise, S is converted to a
			character string whose length is determined by the
			conversion rules of Section 4.

Result type: 	CHARACTER

Examples: 	If x = -13.25
			then
			CHARACTER(X,10) returns VX-13.25
			CHARACTER(2*(3+7)-6,10) returns VO(VOW14

							13-10
�PL/I Reference Manual					13.7	List of Built-in Functions

COLLATE

Category:		String
Format:		COLLATE()

Parameters: 	None

Result:		Returns a character string of length 128 consisting
			of the set of characters in the ASCII character set
			in ascending order. (The ASCII character set is
			given in Appendix C.)

Result type: 	CHARACTER(128)

Note: in PL/I-86 V1.2, COLLATE() returns a character string of
length 256.

COPY

Category:		String
Format:		COPY(S,I)

Parameters:	S is a character string expression
			I is a FIXED BINARY expression

Result:		Returns I copies of S. concatenated together.
			If I <= 0, COPY returns a null string.

Result Type: 	CHARACTER

Examples: 	COPY('*', 80) returns a CHARACTER(80) value
			containing 80 asterisk characters.

							13-11
�PL/I Reference Manual					13.7	List of Built-in Functions

COS

Category:		Mathematical
Format:		COS(X)
Parameter:	X is an arithmetic expression.
Result:		Returns the cosine of X in radians.
Result type:	FLOAT BINARY
Algorithm:	Chebyshev polynomial approximation
Examples:		COS(3.1415/3.0) returns 5.000267465490945E-001

COSD

Category:		Mathematical
Format:		COSD(X)
Parameter:	X is an arithmetic expression
Result:		Returns the cosine of X in degrees.
Result type:	FLOAT BINARY
Algorithm:	COSD(X) equals COS(X*PI/180)
Examples: 	COSD(0.500) returns 9.9996180E-01
			COSD(0.50000) returns 9.999617934226980E-001

							13-12
�PL/I Reference Manual					13.7	List of Built-in Functions

COSH

Category: 	Mathematical

Format: 		COSH(X)

Parameter:	X is an arithmetic expression.

Result:		Returns the hyperbolic cosine of X.

Result type:	FLOAT BINARY

Algorithm:	COSH(X) equals (EXP(X) + EXP(-X))/2

Examples: 	COSH(2-75) returns 7.8532790E+00
			COSH(2.75000) returns 7.853279590606689E+000

DATE

Category:		Miscellaneous
Format:		DATE ()

Parameters: 	None

Result:		Returns a character string representing the date in
			the form, YYMMDD where
			YY is the current year (00-99)
			MM is the current month (00-12)
			DD is the current day of the month (00-31)

Result Type: 	CHARACTER(6)

Examples: 	DATE()	returns '8303251

Remarks:		Only available if supported by operating system.
			If not supported, DATE returns blanks.

							13-13
�PL/I Reference Manual					13.7	List of Built-in Functions

DECIMAL

Category: 	Conversion
Format:		DECIMAL(X[,p[,q]])
Parameter: 	X is an arithmetic or string expression that can be
			converted to an arithmetic value.
			p is an integer constant, 1 <= p <= 15.
			q is an integer constant, 0 <= q <= p.
Result:		Converts X to a DECIMAL value. p and q are optional
			but when specified represent the precision and scale
			factor, respectively. If only p is given, q is
			assumed to be zero. If neither p nor q is given,
			then the precision and scale factor of the result
			are determined by the rules for conversion given in
			Section 4.3.2.

Result type:	FIXED DECIMAL

Examples: 	DECIMAL(125,6,2) returns 125.00

DIMENSION

Category: 	Miscellaneous
Format:		DIMENSION(X,N) | DIM(X,N)

Parameters:	X is an array variable; N is a positive integer
			expression.

Result:		Returns a positive integer representing the extent of
			the Nth dimension of the array referenced by X.

Result type:	FIXED BINARY

							13-14
�PL/I Reference Manual					13.7	List of Built-in Functions

DIVIDE

Category:		Arithmetic
Format:		DIVIDE(X,Y,p) or DIVIDE(X,Y,p,q)

Parameters: 	X and Y are arithmetic expressions.

Result:		Returns the quotient of X divided by Y, with the
			constants p, precision of the result, and q, scale
			factor. q assumed to be zero if not included. If X
			and Y are FIXED BINARY, q must be omitted or equal
			to zero.

Result type:	The common arithmetic type of X and Y.

Examples: 	DIVIDE(189.07,37.56,15,5) returns 5.03381
			DIVIDE(296,49,15) returns 6
			DIVIDE(233.456e2,1.19e1,24) returns 1.9710920E+02

EXP

Category:		Mathematical
Format:		EXP(X)
Parameter: 	X is an arithmetic expression.
Result:		Returns the value of e to the power X, where e is the
			base of the natural logarithm.

Result type:	FLOAT BINARY

Algorithm:	Chebyshev polynomial approximation.

Examples: 	EXP(5.13) returns 1.6901700E+02
			EXP(5.13333) returns 1.695808563232421E+002

							13-15
�PL/I Reference Manual					13.7	List of Built-in Functions

FIXED

Category:		Conversion
Format:		FIXED(X[,p[,q]])
Parameters: 	X is an arithmetic expression or string expression
			that can be converted to an arithmetic value.
			p is an integer constant.
			q is an integer constant.
Result: 		Converts X to a FIXED arithmetic value. p and q are
			optional but when specified determine the precision
			and scale factor of the result. If only p is given,
			then q is assumed to be zero. If neither p nor q is
			given, then the precision and scale factor are
			determined by the conversion rules in Section 4.
Result type:	If X is FIXED DECIMAL or CHARACTER, the result is
			FIXED DECIMAL. Otherwise, it is FIXED BINARY.
Examples: 	If s = '01010010'b
			then
			FIXED(S,8) returns 82
			FIXED(s,24) returns 8.2000000E+01

FLOAT

Category:		Conversion
Format:		FLOAT(X[,p])
Parameter:	X is an arithmetic or string expression that can be
			converted to an arithmetic value. p is an optional
			positive integer constant.
Result:		Converts X to a FLOAT arithmetic value. p is
			optional but, when given, determines the precision
			of the result. If p is not given, the precision is
			determined by the conversion rules in Section 4.
Result type:	FLOAT BINARY
Examples: 	If y = 4589 FIXED BINARY(15)
			then
			FLOAT(Y, 24) returns 4.5890000E+03

							13-16
�PL/I Reference Manual					13.7	List of Built-in Functions

FLOOR

Category: 	Arithmetic

Format: 		FLOOR(X)

Parameter:	X is any arithmetic expression.

Result:		Computes the greatest integer <= X.

Result type:	An integer value of the same type as X.

Examples: 	FLOOR(7.9) returns 7
			FLOOR((5/3))	returns 1

HBOUND

Category:		Miscellaneous
Format:		HBOUND(X,N)

Parameters:	X is an array variable, N is a positive integer
			expression.

Result:		Returns the upper bound of the Nth dimension of the
			array variable X.

Result type:	FIXED BINARY

							13-17
�PL/I Reference Manual					13.7	List of Built-in Functions

INDEX

Category:		String
Format:		INDEX(X,Y[,I])

Parameters:	X and Y are string expressions of the same type,
			either bit or character. The optional third
			argument, I, is an integer expression. If only two
			arguments are given, the third argument defaults to 1.

Result:		Returns an integer value indicating the position of
			the leftmost occurrence of the string Y in the
			string X, starting the scan from position I in X.
			If X or Y is null or if Y does not occur in X. INDEX
			returns the value zero.

Result type:	FIXED BINARY

Examples: 	INDEX('123456789', '7') returns 8
			INDEX('ABAB', 'AB', 2) returns 3

LBOUND

Category: 	miscellaneous
Format:		LBOUND(X,N)

Parameters:	X is an array variable, N is a positive integer
			expression.

Result:		Returns the lower bound of the Nth dimension of the
			array referenced by X.

Result type:	FIXED BINARY

							13-18
�PL/I Reference Manual					13.7	List of Built-in Functions

LENGTH

Category:		String
Formal		LENGTH(X)
Parameter: 	X is a string expression, either bit or character.
Result:		Returns the number of characters or bits in the
			string X. If X has the attribute VARYING, LENGTH(X)
			returns the current length of X.

Result type:	FIXED BINARY

Examples: 	LENGTH('Himalayan') returns 9
			LENGTH(") returns 0

LINENO

Category:		Miscellaneous
Format:		LINENO(F)
Parameter:	F is a file value.
Result:		Returns the current line number of the file
			referenced by F. The file must have the PRINT
			attribute.

Result type:	FIXED BINARY

							13-19
�PL/I Reference Manual					13.7	List of Built-in Functions

LOCK

Category: 	miscellaneous
Format:		LOCK(F,I)
Parameter:	F is a file constant or variable that must be opened
			in Shared mode. I is a FIXED BINARY(15) integer that
			gives the record number relative to the record size
			specified in the ENVIRONMENT option.
Result:		Returns a one-bit if the operation is successful or a
			zero-bit if unsuccessful. Locks the record
			specified by I so that no other user can lock or
			access it. The record remains locked until unlocked
			with the UNLOCK function, or the program terminates.
Result Type:	BIT(l)
Remark:		Only available if supported by operating system.

LOG

Category: 	Mathematical
Format:		LOG(X)
Parameter:	X is an arithmetic expression, X > 0.
Result:		Returns the natural logarithm of X.
Result type:	FLOAT BINARY
Algorithm:	Chebyshev polynomial approximation
Error
Condition:	If X <= 0, the run-time system signals the ERROR(3)
			condition.
Examples: 	LOG(10.0) returns 2.3025850E+00
			LOG(10.00000) returns 2.302585124969482E+000

							13-20
�PL/I Reference Manual					13.7	List of Built-in Functions

LOG2

Category:		Mathematical
Format:		LOG2(X)
Parameter:	X is an arithmetic expression, X > 0.
Result:		Returns the logarithm of X to the base 2.
Result type:	FLOAT BINARY
Algorithm:	LOG2(X) equals LOG(X)/LOG(2)
Error
Condition: 	If X <= 0, the run-time system signals the ERROR(3)
			condition.
Examples: 	LOG2(10.0) returns 3.3219270E+00
			LOG2(10.00000) returns 3.321927785873412E+000

LOG10

Category:		Mathematical
Format:		LOG10(X)
Parameter:	X is an arithmetic expression, X > 0.
Result:		Returns the logarithm of X to the base 10.
Result type:	FLOAT BINARY
Algorithm:	LOG10(X) equals LOG(X)/LOG(10)
Error
Condition:	If X < 0, the run-time system signals the ERROR(3)
			condition.
Examples: 	LOG10(125.0) returns 2.0969100E+00
			LOG10(125.00000) returns 2.096910013008051E+000

							13-21
�PL/I Reference Manual					13.7	List of Built-in Functions

MAX

Category:		Arithmetic
Format:		MAX(X,Y)

Parameters:	X and Y are arithmetic expressions.

Result:		Returns the larger value of X and Y.
Algorithm:	If X >= Y then return X, otherwise return Y.

Result type:	The common arithmetic type of X and Y.

Examples: 	MAX(234, 64) returns 234
			MAX(3.77e5, 9.856e3) returns 3.7700E+05

MIN

Category:		Arithmetic
Format:		MIN(X,Y)

Parameters:	X and Y are arithmetic expressions.

Result:		Returns the smaller value of X and Y.
Algorithm:	If X<= Y, then return X; otherwise return Y.

Result type:	The common arithmetic type of X and Y.

Examples: 	MIN(234,64) returns 64
			MIN(3.77e5, 9.856e3) returns 9.8560E+03

							13-22
�PL/I Reference Manual					13.7	List of Built-in Functions

MOD

Category:		Arithmetic
Format:		MOD(X, Y)

Parameters:	X and Y are arithmetic expressions.

Result:		Returns the value X modulo Y.
Algorithm:	If Y=0 then return X, otherwise return X
			(Y)-FLOOR(X/(Y)).

Result type:	The result is a value having the common arithmetic
			type of X and Y.

Examples: 	MOD(7,3) returns 1
			MOD(-7,3) returns 2
			MOD(7,-3) returns -2
			MOD(-7,-3) returns -1

Note: unless Y=0, MOD(X,Y) always returns a value with the same
sign as Y, and less than ABS(Y) in magnitude.

NULL

Category: 	Miscellaneous

Format: 		NULL[()]

Result:		Returns the null pointer value that points to an
			invalid storage location.

Result type: 	POINTER

							13-23
�PL/I Reference Manual					13.7	List of Built-in Functions

ONCODE

Category: 	Condition
Format:		ONCODE()
Result:		Returns the value of the error subcode of the most
			recently signaled condition. The error conditions
			and their corresponding error numbers are listed in
			Section 9.4, Table 9-1.

Result type:	FIXED BINARY

ONFILE

Category: 	Condition
Format:		ONFILE()
Result:		Returns the filename for which the most recent
			ENDFILE or ENDPAGE condition was signaled.

Result type: 	CHARACTER

							13-24
�PL/I Reference Manual					13.7	List of Built-in Functions

ONKEY

Category: 	Condition
Format:		ONKEY()
Result:		Returns the character string value of the key for the
			record that signaled an input/output or conversion
			condition.

Result Type: 	CHARACTER

PAGENO

Category: 	Miscellaneous
Format:		PAGENO(F)
Parameter:	F is a file value.
Result:		Returns the page number of the file specified by F.
			The file must have the PRINT attribute.

Result type: 	FIXED BINARY

							13-25
�PL/I Reference Manual					13.7	List of Built-in Functions

RANK

Category:		Conversion
Format:		RANK(C)
Parameter:	C is a character value of length one.
Result:		Returns the integer representation of the ASCII
			character C (see Appendix F).

Result type:	FIXED BINARY

Algorithm:	RANK(C) equals INDEX(COLLATE(),C) -1
Examples: 	RANK('Y') returns 89
			RANK('5') returns 53

REVERSE

Category: 	String
Format:		REVERSE(S)

Parameters:	S is a character string expression

Result:		Returns a string the same length as S, with the
			characters in reverse order.

Result Type: 	CHARACTER

Examples: 	REVERSE('ABC') returns 'CBA'

							13-26
�PL/I Reference Manual					13.7	List of Built-in Functions

ROUND

Category: 	Arithmetic
Format:		ROUND(X,K)

Parameters:	X is an arithmetic expression.
			K is a signed integer constant.

Result:		Returns X rounded to K digits to the right of the
			decimal point if K >= 0. Returns X rounded to -K
			digits to the left of the decimal point if K < 0.
Algorithm:	Return SIGN(X)*FLOOR(ABS(X)*B**N)+0.5)/B**N
			where	B=2 if X is BINARY
					B=10 if X is DECIMAL
			and		N=K if X is FIXED
			else		N=K-E if X is FLOAT and E is the exponent of X.

Result type:	Same as X

Examples: 	ROUND(12345.24689, 3) returns 12345.24700
			ROUND(34567.12345, -3) returns 35000.00000

SEARCH

Category: 	String
Format:		SEARCH(S,C)

Parameters: 	S is a character string expression.
			C is a character string expression.

Result:		Returns an integer value indicating the position of
			the first character in S that matches a character in
			C. Returns a 0 if no characters in S occur in C.

Result Type:	FIXED BINARY

Examples: 	SEARCH('$***12.951,101234567891) returns 5

							13-27
�PL/I Reference Manual					13.7	List of Built-in Functions

SIGN

Category: 	Arithmetic
Format:		SIGN(X)
Parameter:	X is any arithmetic expression.
Result:		Returns -1, 0, or 1 to indicate the sign of X.
Algorithm:	If X < 0 then return -1
			If X = 0 then return 0
			If X > 0 then return +1

Result type:	FIXED BINARY

Examples: 	SIGN(-76.45e4) returns -1
			SIGN(199.98) returns 1

SIN

Category: 	Mathematical

Format: 		SIN(X)

Parameter:	X is an arithmetic expression.

Result:		Returns the sine of X in radians.

Result type:	FLOAT BINARY

Algorithm: 	Chebyshev polynomial approximation

Examples: 	SIN(3.1415/6.0) returns 4.999866265466036E-001

							13-28
�PL/I Reference Manual					13.7	List of Built-in Functions

SIND

Category: 	Mathematical

Format: 		SIND(X)

Parameter: 	X is an arithmetic expression.

Result:		Returns the sine of X in degrees.

Result type:	FLOAT BINARY

Algorithm:	SIND(X) equals SIN(X*PI/180)

Examples:-	SIND(0.50) returns 8.7265340E-03
			SIND(0.50000) returns 8.726534433662890E-03

SINH

Category: 	Mathematical

Format:		SINH(X)

Parameter: 	X is an arithmetic expression.

Result:		Returns the hyperbolic sine of X.

Result type:	FLOAT BINARY

Algorithm:	SINH(X) equals (EXP(X)-EXP(-X))/2

Examples: 	SINH(2.75) returns 7.7893520E+00
			SINH(2.75000) returns 7.789351940155029E+000

							13-29
�PL/I Reference Manual				13.7	List of Built-in Functions

SQRT

Category:		Mathematical
Format:		SQRT(X)
Parameter:	X is an arithmetic expression, X >= 0.
Result:		Returns the square root of X.
Result type:	FLOAT BINARY
Algorithm:	Newton's method
Error
Condition:	If X < 0, the run-time system signals the ERROR(3) condition.
Examples: 	SQRT(2) returns 1.4142135E+00
			SQRT(2.0000000) returns 1.414213562373094E+000

SUBSTR

Category: 	String
Format:		SUBSTR(X, I[,J])
Parameters:	X is a string, either bit or character.
			I is a FIXED BINARY value.
			J is a FIXED BINARY value.
Result:		Returns a string that is a copy of the string X
			beginning at the Ith element and for a length J. If
			J is not given, it defaults to the length of the
			remainder of the string, equal to LENGTH(X)-I+l.
Result type:	Same as X

Error
Condition:	None. If the arguments are out of range,
			unpredictable results can occur.
Examples: 	If word = 'Digital Research'
			s = '01110101'b
			then
			SUBSTR(word,ll) returns search
			SUBSTR(S,4,2) returns 10

							13-30
�PL/I Reference Manual					13.7	List of Built-in Functions

TAN

Category: 	Mathematical

Format: 		TAN(X)

Parameter: 	X is an arithmetic expression.

Result:		Returns the tangent of X in radians.

Result type:	FLOAT BINARY

Algorithm:	TAN(X) equals SIN(X)/COS(X)
Error
Condition:	If COS (X) equals 0, then the run-time system signals
			the ERROR(3) condition.
Examples: 	TAN(3.1415/4-0) returns 9.999536742781560E-001

TAND

Category: 	Mathematical

Format: 		TAND(X)

Parameter: 	X is an arithmetic expression.

Result:		Returns the tangent of X in degrees.

Result type:	FLOAT BINARY

Algorithm:	TAND(X) equals TAN(X*PI/180)
Error
Condition:	If COS(X*PI/180) equals 0, the run-time system
			signals the ERROR(3) condition.
Examples: 	TAND(0.50000) returns 8.72686747144603E-003

							13-31
�PL/I Reference Manual					13.7	List of Built-in Functions

TANH

Category: 	Mathematical

Format: 		TANH(X)

Parameter:	X is an arithmetic expression.

Result:		Returns the hyperbolic tangent of X.

Result type:	FLOAT BINARY

Algorithm:	TANH(X) = (EXP(X)-EXP(-X))/(EXP(X)+EXP(-X))

Examples: 	TANH(2.75) returns 9.9185970E-01
			TANH(2.75000) returns 9.918597340583800E-001

TIME

Category: 	Miscellaneous
Format:		TIME()

Parameters: 	None

Result:		Returns a character string representing the current
			time in the form, HHMMSStttttt where
			HH is the current hour (00-23)
			MM is the minutes (00-59)
			SS is the seconds (00-59)
			tttttt is the microseconds

Result Type: 	CHARACTER(12)

Examples: 	TIME() returns '133427000000'
Remarks:		Only available if supported by operating system.
			tttttt is only as accurate as the system clock, and
			in most cases will be much less precise than one
			microsecond. If not supported, TIME returns blanks.

							13-32
�PL/I Reference Manual					13.7	List of Built-in Functions

TRANSLATE

Category: 	String
Format:		TRANSLATE(X,Y,[Z])

Parameters:	X is a character expression.
			Y is a character expression.
			Z is a character expression.

Result:		If Z does not occur, it is assumed to be COLLATE().
			If Y is shorter than Z, it is padded to the right
			with blanks until its length equals the length of Z.
			Any occurrence of a character in Z in the string X
			is then replaced by the character in Y corresponding
			to that character in Z.

Result type:	Same as X

Examples: 	TRANSLATE('BDA', 'l23', 'ABC') returns '2D1'

TRIM

Category: 	String
Format:		TRIM (S [, L,T])

Parameters:	S, L, and T are character string expressions.

Result:		TRIM(S) returns a character string with the leading
			and trailing blanks removed. TRIM(S,L,T) returns a
			character string with all leading characters of S
			that appear in L removed, and all trailing
			characters of S that appear in T removed.

Result Type: 	CHARACTER

Examples: 	TRIM(' ABCDE ') returns 'ABCDE'
			TRIM('$***1.23 ') returns 11.231

							13-33
�PL/I Reference Manual					13.7	List of Built-in Functions

TRUNC

Category: 	Arithmetic
Format:		TRUNC(X)
Parameter:	X is any arithmetic expression.
Result:		Returns the integer portion of X.
Algorithm:	If X < 0 then return (CEIL(X))
			If X >= 0 then return (FLOOR(X))

Result type:	A signed integer value of the same type as X.

Examples: 	TRUNC(52.146) returns 52
			TRUNC(-52.146) returns -52

UNLOCK

Category: 	Miscellaneous
Format:		UNLOCK(F,I)
Parameter:	F is a file constant or variable that must be opened
			in Shared mode. I is a FIXED BINARY(15) integer that
			gives the record number relative to the record size
			specified in the ENVIRONMENT option.
Result:		Returns a one-bit if the operation is successful or a
			zero-bit if unsuccessful. Unlocks the record
			specified by I so that other users can access it.
			The record remains unlocked until locked with the
			LOCK function, or the program terminates.

Result Type: 	BIT(l)

Remark:		Only available if supported by operating system.

							13-34
�PL/I Reference Manual					13.7	List of Built-in Functions

UNSPEC

Category: 	Miscellaneous
Format:		UNSPEC(X)
Parameter: 	X is a reference to a data item whose internal
			representation in memory is 16 bits or less.
Result:		Returns the contents of the storage location occupied
			by X.
Result type:	A bit string whose length equals the length of the
			internal representation of the data item associated
			with X.
Examples: 	If num = 25000 (FIXED BINARY) then
			UNSPEC(num) returns 0110000110101000

VERIFY

Category: 	String
Format:		VERIFY(S,C)
Parameters:	S is a character expression.
			C is a character expression.
Result:		Returns integer value 0 if each of the characters in
			S occurs in C. Otherwise, returns an integer that
			indicates the position of the leftmost character of
			S that does not occur in C.
Result type:	FIXED BINARY

Examples:
			VERIFY('ABCDE','ABDE') returns 3
			VERIFY('ABC1231,'lA2B3C4D') returns 0
			VERIFY('','A') returns 0
			VERIFY('A','') returns 1

End of Section 13

							13-35
�Section 14
PL/I Statements

This section lists the PL/I statement formats in alphabetical order.

14.1 The ALLOCATE Statement

ALLOCATE based-variable SET(pointer-variable);

Examples:

declare
	A character(16) based(P),
	P pointer;
	allocate A set(P);

14.2 The ASSIGNMENT Statement

	variable = expression;

Examples:

B = C*D;
unspec (E)		F (I);

14.3 The BEGIN Statement

BEGIN;

14.4 The CALL Statement

CALL proc-name [(sub-l,...,sub-n)] [(argument-list)];

Examples:

call Pl;
call P2(A,B,C);

14.5 The CLOSE Statement

CLOSE FILE(file-id);

Examples:

close file(INP);
close file(B:PAYFINES.DAT);

							14-1
�PL/I Reference Manual					14.6	The DECLARE Statement

14.6 The DECLARE Statement (for scalar variables)

DECLARE name [attribute-list];

Examples:

declare index - count fixed binary(15);
declare pi float binary(53);
declare overtime_pay fixed decimal(6,2);

14.7 The DECLARE Statement (for array variables)

DECLARE name(bound-pair) [attribute-list];

Examples:

declare B(-2:5,-5:5,5:10);
declare class_grades(30:100) character(25) varying;

14.8 The DECLARE Statement (for structure variables)

DECLARE | DCL [level] name [attribute-list] ...
		[,[level] name [attribute-list]];

Examples:

declare A fixed;
declare 1 B,
2 C NAME character(20),
2 D ADDRESS,
3 STREET character(20),
3 CITYST character(20),
3 ZIP character(5);
declare ZZ(10) fixed;
declare A fixed external;

14.9 The DECLARE Statement (for ENTRY data)

DECLARE proc-name	[(bound-pair-1. ... bound-pair-n)]
[ENTRY(parameter-list)]
[EXTERNAL] [VARIABLE]
(RETURNS(return-att)];

Examples:

declare x entry;
declare p(0:10) entry(fixed,float) variable;
declare r returns(character(10));

							14-2
�PL/I Reference Manual				14.10	The DECLARE Statement

14.10 The DECLARE Statement (for FILE data)

DECLARE file-id FILE (VARIABLE);

Examples:

declare f5 file;
declare f(5) file variable;

14.11 The DO Statement

DO (control-variable] do-specification;

where do-specification can be one of the following:

start-exp [TO end-exp] [BY incr-exp] [WHILE(condition)]
start-exp [BY incr-exp] [TO end-exp] [WHILE(condition)]
start-exp [REPEAT repeat-exp] [WHILE(condition)]

Examples:

do J=0;
do while(A<B);
do J = 1 TO 10;
do K = 10 TO 0 BY -2 while(A<B);
do P=START repeat P->NEXT while(P^=NULL);

14.12 The END Statement

END [label];

Examples:

end;
end Pl;

14.13 The FORMAT Statement

label: FORMAT(format-list);

Examples:

Ll: format(A(5));
L2: format(10 B4(2));

							14-3
�PL/I Reference Manual					14.14	The FREE Statement

14.14 The FREE Statement

FREE [pointer-variable->] based-variable;

Examples:

free A;
free P->A;

14.15 The GET EDIT Statement

GET [FILE(file id)] [SKIP[(n1)]]
EDIT(input-list) (format-list);

Examples:

get edit(A,B,C)((3)f(5,2));
get file(INP) edit((Z(I) do I = 1 to 3))(A);

14.16 The GET LIST Statement

GET [FILE(file-id)] [SKIP[(n1)]] LIST(input-list);

Examples:
get list(X,Y,Z);

14.17 The GOTO Statement

GOTO | GO TO label-constant | label-variable;

Examples:

go to the_end;
goto lab(K);

14.18 The IF Statement

IF condition THEN action-1 [ELSE [action-2]]

Examples:

if A=2 then B=A**2;
else;

if J>K then I = I+l;
else I = 1+3;

14-4
�PL/I Reference manual	14.19		The %INCLUDE Statement

14.19 The %INCLUDE Statement

%INCLUDE 'filespec';

Examples:

%include 'mathlib.pli';
%include 'constnts.dcl';

14.20 The NULL Statement

Examples:

else

14.21 The ON Statement

ON condition-name ON-unit,

Examples:

on endfile(INP)
begin;
	put list('END OF INPUT');
	stop;
end;

on error put list(oncode());

14.22 The OPEN Statement

OPEN FILE(file-id) [file-attributes];

Examples:

open file(INP) input;
open file(SYSPRINT) output;

14-5
�PL/I Reference Manual	14.23	The PROCEDURE Statement

14.23 The PROCEDURE Statement

proc-name:	PROCEDURE | PROC [(parameter-list)]
	[OPTIONS(option....)) [RETURNS(attribute-list)]
	(RECURSIVE]

Examples:

Pl:	proc(A,B,C);
P2:	procedure (ZZ) returns(float);
P3:	proc(N) returns(fixed bin) recursive;
P4:	procedure options(main);

14.24 The PUT EDIT Statement

PUT	[FILE(file id)] [SKIP[n1]] [PAGE]
	EDIT(output-list)(format-list);

Examples:

put edit(A,B,C) (F(5,2),X(3),2 E(l0,2));
put edit((Z(I) do I = 1 to 10))(A);

14.25 The PUT LIST Statement

PUT [FILE(file-id)] [SKIP[(n1)]] [PAGE] LIST (output-list);

Examples:

put list(A,B,C);
put file(F) list((Z(I) do I = 1 to 10));

14.26 The READ Varying Statement

READ [FILE(file-id)] INTO(v);

Examples:
read file(F) into(buffer);

14.27 The READ Statement (for SEQUENTIAL RECORD files)

READ FILE(file-id) INTO(x);

Examples:
read file(INP) into(XX);

14-6
�PL/I Reference Manual	14.28		The READ with KEY Statement

14.28 The READ with KEY Statement

READ FILE(file-id) INTO(X) KEY(k);

Examples:

read file(INP) into(STRUC) key(IKEY);

14.29 The READ with KEYTO Statement

READ FILE(file-id) INTO(x) KEYTO(k);

Examples:

read file(INP) into(z) keyto(IKEY);

14.30 The %REPLACE Statement

%REPLACE identifier BY constant;

Examples:

%replace true by '1'b;
%replace	rows by 10,
		columns by 6;

14.31 The RETURN Statement

RETURN [(return-exp)];

Examples:

return;
return(X);
return(A**2);

14.32 The REVERT Statement

REVERT condition-name;

Examples:

revert error;
revert endfile;

14-7
�PL/I Reference Manual	14.33	The SIGNAL Statement

14.33 The SIGNAL Statement

SIGNAL condition-name;

Examples:

signal error;
signal endfile(sysin);

14.34 The STOP Statement

STOP;

14.35 The WRITE Varying Statement (for STREAM files)

WRITE [FILE(file-id)] FROM(v);

Examples:

declare (XX,YY) character(200) varying;
write file(OUTPUT) from(XX);
write from(YY);

14.36 The WRITE Statement (for SEQUENTIAL RECORD files)

WRITE FILE(file-id) FROM(x);

Examples:

write file(OUTP) from (XX);
write file(F) from(STRUC);

14.37 The WRITE with KEYFROM Statement

WRITE FILE(file-id) FROM(x) KEYFROM(k);

Examples:
write file(KP) from(REC) keyfrom(IKEY);

End of Section 14

14-8
�Section 15
Data Attributes

This section summarizes all the PL/I data attributes and storage
classes. Abbreviations of attributes are included. Refer to the
relevant sections for full details of the attributes.

15.1 ALIGNED

ALIGNED is a the attribute that usually forces storage boundary
alignment of a variable. It has no effect in PL/I but is included
for compatibility with other implementations. For example,

declare A(0:3) bit(4) aligned;

15.2 AUTOMATIC | AUTO

AUTOMATIC is the storage class that specifies that storage is
allocated to the variable upon activation of the block containing
the declaration. In PL/I, automatic storage is statically
allocated, except for recursive procedures. For example,

declare A fixed binary; /* is equivalent to
declare A fixed binary auto;

15.3 BASED or BASED(p) or BASED(q())

BASED is the storage class that specifies user-controlled allocation
for a variable. In this case, p is a pointer variable, and q is a
pointer-valued function. For example,

declare A fixed binary based,
B(5) character(10) based(p),
C fixed binary based(f());

15.4 BINARY | BIN or BINARY(p) | BIN(p)

BINARY defines a BINARY variable with precision p.

	for FIXED variables		p <= 15
	for FLOAT variables		p <= 53

For example,

declare I fixed binary(7),
F float binary(40);

15-1
�PL/I Reference Manual	15.5 	BIT

15.5 BIT(n)

BIT (n) defines a bit string of length n, where n <= 16. For
example,

declare A bit(3);

15.6 BUILTIN

BUILTIN specifies that the declared name is one of the PL/I built-in
functions (BIFs). If you declare a BIF name in any block as a
variable, then you must redeclare it with the BUILTIN attribute if
you want to reference it as the BIF in any contained block. For
example,

declare sqrt builtin;

15.7 CHARACTER(n) | CHAR(n)

CHARACTER (n) defines a character string of length n, where n <=254.
For example,

declare A character(10),
B(5) character(4);

15.8 DECIMAL[(p[,q])] | DEC[(p[,q])]

DECIMAL defines a decimal number with precision and scale (p,q),
where p <= 15 and q <= p. If you do not specify q, the default is q = 0.
If you do not specify either p or q, PL/I defaults to (7,0).
For example,
	declare A fixed decimal(6,2);

15.9 ENTRY[(parameter-list)]

ENTRY defines entry values, where parameter-list is the list of the
parameters as given in the PROCEDURE definitions of the entry
values. For example:

declare		H entry,
			Z entry(10) (fixed),
			Y entry(float) returns(float),
			X entry variable;

15-2
�PL/I Reference Manual	15.10 		ENVIRONMENT(options)

15.10 ENVIRONMENT(options) | ENV(options)

ENVIRONMENT defines fixed- and variable-length record sizes for
RECORD files, internal buffer sizes, the file open mode, and the
password protection level. Options is one or more of the following:

Locked I L
ReadonlT I R
Shared				S
Passwordf(level)] I P[(level)]
Fixed(i)				F(i)
Buff(b) 				B(b)

where i is the fixed-record length, and b is the internal buffer
size. Both are expressed as integer constants For example,

open file keyed env(f(100),b(4000));
open file(f6) input direct title('d:accounts.new;topazl)
	env(shared,password(d),f(100),b(2000));

15.11 EXTERNAL | EXT

EXTERNAL defines the scope of the declared item to be EXTERNAL.
That is, the item is known in all blocks where it is declared as
EXTERNAL. For example,

declare A character(8) external;

15.12 FILE

FILE defines file data. For example,

declare F file,
FV file variable;

15.13 FIXED[(p[,q])]

FIXED defines fixed-point arithmetic data of precision and scale
factor (p,q). If specified for BINARY data, q must be 0. For
example,

declare A fixed binary,
B fixed decimal(5,2);

15-3
�PL/I Reference Manual	15.14 	FLOAT

15.14 FLOAT[(p)]

FLOAT defines floating-point arithmetic data of precision p, where p <= 53.
For example,

declare A float binary;

15.15 INITIAL(value-list) | INIT(value-list)

INITIAL causes the compiler to assign initial values to a STATIC
variable before program execution. The value-list is a list of
constants, separated by commas, that can be converted to the
variable type being initialized. Any constant in the list can be
preceded by a repetition factor in parentheses. For example,

declare A character(3) static initial('ABC'),
B(2) fixed binary static initial((2)5);

15.16 LABEL

LABEL defines a LABEL variable. For example,
declare somewhere label;

15.17 PARAMETER

PARAMETER is the storage class the compiler assigns to data items
that appear in a parameter-list. Storage for the parameters is
allocated when the calling procedure passes the parameters to a
called procedure. In the example below, the compiler assigns x the
storage class PARAMETER.

Example:
	declare A entry(x float) external returns(float);

15.18 POINTER | PTR

POINTER defines a POINTER variable. For example,
declare (p,q) pointer;

15.19 RETURNS(attribute-list)

RETURNS (when used with the ENTRY attribute) describes the attribute
list of the value returned by a function. For example,

	declare A entry(float) returns(fixed);

15-4
�PL/I Reference Manual	15.20 		STATIC

15.20 STATIC

STATIC is the storage class that causes the compiler to allocate
storage before program execution. For example,

declare A character(10) static,
B fixed binary static initial(O);

15.21 VARIABLE

VARIABLE (when used with the FILE or ENTRY attributes) defines the
item as a variable instead of a constant. For example,

declare F file variable,
P entry variable;

15.22 VARYING | VAR

VARYING defines a varying length character string. For example,
declare A character(100) varying;

End of Section 15

15-5
�Appendix A
Implementation Notes

Digital Research PL/I is based on American National Standard X3.74,
PL/I General Purpose Subset (Subset G) . Digital Research has
implemented PL/I on a variety of microcomputer architectures and
operating system environments.

This appendix describes the differences between the various
implementations, and the differences between these implementations
and the Subset G standard.

The following nomenclature is used in this appendix:

•	DRI PL/I refers to all Digital Research implementations of PL/I.

•	PL/I-80" refers to any version of the 8-bit implementations of
	PL/I for 8080-compatible microprocessors such as the 8080,
	8085, and Z808 Features specific to a particular version are
	designated with release numbers; that is, PL/I-80 R1.4.

•	PL/I-86" refers to any version of the 16-bit implementations
	of PL/I for 8086-compatible microprocessors such as the 8086
	and 8088. Features specific to a particular version are
	designated with release numbers; that is, PL/I-86 R1.0.

•	DOS refers to the IBM Personal Computer Disk Operating System
	Version 1.1.

A.1 DRI PL/I vs. PL/I Subset G

DRI PL/I conforms to the Subset G standard with the following
exceptions:

DRI PL/I does not implement the attributes:

•		DEFINED
•		FLOAT DECIMAL
•		PICTURE (it is implemented as an edit format item on output)

DRI PL/I does not implement *-extents in arrays or strings. DRI
PL/I does not implement expression extents in arrays or strings.
All extents must be constants.

DRI PL/I does not implement

A = scalar;

where A is an array variable.

A-1
�PL/I Reference Manual	A.1	DRI PL/I vs. PL/I Subset G

DRI PL/I does not currently implement the keyword PARAMETER. Future
versions of PL/I-86 will implement this keyword.

DRI PL/I requires the third argument of SUBSTR of a bit-string be a
constant.

DRI PL/I does not implement some built-in functions. Table A-1
shows which built-in functions are not available in the respective
implementations.

Table A-1. Built-in Functions Not Implemented

PL/I-80	PL/I-86 R1.0,	PL/I-86 Rl.0(DOS)	PL/I-86 R1.2
I R1.1, and I	I
ATANH	ATANH	ATANH	ATANH
COPY	COPY	COPY	STRING
DATE	REVERSE	REVERSE	VALID
REVERSE	SEARCH	SEARCH
SEARCH	STRING	STRING
STRING	TRIM	TRIM
TIME	VALID	VALID
TRIM
VALID

DRI PL/I implements the following built-in functions as extensions
to the Subset G standard:

•	ASCII
•	RANK

In DRI PL/I, the %REPLACE statement is extended to allow multiple
replaces in a single statement.

DRI PL/I adds the following I/O facilities for ASCII file processing:

•	READ Varying and WRITE Varying statement forms for processing
	variable-length ASCII records

•	The GET EDIT statement is extended to full record input in A format

DRI PL/I allows control characters in string constants. This
feature is incompatible with the ANSI standard and will be changed
in future releases of PL/I-86.

A-2
�PL/I Reference Manual	A.1		DRI PL/I vs. PL/I Subset G

DRI PL/I allows statements such as

declare	numbers(10) character(10)
		static initial((10)'0123456789');

In Subset G, you must use a (1) string replication factor of the form

declare	numbers(10) character(10)
		static initial((10)(1)101234567891);

In DRI PL/I, an ON-unit cannot free storage for a variable that is
being used when the condition is signaled, or close the file for
which an I/O condition is signaled. The ON-unit must branch to a
non-local label.

DRI PL/I does not support partially-subscripted, and/or partially
qualified mixed aggregate references that specify unconnected
storage.

DRI PL/I has a non-standard implementation of RECURSIVE procedures
On entry, they copy onto the stack the static frame containing their
AUTOMATIC storage. On exit, such procedures copy the values present
on entry from the stack back to the static frame. If a RECURSIVE
procedure calls a subroutine and passes an AUTOMATIC variable by
reference, it passes the address of the variable in the static
frame. If the subroutine then calls the original RECURSIVE
procedure, nonstandard results can occur.

You can avoid non-standard results if you always force the compiler
to pass an argument by value when making a call inside a RECURSIVE
procedure. To pass an argument by value, enclose the argument in
parentheses.

A.2 Differences between PL/I-80 and PL/I-86

PL/I-80 and PL/I-86 R1.0 do not check bounds for the precision given
in a DECLARE statement. For example, given the declaration

declare	x fixed binary(35);

the compiler supplies the maximum precision (15) without issuing a
warning message.

PL/I-80 and PL/I-86 R1.0 do not verify that a function procedure
contains a RETURN statement.

PL/I-80 and PL/I-86 R1.0 do not revert ON-units when exiting a BEGIN
block.

A-3
�PL/I Reference Manual	A.2 PL/I-80 vs. PL/I-86

PL/I-80 and PL/I-86 R1.0 do not create a dummy variable for a
constant argument. You can force the compiler to create a dummy
argument by enclosing the constant in parentheses.

PL/I-80 does not support comparison operations for FIXED BINARY
values whose sum or difference is greater than 32767 in absolute
value.

PL/I-80 and PL/I-86 R1.0 implement a condition stack which has 16
levels. In any given block, PL/I-80 and PL/I-86 R1.0 stack ON-units
for the same condition. Also, the same ON-unit established in an
embedded block is pushed onto the condition stack.

PL/I-86 Rl.l implements ON conditions correctly without
restrictions.

Note: PL/I-80 and PL/I-86 R1.0 allow a maximum of 16 ON-units to
be enabled at any given point in a program. Enabling more than 16
ON-units is a nonrecoverable error. The run-time system stops
processing and outputs the following message:

Condition Stack Overflow

In PL/I-80 and PL/I-86 R1.0, you cannot declare a variable based on
a pointer that is a member of a structure. For example, the
following declaration is invalid:
	declare
		1	my-structure,
			2 some-data fixed binary(7),
			2 p pointer,
		x	float binary based(p);

PL/I-80 produces relocatable object code in the Microsofte format.
This format restricts the length of external names to 6 characters.

PL/I-86 produces relocatable object code in the Intel(D format.
There are no restrictions on the length of external names with this
format.

PL/I-80 R1.4 and PL/I-86 Rl.l implement password protection for
files in the ENVIRONMENT attribute, and implement the LOCK and
UNLOCK built-in functions for locking and unlocking individual
records in a file. PL/I-86 R1.0 does not implement these features.

PL/I-80 R1.4 and PL/I-86 Rl.l implement double-precision FLOAT
BINARY data; PL/I-86 R1.0 does not.

A-4
�PL/I Reference manual	A.2 PL/I-80 vs. PL/I-86

PL/I-86 uses the IEEE format for representing single-precision,
floating-point data; PL/I-80 does not. Thus, there is a fundamental
data format incompatibility between PL/I-80 and PL/I-86. A PL/I-86
program cannot read floating-point data written to disk files with
PL/I-80. Appendix B contains descriptions of each format, and a
procedure for converting from PL/I-80 format to PL/I-86 format.

PL/I-86 Rl.l permits the characters @ (at sign) , and # (number sign)
to appear in identifiers.

In PL/I-86 R1.2, the COLLATE built-in function returns a character
string of length 256 instead of 128.

A.3 PL/I-86 Running Under DOS

The DOS operating system does not support password protection for
files, or record locking and unlocking for individual records. See
Section 10.1 or the Programmer's Guide for more information.

Under DOS, physical device names end with a colon. For example, the
system console is CON: and the system list device is LPT1: or PRN:.
Under CP/M, the corresponding names are $CON and $LST. See Section
10.1 or the Programmer's Guide for more information.

A.4 Summary of Differences

Table A-2 summarizes the differences among the various
implementations.

A-5
�PL/I Reference manual	A.4	Summary of Differences

Table A-2. Summary of Implementation Differences

Feature		PL/I-80		PL/I-80		PL/I-86		PL/I-86		PL/I-86		PL/I-86
			R1.3			R1.4 		R1.0			R1.0 D		Rl.l			R1.2
Object Code
format		Microsoft 	Microsoft 	Intel 		Intel 		Intel 		Intel

S.P. Floating
point format	non-IEEE 	non-IEEE 	IEEE		IEEE		IEEE		IEEE

D.P. Float
Binary data	No			Yes			No			No			Yes			Yes
Password
Protection 	No			Yes			No			No			Yes			Yes
Record Locking/
Unlocking	No			Yes			No			No			Yes			Yes
Condition
Stack Depth	16 levels		16 levels		16 levels		16 levels		unlimited		unlimited

Device Names	$CON,$LST	$CON,$LST	$CON,$LST	CON:,LPT1:	$CON,$LST 	$CON,$LST

@, # valid in
identifiers 	No			No			No			No			Yes			Yes
Length of string
returned by
COLLATE()	128			128			128			128			128			256
Variables based
on pointer in a
structure		No			No			No			No			Yes			Yes
Create dummy
variables for
constant
argument		No			No			No			No			Yes			Yes
Revert ON-units
when exiting
BEGIN block	No			No			No			No			Yes			Yes
FIXED BINARY
comparisons
> '32767'		No			No			Yes			Yes			Yes			Yes

BIFS not supported
			ATANH,COPY	ATANH,COPY	ATANH,COPY	ATANH,COPY	ATANH,COPY	ATANH
			DATE,REVERSE	DATE,REVERSE	REVERSE		REVERSE		REVERSE		STRING
			SEARCH,STRING	SEARCH,STRING	SEARCH,TRIM	SEARCH,TRIM	SEARCH,TRIM	VALID
			TIME,TRIM 	TIME,TRIM 	STRING,VALID	STRING,VALID	STRING,VALID
			VALID		VALID

End of Appendix A

A-6
�Appendix B
Internal Data Representation

This appendix describes PL/I internal data formats. This knowledge
is vital when using based variables to overlay storage so you do not
destroy adjacent storage locations. Knowledge of the internal data
representation is also useful when you want to interface assembly
language routines with high-level language programs and the PL/I
Run-time Subroutine Library.

Note: in this section PL/I applies to both PL/I-80 and PL/I-86
unless otherwise indicated.

B.1 FIXED BINARY Representation

PL/I stores FIXED BINARY data in one of two forms, depending upon
the declared precision. It stores FIXED BINARY values with
precision 1-7 in single-byte locations, and values with precision 8
15 in word (double-byte) locations. With multibyte storage, PL/I
stores the least significant byte at the lowest memory address.

PL/I represents all FIXED BINARY data in two's complement form,
allowing single-byte values in the range -128 to +127, and double
byte values in the range -32768 to +32767.

Figure B-1 shows the representation of storage in both single-byte
and double-byte locations for the values 0, 1, and -2. Each boxed
value represents a byte of memory, and is shown in both binary and
hexadecimal values.

B-1
�PL/I Reference Manual	B.1 FIXED BINARY Representation

0000 0000 0000 0000j

00 0

FIXED BINARY(7)	FIXED BINARY(15)

0000 0001 0000 00001

01 0

FIXED BINARY(7)	FIXED BINARY(15)

lill 1110 1111 lill

FE F

Figure B-1. FIXED BINARY Representation

B.2 FLOAT BINARY Representation

B.2.1 Single-precision

PL/I-80

PL/I-80 stores single-precision floating-point binary data in the
Microsoft format. This format uses four consecutive bytes, with the
32 bits containing the following fields: a 23-bit mantissa, a sign
bit, and an 8-bit exponent. The least significant byte of the
mantissa is in the lowest memory address.

I	exponent I s I 	mantissa

31	23 22	0

Figure B-2. PL/I-80 Single-precision Floating-point Format

The Microsoft format normalizes floating-point numbers so the most
significant bit of the mantissa is always 1 for nonzero numbers.
Because the most significant bit of the mantissa must be 1 for
nonzero numbers, this bit position is used for the sign. This is
called using an implicit, normalized bit, and the binary point is
considered to be immediately to the left of the normalized bit.

B-2
�PL/I Reference Manual	B.2		FLOAT BINARY Representation

To make certain kinds of comparisons easier, the binary exponent
byte has a bias of 128 (decimal) or 80 (hexadecimal), so that 81
represents an exponent of 1 while 7F represents an exponent of -1.
A zero mantissa has an exponent byte of 00.

Suppose a floating-point binary value appears in memory as
00 1 00 1 40T-811

3			2	1 	0

The bit-stream representation has the following form:

8		1	4	0	0	0	0 	0

1000 0001 0100 0000 0000 0000 0000 0000

When the bias is subtracted from the exponent, the true binary
exponent is 1.

	1000 0001
-1000 0000

0000 0001

The mantissa appears as

1 01100 0000 0000 0000 0000 0000
I si
The high-order bit equal to zero indicates that the sign is
positive. Restoring the implicit, normalized bit produces the bit
stream

1100 0000 0000 0000 0000 0000

Because the binary point is one position to the left of the implicit
normalized bit, the value of the mantissa is

1100 0000 0000 0000 0000 0000

1100 ... represents 2-1 + 2-2 . multiplying by the true exponent 21
we get

21 (2-		+ 2-2	2(1/2 + 1/4) = 1 + 1/2 = 1.5

Thus, the four-byte value:
1 00 1 00 1 40 18q

is the floating-point binary representation of the decimal number
1.5.

B-3
�PL/I Reference manual	B.2	FLOAT BINARY Representation

PL/I-86

PL/I-86 stores single-precision, floating-point binary numbers using
the IEEE format. This format uses four consecutive bytes, with the
32 bits containing the following fields: a 23-bit mantissa, an 8-bit
exponent, a sign bit. The least significant byte of the mantissa is
in the lowest memory address.

Isl exponent I mantissa 1
31 30	23 22 	0

Figure B-3. IEEE Single-precision Floating-point Format

The IEEE format normalizes floating-point numbers so the most
significant bit of the mantissa is always 1 for nonzero numbers.
Because the most significant bit of the mantissa must be 1 for
nonzero numbers, this bit is not stored. This is called using an
implicit, normalized bit, and the binary point is considered to be
immediately to the right of the normalized bit.

In IEEE format (single-precision) , the binary exponent has a bias of
127 (decimal) or 7F (hexadecimal) so 80 represents an exponent of +1
while 7E represents an exponent of -1.

Suppose a floating-point binary value appears in memory as
_F7
1 00 100 jC0 3F

3	2	1 	0

The bit-stream representation has the form:

3	F	C	0	0	0	0 	0

0011 1111 1100 0000 0000 0000 0000 0000

The high-order bit equal to zero indicates the sign is positive, and
the exponent has a bias of 7F, so the true binary exponent is 0.

0	0111111111 1000 0000 0000 0000 0000 000

s

Restoring the implicit, normalized bit, produces the bit stream:

1100 0000 0000 0000 0000 0000

B-4
�PL/I Reference Manual	B.2		FLOAT BINARY Representation

Because the binary point is one position to the right of the
implicit, normalized bit, the value of the mantissa is

1 100 0000 0000 0000 0000 0000

1 1 in binary represents 20+2-1. Multiplying by the true exponent
20, we get

20 (20 + 2-1		1 (1 + 1/2) = 1 + 1/2 = 1. 5

Thus, the four-byte value:

Fj

is the floating-point binary representation of the decimal number
1.5.

You can convert data written in the non-IEEE format to the IEEE
format by using the procedure in Listing B-1.

B-5
�PL/I Reference Manual	B.2	FLOAT BINARY Representation

SPBOT086: procedure(f) returns(float binary(24));

declare
	(f,r) float binary(24),
	b fixed binary(7),
	(fp,rp) pointer;
	declare
1 f80 based (fp)
	2 (word0,wordl) bit(16);
	declare
1 f86 based(rp),
	2 (word0,wordl) bit(16);
	declare
1 f80over based(fp),
2 (byte0,bytel,byte2,byte3) fixed binary(7);

fp = addr(f);
rp = addr(r);
r = f; /* copy the whole source to target */

/* copy exponent and adjust bias by 2: */
1 for 127 vs 128, 1 for 1. not .1

b = byte3 - 2;
substr(rp->f86.wordl,2,8) = unspec(b);

/* copy sign bit */
substr(rp->f86.wordl,1,1) = substr(fp->f80.wordl,9,l);
return(r);
end SP80T086;

Listing B-1. Floating-point Format Conversion Procedure

B.2.2 Double-precision

PL/I-80 R1.4 and PL/I-86 R1.1 store double-precision, floating-point
binary data using the IEEE format. This format uses eight
consecutive bytes, with the 64 bits containing the following
fields: a 52-bit mantissa, an 11-bit exponent, and a sign-bit.

	s I expon(mantissa	I
63 62	51 		0

Figure B-4. Double-precision Floating-Point Format
�PL/I Reference Manual	B.2		FLOAT BINARY Representation

The IEEE format normalizes floating-point numbers so the most
significant bit of the mantissa is always 1 for nonzero numbers.
Because the most significant bit of the mantissa must be 1 for
nonzero numbers, this bit is not used for the sign. This is called
using an implicit normalized bit, and the binary point is considered
to be immediately to the right of the normalized bit.

In IEEE format (double-precision) , the exponent has a bias of 1023
(decimal) or 3FF (hexadecimal) so 400 represents an exponent of +1
while 3FE represents an exponent of -1.

For example, suppose that a floating-point binary value appears in
memory as shown in the following example:

)IOOIC01431COI

Low	High

In this case, the mantissa is a bit stream of the form,

3		C 	0

0011 1100 0000 . . .

Restoring the implicit, normalized bit produces

1001 1110 0000 . . .

The exponent evaluates as follows:

C		0 	4

1100 0000 0100

The high-order bit is 1 so the sign is negative. Ignoring the sign
bit yields an exponent of

4		0 	4
0100 0000 0100

which has a bias of 3FF, so the true binary exponent is

	404
-3FF

5

B-7
�PL/I Reference Manual	B.2	FLOAT BINARY Representation

Therefore, the binary number is

1001 11 10 0000 . ..

which is 39.5 in decimal. Thus, the eight-byte value:
I 001001001001001CO1431CO

is the double-precision float-binary representation of the decimal
number -39.5.

B.3 FIXED DECIMAL Representation

PL/I stores FIXED DECIMAL data items in ten's complement packed BCD
(Binary Coded Decimal) form. Each BCD digit occupies a half-byte,
or nibble. PL/I stores the least significant BCD pair at the lowest
memory address, with one BCD digit position reserved for the sign.
Positive numbers have a 0 sign, while negative numbers have a 9 in
the high-order sign digit position.

The number of bytes occupied by a FIXED DECIMAL number depends upon
its declared precision. Given a decimal number with precision p,
PL/I reserves a number of bytes equal to

FLOOR((p + 2)/2)

where p varies between 1 and 15. This results in a minimum of 1
byte and a maximum of 8 bytes to hold a FIXED DECIMAL data item.

For example, if you declare the number 12345 with precision 5, then
PL/I reserves FLOOR((5 + 2)/2) = 3 bytes of storage and represents
the number as the following:

45	23	01

PL/I stores negative FIXED DECIMAL numbers in ten's complement form.
To derive the ten's complement of a number, first derive the nine's
complement and then add 1 to the result. For example, the number -2
expressed in ten's complement is

(9 - 2) + 1 = 8

Adding the sign digit gives

98

If you declare -2 with precision 5, then PL/I represents it as
98 1 99 1 9fl

B-8
�PL/I Reference Manual	B.4		CHARACTER Representation

BA		CHARACTER Representation

PL/I stores character data in one of two forms, depending upon the
declaration. It stores fixed-length character strings, declared as
CHARACTER(n) in n contiguous bytes, with the first character in the
string stored lowest in memory.

PL/I reserves n+l bytes for variables declared as CHARACTER(n)
VARYING with the extra byte holding the length of the character
string. The length can range from 0 to 254. The maximum length of
either type of string is 254 characters.

As an example, suppose the variable A is declared as CHARACTER(20).
The assignment

A = 'Walla Walla Wash';

results in the following storage allocation:

1WIallIllalWlWlalllllalylWlalsihlVlglXlklI
where b represents a blank. If A is declared as CHARACTER(20)
VARYING data, PL/I stores the same string as
1 101 W jai 11 11 al O(JWJaJ 11 11 al I/JWJaJ sl h llel)61J~1)61
where 10 is the (hexadecimal) string length.

B.5 BIT Representation

PL/I represents bit-string data in two forms, depending upon the
declared precision. It stores bit strings of length 1-8 in a single
byte, and bit strings of length 9-16 in a word (double-byte) value.
PL/I stores the least significant byte of a word value at the lowest
memory address. Bit values are stored left-justified, and if the
precision is not exactly 8 or 16 bits, the bits to the right are
ignored.

Figure B-5 shows the storage for the bit-string constant values
'1'b, 'A0'b4, and '1234'b4 in both single- and double-byte
locations. Each boxed value represents a byte.

B-9
�PL/I Reference Manual	B.5	BIT Representation

		BIT(8)		BIT(16)
	F-1-0 0-070 070~fl	0 0 0 0 0 0 0 0 1 T-00-07-0-0 070
		BIT(8)		BIT(16)
	F1_0 _10 _0 0_0 _0~	10000 000011010 00001
		BIT(8)		BIT(16)
		N/A	1 0011 010010001 007170]

Figure B-5. Bit-string Data Representation

B.6 POINTER Data

PL/I-80 and PL/I-86 R1.0 store variables that provide access to
memory addresses as two contiguous bytes. The low-order byte is
stored at the lowest memory address. POINTER data items appear as
LS	I 	MS

where LS denotes the least significant byte of the address, and MS
denotes the most significant byte.

B.7 ENTRY and LABEL Data

PL/I-80 and PL/I-86 R1.0 store ENTRY and LABEL data as two
contiguous bytes. The low-order byte is stored at the lowest memory
address. ENTRY and LABEL data items appear as
I LS I MS7

where LS denotes the least significant byte of the address, and MS
denotes the most significant byte.

PL/I-86 Rl.l allocates 8 bytes for ENTRY and LABEL data items. The
8 bytes contain the following fields:
I Offsetl Code segment I stack Frame Istac
2	2	2	2

B.8 File Constant Representation

PL/I associates each file constant with a File Parameter Block
(FPB). The FPB occupies 57 contiguous bytes containing various
fields, some of which are implementation dependent.

B-10
�PL/I Reference Manual	B.8 File Constant Representation

Note: each file declaration causes a static allocation for the
associated FPB. When you open the file, there is an additional
overhead for the operating system FCB and buffer space. The run
time system dynamically allocates this storage from the free storage
area.

B.9 Aggregate Storage

PL/I stores aggregate data items contiguously with no filler bytes.
Bit data is always stored unaligned, but each bit variable starts on
a new byte. Arrays are stored in row-major order, with the
rightmost subscript varying fastest.

For example, the declaration:
	declare A(2,2,2);
results in the following storage allocation:
11,1,11111,211,2,111,2,212,1,1 1 2,1,2 1 2,2,112,27,2
low 	high

End of Appendix B

B-11
�Appendix C
Interface Conventions

This appendix describes a standard set of conventions for
interfacing PL/I programs with assembly language routines and with
programs written in other high-level languages.

Note: in this section PL/I applies to both PL/I-80 and PL/I-86
unless otherwise indicated.

C.1 Parameter Passing Using a Parameter Block

You can pass parameters between a PL/I program and an assembly
language routine by loading a register pair with the address of a
Parameter Block containing pointer values. These pointers in turn
lead to the actual parameter values. The number of parameters and
the parameter length and type must be determined implicitly by
agreement between the calling program and called subroutine. Figure
C-1 illustrates the concept. The address fields are arbitrary.

Register Pair		Parameter Block	Parameters

HL (8080)		1000:	2000	a-2000:	parameter

	1000
i~ 	3000
BX (808b)	4000	3000:		parameter2

4000:		parameter 3

500

5000		parameter 71

Figure C-1. PL/I Parameter Passing Mechanism

The following example illustrates this parameter passing mechanism.
Suppose a PL/I program uses a considerable number of floating-point
divide operations, where each division is by a power of two.
Suppose also that the iterative loop where the divisions occur is

C-1
�PL/I Reference Manual	C.1 Using a Parameter Block

speed-critical, and that it is useful to have an assembly language
subroutine to perform the division.

The assembly language routine simply decreases the binary exponent
of the floating-point number for each power of two in the division.
Decreasing the exponent effectively performs the divide operation
without the overhead involved in unpacking the number, performing
the general division operation, and repacking the result. During
the division, the assembly language routine can produce underflow,
and must signal the UNDERFLOW condition to the PL/I program if this
occurs.

The following three listings show programs that demonstrate
parameter passing. Listing C-1 shows the program DTEST, which tests
the division operation. Listing C-2 shows DIV2.ASM, the 8080
assembly language subroutine that performs the division. On line 8,
DTEST defines DIV2 as an external entry constant with two
parameters: a FIXED(7) and a floating-point binary value. Listing
C-3 shows DIV2.A86, which is the same subroutine in 8086 assembly
language.

on each iteration of the DO-group, DTEST stores the test value 100
into f (line 13), and passes it to the DIV2 subroutine (line 14).
At each call to DIV2, DTEST changes the value of f to f/(2**i) and
prints it using a PUT statement. At the point of call, DIV2
receives two addresses that correspond to the two parameters i and f.

Upon entry, DIV2 loads the value of i to the accumulator, and sets
the appropriate register pair to point to the exponent field of the
input floating-point number. If the exponent is zero, DIV2 returns
immediately, because the resulting value is zero.

Otherwise, the subroutine loops at the label dby2 while counting
down the exponent as the power of two diminishes to zero. If the
exponent reaches zero during this counting process, DIV2 signals the
UNDERFLOW condition.

In DIV2, the call to ?signal demonstrates the assembly language
format for parameters that use the interface. The ?signal
subroutine is part of the PL/I Run-time Subroutine Library (PLILIB) .

This subroutine loads the appropriate register pair with the address
of the Signal Parameter List, denoted by siglst. The Signal
Parameter List, in turn, is a Parameter Block of four addresses
leading to the signal code sigcode, the signal subcode sigsub, the
filename indicator sigfil (not used here) , and the auxiliary message
sigaux that is the last parameter.

The auxiliary message can provide additional information when an
error occurs. The signal subroutine prints the message until it
either exhausts the string length (32, in this case), or encounters
a binary 00 in the string.

C-2
�PL/I Reference manual	C.1 Using a Parameter Block

Listing C-4 shows the abbreviated output from this test program.
The loop counter i becomes negative when it reaches 128, but the
DIV2 subroutine treats this value as an unsigned magnitude value;
thus UNDERFLOW occurs when i reaches -123.

	1		a
	2		a	/* This program tests an assembly language routine to
	3		a	/* do floating-point division.
	4		a
	5		a 	dtest:
	6		b	procedure options(main);
	7		b	declare
	8		b		div2 entry(fixed(7),float),
	9		b		i fixed(7),
	10		b		f float;
	11		b
	12		c	do i = 0 by 1;
	13		c			f = 100;
	14		c			call div2(i,f);
	15		c			put skip list('100 / 2
	16		c	end;
	17 		b
	18 bL- end dtest;

Listing C-1. The DTEST Program

C-3
�PL/I Reference Manual	C.1 Using a Parameter Block

title	'division by power of two'
public	div2
extrn 	?signal
entry:
pl		fixed(7) power of two
p2		floating-point number
exit:
pl		(unchanged)
p2		p2 / (2**pl)
div2: 				;HL =	low(.pl)
		mov	e,m		;low(.Pl)
		inx	h		;HL =	high(.pl)
		mov	d,m		;DE =	pl
		inx	h		;HL =	low(p2)
		ldax	d		;a = pl (power of two)
		mov	e,m		;low(.p2)
		inx	h		;HL =	high(.p2)
		mov	d,m		;DE =	p2
		xchg			;HL = 	p2

;A = power of 2, HL = low byte of fp num

		inx	h		;to middle of mantissa
		inx	h		;to high byte of mantissa
		inx	h		;to exponent byte
		inr	m
		dcr	m		;p2 already zero?
		rz			;return if so
dby2:	;divide by two
		ora	a		;counted power of 2 to zero?
		rz			;return if so
		dcr	a		;count power of two down
		dcr	m		;count exponent down
		jnz	dby2	;loop again if no underflow

;underflow occurred, signal underflow condition

		lxi	h,siglst;signal parameter list
		call	?signal	;signal underflow
		ret		;normally, no return
		dseg
siglst:	dw	sigcod	;address of signal code
		dw	sigsub	;address of subcode
		dw	sigfil 	;address of file code
		dw	sigaux	;address of aux message

;end of parameter vector, start of params

sigcod:	db	3		;03 = underflow
sigsub:	db	128		;arbitrary subcode for id
sigfil:	dw	0000 	;no associated file name
sigaux:	dw	undmsg	;0000 if no aux message
undmsg:	db	32,'Underflow in Divide by Two',0
		end

Listing C-2. DIV2.ASK Assembly Language Program (8080)

C-4
�PL/I Reference Manual	C.1 Using a Parameter Block

Routine to divide single precision float value by 2

cseg
public		div2
extrn 		?signal:near

entry:
pl		fixed(7) power of two
p2		floating point number
exit:
pl		(unchanged)
p2		p2 / (2**pl)

div2:	;BX = 		low(.pl)
		mov		si,[bx]	;SI =	pl
		mov		bx,2[bx]	;BX =	p2
		lods		al	;AL = pl (power of 2)

;AL = power of 2, BX = low byte of fp num

		cmp		byte ptr 3[bx],O	;p2 already zero?
		jz	done	;exit if so
dby2:				;divide	by two
		test	al,al		;counted power of 2 to zero?
		jz	done	;return if so
		dec	al		;count power of two down
		sub	word ptr 2[bxl,80h	;count exponent down
		test	word ptr 2[bxl,7f8Oh	;test for underflow
		jnz	dby2	;loop again if no underflow

;Underflow occurred, signal underflow condition

		mov	bx,offset siglst,-signal parameter list
		call	?signal	;signal underflow
done:	ret			;normally, no return
		dseg
siglst	dw	offset sigcod	;address of signal code
		dw	offset sigsub	;address of subcode
		dw	offset sigfil	;address of file code
		dw	offset sigaux	;address of aux message
;end of parameter vector, start of params

sigcod	db	3		;03 = underflow
sigsub	db	128		;arbitrary subcode for id
sigfil		dw	0000 	;no associated file name
sigaux	dw	offset undmsg	;0000 if no aux message
undmsg	db	32,'Underflow in Divide by Two',0

		end

Listing C-3. DIV2.A86 Assembly Language Program (8086)

C-5
�PL/I Reference Manual	C.1 Using a Parameter Block

A>dtest

100	2	0	=	1.000000E+02
100	2	1	=	5.000000E+01
100	2	2	=	2.500000E+01
100	2	3	=	1.250000E+01
100	2	4	=	0.625000E+01
100	2	5	=	3.125000E+00
100	2	6	=	1.562500E+00
100	2	7	=	0.781250E+00
100	2	8	=	3.906250E-01
100	2	9	=	1.953125E-01
100	2	10	=	0.976562E-01
100	2	127	=	0.587747E-36
100	2	-128	=	2.938735E-37
100	2	-127	=	1.469367E-37
100	2	-126	=	0.734683E-37
100	2	-125	=	3.673419E-38
100	2	-124	=	1.836709E-38
100	2	-123	=	0.918354E-38
100	2	-122	= 	4.591774E-39
UNDERFLOW (128), Underflow in Divide By Two
Traceback: 017F 011B
A>

Listing C-4. DTEST Output (Abbreviated)

C.2 Returning Values in Registers or on the Stack

As an alternative to returning values through a Parameter Block,
PL/I has subroutines that produce function values that are then
returned directly in the registers or on the stack. This section
shows the conventions for returning data as functional values.
References to 8086 registers are in parentheses.

C.2.1 Returning FIXED BINARY Data

Functions that return FIXED BINARY data items do so by leaving the
result in a register, or register pair, depending upon the precision
of the data item.

PL/I returns FIXED BINARY data with precision 1-7 in the A(AL)
register, and data with precision 8-15 in the HL(BX) register pair.
It is always safe to return the value in HL (BX) , and copy the low
order byte to A(AL) so register A(AL) is equal to register L(BL)
upon return.

C-6
�PL/I Reference Manual	C.2 Using Registers or the Stack

C.2.2 Returning FLOAT BINARY Data

PL/I-80 R1.4 returns single-precision, floating-point numbers on the
stack as four contiguous bytes in the Microsoft format. The low
order byte of the mantissa is at the top of the stack, followed by
the middle byte, then the high byte. The fourth byte is the
exponent of the number. The high-order bit of the mantissa is the
sign bit.

For example, the value 1.5 is returned as

!0010014018		(low stack)
t
SP

PL/I-86 R1.0 returns single-precision, floating-point numbers on the
stack as four contiguous bytes in the IEEE format. The low-order
byte of the mantissa is at the top of the stack, followed by the
middle byte, then the high byte. The high-order bit is the sign
bit, and the low-order bit of the exponent is in the high-order byte
of the mantissa.

For example, the value 1.5 is returned as

LI
00,001C013F1 (low stack)

SP

PL/I-80 R1.4 and PL/I-86 Rl.l return double-precision, floating
point numbers as eight contiguous bytes on the stack. The low-order
byte of the mantissa is at the top of the stack. The exponent
occupies three nibbles: the eighth byte, and the high-order nibble
of the seventh byte.

For example, the value -39.5 is returned as

L00		- - CO 431CO	(low stack)
l*~ 0 01 0 0 1
SP

C.2.3 Returning FIXED DECIMAL Data

PL/I returns FIXED DECIMAL data on the stack as 8 contiguous bytes.
The low-order BCD pair is at the top of the stack. The number is
represented in ten's complement form, and sign-extended through the
high-order digit position, with a positive sign denoted by 0, and a
negative sign denoted by 9.

For example, PL/I returns the decimal number -2 as

19819919919~ 	91 (low stack) 		-->

SP

C-7
�PL/I Reference Manual	C.2	Using Registers or the Stack

C.2.4 Returning CHARACTER Data

PL/I-80 and PL/I-86 R1.0 return CHARACTER data items on the stack,
with the length of the string in a register. For example, the
string

'Walla Walla Wash'

is returned as shown:

A	(8080)
-Ts
-Ta	h] (low stack)
Fl _0~	bJWJaJlJlJaFW [W 	T
AL (8086)

SP

where register contains the string length 10 (hexadecimal), and the
Stack Pointer SP addresses the first character in the string.

PL/I-86 Rl.l returns CHARACTER data items on the stack as varying
length string with the 4-byte length field first. For example, the
string:

'Walla Walla Wash'

is returned as
1 10100100100 - I_WJaJlJlJaJ	(low stack)
f
SP

C.2.5 Returning BIT Data

PL/I returns bit-string data in a register, or register pair,
depending upon the precision of the data item.

PL/I returns bit strings of length 1-8 in the A(AL) register, and
bit strings of length 9-16 in the HL(BX) register pair. Bit strings
are left justified in their fields, so the BIT(l) value true is
returned in the HL(BX) register as 80 (hexadecimal) . It is safe to
return a bit value in the HL(BX) register pair and copy the high
order byte in A(AL), so register A(AL) is equal to register H(BH)
upon return.

C.2.6 Returning POINTER Variables

PL/I-80 and PL/I-86 return POINTER variables in the HL(BX) register
pair. When returning a label variable that can be the target of a
GOTO operation, the subroutine containing the label must restore the
stack to the proper level when control reaches the label.

C-8
�PL/I Reference Manual	C-2		Using Registers or the Stack

C.2.7 Returning ENTRY and LABEL Variables

PL/I-80 R1.4 and PL/I-86 R1.0 return ENTRY and LABEL variables in
the HL(BX) register pair. When returning a label variable that can
be the target of a GOTO operation, the subroutine containing the
label must restore the stack to the proper level when control
reaches the label.

PL/I-86 R1.1 returns ENTRY and LABEL variables on the stack as 8
contiguous bytes. The low-order byte is at the top of the stack.
Offseti Code segment I Stack Framel Stack	(low stack)-
f
bil

The following program listings illustrate the concept of returning a
functional value. Listing C-5 shows the program called FDTEST that
is similar to the previous floating-point divide test. However,
FDTEST includes an entry definition for an assembly language
subroutine called FDIV2 that returns the result on the stack.
Listing C-6 shows FDIV2.ASM in 8080 assembly language, and Listing
C-7 shows FDIV2.A86, the same routine in 8086 assembly language.

FDIV2 resembles the previous subroutine DIV2 with some minor
changes. First, FDIV2 loads the input floating-point value into the
BC(CX) and DE(DX) registers so that it can manipulate a temporary
copy and not effect the original input value. FDIV2 then decreases
the exponent field in register B(CH) by the input count, and returns
it on the stack before executing the PCHL instruction.

	1			a
	2			a	/* This program tests the assembly language routine	*/
	3			a	/* called FDIV2 which returns a FLOAT BINARY value.	*/
	4			a
	5			a	fdtest:
	6			b		procedure options(main);
	7			b		declare
	8			b		fdiv2 entry(fixed(7),float) returns(float),
	9			b		i fixed(7),
	10			b		f float;
	11			b
	12			c		do i = 0 by 1;
	13			c		put skip list('100 / 2 **',i,'=',fdiv2(i,l00));
	14			c		end;
	15			b
	16			b	end fdtest;

Listing C-5. The FDTEST Program

C-9
�PL/I Reference Manual	C.2 Using Registers or the Stack

title	'div by power of two (function)'
public	fdiv2
extrn	?signal
entry:
pl	fixed(7) power of two
p2	floating-point number
exit:
pl 	(unchanged)
p2	(unchanged)
stack:	p2	(2 ** pl)
fdiv2:				;HL = low(.pl)
		mov	e,m		;low(.pl)
		inx	h		;HL = high(.pl)
		mov	d,m		;DE = pl
		inx	h		;HL = low(p2)
		ldax	d		;a = pl (power of two)
		mov	e,m		;low(.p2)
		inx	h		;HL = high(.p2)
		mov	d,m		;DE = p2
		xchg			;HL = p2

A = power of 2, HL = low byte of fp num

		mov	e,m		;E = low mantissa
		inx	h		;to middle of mantissa
		mov	d,m		;D = middle mantissa
		inx	h		;to high byte of mantissa
		mov	C'm		;C = high mantissa
		inx	h		;to exponent byte
		mov	b,m		;B = exponent
		inr	b		;B = 00?
		dcr	b		;becomes 00 if so
		jz	fdret 	;to return from float div

dby2:	;divide by two
		ora	a		;counted power of 2 to zero?
		jz	fdret 	;return if so
		dcr	a		;count power of two down
		dcr	b		;count exponent down
		jnz	dby2 	;loop again if no underflow

;underflow occurred, signal underflow condition
		lxi	h,siglst	;signal parameter list
		call	?signal	;signal underflow
		lxi	b,0		;clear to zero
		lxi	d,0		;for default return
fdret:	pop	h		;recall return address
		push b		;save high order fp num
		push d		;save low order fp num
		pchl			;return to calling routine

Listing C-6. FDIV2.ASK Assembly Language Program (8080)

C-10
�PL/I Reference Manual	C.2 Using Registers or the Stack

		dseg
siglst:	dw	sigcod	;address of signal code
		dw	sigsub	;address of subcode
		dw	sigfil 	;address of file code
		dw	sigaux	;address of aux message

;end of parameter vector, start of params

sigcod:	db	3		;03 = underflow
sigsub:	db	128		;arbitrary subcode for id
sigfil:	dw	0000 	;no associated file name
sigaux:	dw	undmsg	;0000 if no aux message
undmsg:	db	32,'Underflow in Divide by Two',0
		end

Listing C-6. (continued)

;Division by power of two (function)
		cseg
public	fdiv2
extrn	?signal:near

entry:
pl		fixed(7) power of two
p2		floating point number
exit:
pl 		(unchanged)
p2		(unchanged)
stack:	p2	(2 ** pl)

fdiv2:				;BX = low(.pl)
		mov	si,[bxl	;SI =	p1
		lods	al		;AL = pl (power of 2)
		mov	bx,2[bx]	;BX = p2

;AL = power of 2, BX = low byte of fp num

		mov	dx,[bxl	;DX = low and middle mantissa
		mov	cx,2[bx]	;CL = high mantissa, CH = exponent
		test	cx,7f80h	;exponent zero?
		jz	fdret 	;to return from float div

Listing C-7. FDIV2.A86 Assembly Language Program (8086)

C-11
�PL/I Reference Manual		C.2	Using Registers or the Stack

dby2:				;divide by two
		test	al,al		;counted power of 2 to zero?
		jz	fdret 	;return if so
		dec	al		;count power of two down
		sub	cx,80h	;count exponent down
		test	cx,7f80h	;test for underflow
		jnz	dby2 	;loop again if no underflow

;Underflow occurred, signal underflow condition

		mov	bx,offset siglst;signal parameter list
		call	?signal	;signal underflow
		sub	cx,cx 	;clear result to zero for default return
		mov	dx,cx

fdret:	pop	bx		;recall return address
		push cX		;save high order fp num
		push dx		;save low order fp num
		imp	bx		;return to calling routine

		dseg
siglst	dw	offset sigcod	;address of signal code
		dw	offset sigsub	;address of subcode
		dw	offset sigfil 	;address of file code
		dw	offset sigaux	;address of aux message

;end of parameter vector, start of params

sigcod	db	3		;03 = underflow
sigsub	db	128		;arbitrary subcode for id
sigfil 	dw	0000 	;no associated file name
sigaux	dw	offset undmsg	;0000 if no aux message
undmsg	db	32,'Underflow in Divide by Two',0

		end

Listing C-7. (continued)

C.3 Direct Operating System Function Calls

You can have direct access to all the operating system functions
through the optional subroutines in assembly language programs that
are included in source form on your PL/I sample program disk. The
sample program disk also contains the file RELNOTES.PRN which
describes these assembly language programs and several PL/I programs
that test the various function calls.

The subroutines in these programs are not included in the standard
PLILIB because specific applications might require changes to the
system functions that either remove operations to decrease space or
alter the interface to a specific function. If the interface to a
function changes, you must change the entry point to avoid
confusion.

End of Appendix C

C-12
�Appendix D
Compiler Options

Table D-1 lists the compiler options and gives a brief description
of their use. In each case, the single-letter option follows the $
symbol in the command line. You can specify a maximum of seven
options following the dollar sign. The default mode using no
options compiles the program but produces no source listing and
sends all error messages to the console.

Table D-1. PL/I Compiler Options

Option	Action Enabled

A		Abbreviated listing. Disables the listing of
parameter and %INCLUDE listings statements during
the compiler's first pass.

B		Built-in subroutine trace. Shows the Run-time
Subroutine Library functions that are called by your
PL/I program.

D		Disk file print. Sends the listing file to disk,
using the filetype PRN.

I		Interlist source and machine code. Decodes the
machine language code produced by the Compiler in a
pseudo-assembly language form.

K		Same as A. (8080 implementations)

L		List source program. Produces a listing of the
source program with line numbers and machine code
locations (automatically set by the I switch).

N		Nesting level display. Enables a pass 1 trace that
shows exact balance of DO, PROCEDURE, and BEGIN
statements with their corresponding END statements.

O		Object code off. Disables the output of relocatable
object code normally produced by the Compiler.

P		Page mode print. Inserts form-feeds every 60 lines,
and sends the listing to the printer.

S		Symbol Table display. Shows the program variable
names, along with their assigned, defaulted, and
augmented attributes.

End of Appendix D

D-1
�Appendix E
Error Messages and Condition Codes

PL/I can detect two kinds of errors: compilation errors and run-time
errors. The compiler marks each compilation error with a ?
character near the position of the error in the line, and an error
message following the line containing the error. The ? might follow
the actual error position by a few columns. In some cases, an error
on one line can lead to errors on subsequent lines.

PL/I categorizes errors as either recoverable or nonrecoverable.
Most compilation errors are recoverable, and the compiler continues
processing the source file. However, some compilation errors are
nonrecoverable. The compiler stops processing and control
immediately returns to the operating system.

The run-time system detects errors while the program is running.
Most run-time errors are recoverable if intercepted by an ON-unit.
However, some run-time errors are nonrecoverable. The program stops
and control immediately returns to the operating system.

This appendix lists the error messages that appear in each
implementation. The errors are listed in the following order:

·	General errors
·	Compilation errors (by pass)
·	Run-time errors

Note: all nonrecoverable errors are marked with an asterisk.

E-1
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

E.1	PL/I-80 RIA and PL/I-86 R1.0

Table E-1. General Errors

Error 	Description
DIR FULL*
	There is no more space available in the
	operating system's disk directory. You
	should erase all unnecessary files and try
	again.
DISK FULL*
	There is no more disk file space
	available. You should erase all
	unnecessary files and try again.
INVALID INCLUDE
	There is a syntax error in an %INCLUDE
	statement. The %INCLUDE statement has the
	general form
	%include 'd:filename.typ';
	where d is the (optional) drive, and
	filename.typ is the file specification.
LENGTH
	The item exceeds the maximum field width
	for the keyword or data item (31
	characters for identifiers, 128 for
	strings).
NO FILE x*
	The file x is not on the disk. If x is of
	type PLI, then ensure that your source
	file is on the named disk. If the type is
	OVR, or OVL, then ensure that all three
	PL/I compiler overlays (PLI0, PLI1, PL12)
	are on the default disk.

E-2
PL/I Reference Manual	PL/I-80R1.4 and PL/I-86 R1.0

Table E-1. (continued)

Error	Description

OUT OF MEMORY

The size of your system's Transient
Program Area (TPA) is too small. You must
re-configure the system.

READ ONLY X*

PL/I cannot close the file named x. This
is typically caused by disk that is set to
Read-Only through hardware.

TERMINATED.*

The number of compilation errors exceeds
255, or the compilation has been
terminated at the console by the user.

TRUNC

A line exceeds 120 characters in length
and has been truncated.

UNEXPECTED EOF*

The compiler has encountered the end of
the source program before the logical end
of program. This is typically due to
unbalanced block levels (recompile with
the $n option for a nesting trace) , or
unbalanced comments and strings (check
balance for missing */ or apostrophe
characters).

VALUE

Indicates that the converted number
exceeds the 16-bit capacity for FIXED
BINARY constants (-32768, +32767).

E-3
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-2. Compilation Errors

Pass 1 Errors

Error 	Description
BAD VAL
	The constant encountered in a format is
	invalid for this format item.
BALANCE
	The left and right parentheses for the
	expression are not balanced.
BLOCK AT LINE 	x VARIABLE v EXCEEDS STORAGE
	The block beginning at source line x
	contains a variable v that caused the
	collective allocation of storage to exceed
	65535 bytes.
BLOCK OVERFLOW
	The nesting level of PROCEDURE, DO, and
	BEGIN blocks exceeds thirty-one levels.
	You must simplify the program structure
	and try again.
CONFLICT
	The data attributes given in a DECLARE
	statement conflict with one another.
DUPLIC
	The indicated variable is declared more
	than once within this block.
LABEL
	The label for this statement is not
	properly formed. Only one label per
	statement is allowed, and subscripted
	label constants must have constant
	indices.

-,-IN

E-4
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-2. (continued)

Error	Description
LENGTH
	The length of the indicated symbol exceeds
	the maximum symbol size. You must
	simplify the structure and try again.
	This error can also be caused by an
	unbalanced string.
NESTED REP
	The %REPLACE statement is improperly
	placed in the block structure. All
	%REPLACE statements must occur at the
	outer block level before the occurrence of
	nested inner blocks.
NO DCL: vl, 		v2, ... vn
	The listed procedure parameters occurs in
	the procedure header, but are not declared
	within the procedure body.
NOT BIF
	The BUILTIN attribute is applied to an
	identifier that is not a PL/I built-in
	function.
NOT IMP
	The statement uses a feature that is not
	implemented in PL/I.
NOT VARIABLE
	The declared name is treated as a
	variable, but does not have the VARIABLE
	attribute.

E-5
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-2. (continued)

Error 	Description
NUMBER
	A numeric constant is required at this
	position in the format.
ON BODY
	An invalid statement occurs in the ON
	condition body. You cannot use a RETURN
	statement to exit from an ON-unit. DO and
	IF statements require an enclosing
	BEGIN ... END block.
PICTURE
	There is a syntax error in a Picture
	specification or P format item.
RECUR PROC
	A recursive procedure contains an invalid
	nested block. Only embedded DO-groups are
	allowed in recursive procedures.
STRUCTURE
	The indicated structure is improperly
	formed. Nesting levels cannot exceed 255.
SYMBOL LENGTH 	OVERFLOW
The maximum symbol size is exceeded during
construction of the Symbol Table entry.
You must simplify the program and try
again.
SYMBOL TABLE 	OVERFLOW*
This program cannot be compiled in the
current memory size. You must break the
module into separate compilations, or
increase the size of the TPA on your
system.

E-6
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-2. (continued)

Error	Description
SYNTAX
	There is a syntax error in the specified
	statement. See the appropriate section of
	the PL/I Language Reference Manual for
	proper syntax.
	Pass 2 Errors
AGG VAL
	The actual parameter is an aggregate value
	that does not match the formal parameter.
	Change the actual or formal parameter to
	match.
ARG COUNT
	One of the following errors occurs: a
	subscript count does not match the
	declaration; there is a DEFINED reference
	to an array element; there are more than
	15 bound pairs; some bound pairs do not
	match; or the formal and actual parameter
	count does not match.
BASE
	There is an invalid based variable
	reference. This can occur when a pointer
	qualifier references a nonbased variable,
	or when a variable is declared BASED(x),
	where x is not a simple pointer variable
	or simple pointer function call, as in
	BASED(P) or BASED(Qo).
BASED REQ
	A based variable is required in this
	context.

E-7
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-2. (continued)

Error 	Description
BAD TYPE
	The control variable in an iterative DO
	group is invalid. Only scalar variables
	are allowed.
BAD VALUE
	There is an invalid argument to a built-in
	function.
BALANCE
	The left and right parentheses for this
	expression are unbalanced.
BIT CON
	A bit substring constant is out of range.
	The third argument to bit SUBSTR must be a
	constant in the range 1 to 16.
BIT REQ
	A bit expression is required in this
	context.
CLOSURE
	The label following the END does not match
	the name on the corresponding block.
COMP REQ
	A noncomputational expression is used
	where a computational expression is
	required.
COMPILER
	A compiler error has occurred. The error
	might be due to previous errors.

E-8
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-2. (continued)

Error	Description
CONFLICT
	Data attributes are in conflict, or the
	attributes in an OPEN statement are not
	compatible.
CONVERT
	The compiler cannot convert the constant
	to the required type.
EXPRESSION 		OVERFLOW*
	The expression overflows the compiler's
	internal structures. You must simplify
	the program and try again.
ID REQ
	An identifier is required in this context.
INT REQ
	An integer (FIXED BINARY) expression is
	required in this context.
LABEL
	An improperly formed label is encountered
	where a label is expected.
NO BUILTIN
	The referenced built-in function is not
	implemented in PL/I.
NO DCL
	The indicated variable is not declared in
	the scope of this reference.

E-9
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-2. (continued)

Error 	Description
NOT FILE
	The reference within a FILE Option is not
	a file variable or file constant.
NOT FORMAT
	The format field of a GET or PUT EDIT
	statement does not reference a format.
NOT IMP
	The construct in this statement is not
	implemented in PL/I.
NOT KEY
	The expression within a KEYTO, KEYFROM, or
	KEY option is not a FIXED BINARY variable.
NOT LABEL
	The target of this GOTO statement is not a
	label value.
NOT PROC
	The reference following the keyword CALL
	is not a procedure value.
NOT SCALAR
	A nonscalar value is encountered in a
	context requiring a scalar expression.
NOT STATIC
	An attempt is made to initialize automatic
	storage. You must declare the variable
	with the STATIC attribute and try again.

E-10
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-2. (continued)

Error	Description
PTR REQ
	A pointer variable is required in this
	context.
IFY
	This reference to a structure does not
	properly qualify the variable name. This
	is usually due to a nonunique substructure
	reference.
RET EXP
	The expression in a RETURN statement is
	not compatible with the RETURNS attribute
	of the corresponding procedure.
RETURN
	An attempt is made to return a value from
	a procedure without the RETURNS attribute.
SYNTAX
	There is a syntax error in this statement.
	See the appropriate section of the PL/I
	Language Reference Manual for the proper
	syntax.
SCALE GREATER 		THAN 0
The resulting FIXED BINARY expression
produces a nonzero scale factor. If the
expression involves division, you must
replace x/y by DIVIDE (x, y, 0) . This
replacement is necessary to maintain full
language compatibility.
SYMBOL TABLE 		OVERFLOW*
The free memory space is exhausted during
compilation. (See similar error in Pass 1.)

E-11
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-2. (continued)

Error	Description
STR REQ
	A string variable is required in this
	context. In the case of the SUBSTR built
	in function, you must assign the
	expression to a temporary variable before
	the substring operation takes place.
TYPES NOT=
	The types of a binary operation are not
	compatible. You can check all
	declarations and review the conversion
	rules (Section 4). This error might be
	due to aggregate data items that do not
	match in structure.
UNSPEC
	The source or target of an UNSPEC
	operation is not an 8- or 16-bit variable.
VALUES
	The number of items specified in an
	INITIAL statement is not compatible with
	the variable being initialized.
VAR REQ
	A variable is required in this context.

E-12
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-2. (continued)

Error 	Description

Pass 3 Errors

AUTOMATIC STORAGE OVERFLOW

The total storage defined within this
program module exceeds 65535 bytes.

BAD INT FILE

The intermediate file sent to Pass 3 is
invalid. This is usually due to a
hardware malfunction.

BLOCK OVERFLOW

The nesting level has exceeded the
compiler's internal tables (maximum 32
levels).

EOF ON INT FILE

The compiler encounters a premature end
of-file while reading the intermediate
file. This error is usually due to a
hardware failure.

EXPRESSION OVERFLOW*

The compiler's internal structure sizes
are exceeded. You must simplify the
expression and try again.

LINE x OPERATION NOT IMPLEMENTED

An invalid intermediate operation occurs.
This error is usually due to a hardware
failure or errors in a previous pass.

E-13
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-3. Run-time Errors

Error 	Description

Non-recoverable Run-time Errors

FREE REQUEST OUT OF RANGE

A FREE statement specifies a storage
address outside the range of the free
storage area. This is usually caused by a
reference to an uninitialized base
pointer.

FREE SPACE OVERWRITE

The free storage area is overwritten.
This error is usually caused by an out-of
range subscript reference or a stack
overflow. If stack overflow occurs, use
the STACK(n) keyword in the OPTIONS field
to increase the stack size, and try again.

INSUFFICIENT MEMORY

The loaded program cannot run in the
memory size allocated. If possible,
increase the size of the Transient Program
Area.

INVALID I/O LIST

The list of active files is overwritten
while the program is running, and the
attempt to close all active files fails.
This is usually due to subscript values
out-of-range.

Recoverable Run-time Errors

PL/I prints the following errors when no ON-unit is
enabled, or if control returns from an ON-unit
corresponding to a nonrecoverable condition (marked by an
asterisk). In each case, the condition prefix is listed,
followed by an optional subcode that identifies the error
source, followed in some cases by an auxiliary message
that further identifies the source of the error.

E-14
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-3. (continued)

Error 	Description

ERROR(l) "Conversion"

This error occurs whenever the run-time
system cannot perform the required
conversion between data types. This error
can be signaled during arithmetic
operations, assignments, and I/O
processing with GET and PUT statements.

ERROR(2) "I/O Stack Overflow"

The run-time I/O stack exceeds 16,
simultaneous, nested I/O operations. You
must simplify the program and try again.

ERROR(3)	A transcendental function argument is out
	of-range.

ERROR(4) "I/O Conflict x"

A file is explicitly or implicitly opened
with one set of attributes, and
subsequently accessed with a statement
requiring conflicting attributes. The
value of x is one of the following:

• 	STREAM/RECORD
• 	SEQUEN/DIRECT
• 	INPUT/OUTPUT
• 	KEYED Access

The first conflict arises when ASCII files
are processed using READ or WRITE, but the
INTO or FROM option does not specify a
varying character string.

E-15
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-3. (continued)

Error 	Description
ERROR(5) 	"Format Overflow"
The nesting level of embedded formats
exceeds 32. You must simplify the program
and try again.
ERROR(6) 	"Invalid Format Item"
The format processor encounters a format
item that cannot be processed. The P
format is not implemented in PL/I.
ERROR(7) 	"Free Space Exhausted"
No more free space is available. If you
intercept this error with an ON-unit, do
not execute an ALLOCATE, OPEN, or
recursion without first releasing storage.
ERROR(8) 	"OVERLAY, NO FILE d:filename"
The overlay manager cannot find the
indicated file.
ERROR(9) 	"OVERLAY, DRIVE d:filename"
An invalid drive code is passed as a
parameter to an overlay.
ERROR(10) 	"OVERLAY, SIZE d:filename"
The indicated overlay is too large and
overwrites the PL/I stack and/or free
space if loaded.
ERROR(11) 	"OVERLAY, NESTING d:filename"
Loading the indicated overlay exceeds the
maximum nesting depth.
ERROR(12) 	"OVERLAY, READ d:filename"
There has been a disk read error while
loading an overlay. This is probably
caused by a premature EOF.

--IN

E-16
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-3. (continued)

Error 	Description

ERROR(13) "Invalid OS Version"

Any operation that generates an operating
system call not supported under the
current operating system causes this
error.

ERROR(14) "Unsuccessful Write"

Any unsuccessful write operation on a file
due to lack of directory space, lack of
disk space, and so on, cause this error.

ERROR(15) "File Not Open"

Any attempt to lock or unlock a record in
a file that is not open causes this error.

ERROR(16) "File Not Keyed"

Any attempt to lock or unlock a record in
a file that does not have the KEYED
attribute causes this error.

FIXEDOVERFLOW

A decimal operation produces a value
exceeding 15 decimal digits of precision,
or an attempt is made to store to a
variable with insufficient precision.

OVERFLOW(l)

A floating-point operation produces a
value too large to be represented in
floating-point format.

OVERFLOW(2)

A double-precision, floating-point value
is assigned to a single-precision value
with insufficient precision.

E-17
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 Rl.O

Table E-3. (continued)

Error	Description
UNDERFLOW (1)
	A floating-point operation produces a
	value too small to be represented in
	floating-point format.
UNDERFLOW (2)
	A double-precision, floating-point value
	is assigned to a single-precision value
	with insufficient precision.
ZERODIVIDE(l)
	A decimal divide or modulus operation is
	attempted with a divisor of zero.
ZERODIVIDE(2)
	A floating-point divide or modulus
	operation is attempted with a divisor of
	zero.
ZERODIVIDE(3)
	An integer divide or modulus operation is
	attempted with a divisor of zero.
ENDFILE
	An attempt is made to read past the end of
	the listed file, or the disk full
	condition occurs during output.
UNDEFINEDFILE
	If this error occurs on input, the run
	time system cannot find the named file on
	the disk, or an input device is opened for
	output. If the error occurs on output,
	the run-time system cannot create an
	output file, or an output device is opened
	for input.

-,-IN

E-18
�PL/I Reference Manual	PL/I-80 R1.4 and PL/I-86 R1.0

Table E-3. (continued)

Error	Description
KEY(l)
	An invalid key is detected in an output
	operation.
KEY(2)
	An invalid key is encountered during an
	input operation.
ENDPAGE
	An end-of-page condition is detected.
	This condition does not cause termination
	if no ON-unit is active.

E.2 PL/I-86 Rl.l and PL/I-86 R1.0 under DOS

In PL/I-86 Rl.l and PL/I-86 R1.0 under DOS, the compilation error
messages in Pass 3, and the run-time error messages are identical to
those in PL/I-80 R1.4 and PL/I-86 R1.0. However, there are new
error messages in Pass 1 and Pass 2. The text in the new error
messages makes them self-explanatory.

The mechanism for finding and reporting errors is also the same.
That is, the compiler marks each compilation error with a ?
character near the position of the error in the line, and an error
message following the line containing the error. The ? might follow
the actual error position by a few columns. In some cases, an error
on one line can lead to errors on subsequent lines.

E.3 Condition Categories and Codes

The condition categories describe the various conditions that the
run-time system can signal or that your program can signal by
executing a SIGNAL statement.

There are nine major condition categories with subcodes, some of
which are system-defined, and some of which you can define yourself.
Table E-4 shows the predefined subcodes.

E-19
�PL/I Reference Manual	E.3	Condition Categories and Codes

Table E-4. PL/I Condition Categories and Subcodes

Type	Meaning
ERROR
ERROR(O)	Any ERROR subcode
ERROR(l)	Data conversion
ERROR(2)	I/O Stack overflow
ERROR(3)	Function argument invalid
ERROR(4)	I/O Conflict
ERROR(5)	Format stack overflow
ERROR(6)	Invalid format item
ERROR(7)	Free space exhausted
ERROR(8)	Overlay error, no file
ERROR(9)	Overlay error, invalid drive
ERROR(10)	Overlay error, size
ERROR(11)	Overlay error, nesting
ERROR(12)	Overlay error, disk read error
ERROR(13)	Invalid OS call
ERROR(14)	Unsuccessful Write
ERROR(15)	File Not Open
ERROR(16)	File Not Keyed
FIXEDOVERFLOW
FIXEDOVERFLOW(O)	Any FIXEDOVERFLOW subcode
OVERFLOW
OVERFLOW(O)	Any OVERFLOW subcode
OVERFLOW(l)	Floating-point operation
OVERFLOW(2)	Float precision conversion
UNDERFLOW
UNDERFLOW(O)	Any UNDERFLOW subcode
UNDERFLOW(l)	Floating-point operation
UNDERFLOW(2)	Float precision conversion
ZERODIVIDE
ZERODIVIDE(O)	Any ZERODIVIDE subcode
ZERODIVIDE(l)	Decimal divide
ZERODIVIDE(2)	Floating-point divide
ZERODIVIDE(3)	Integer divide
ENDFILE
UNDEFINEDFILE
KEY
ENDPAGE

__1*11

End of Appendix E

E-20
�Appendix F
ASCII and Hexadecimal Conversions

ASCII stands for American Standard Code for Information Interchange.
The code contains 96 printing and 32 nonprinting characters used to
store data on a disk. Table F-1 defines ASCII symbols, and Table F
2 lists the ASCII and hexadecimal conversions. The table includes
binary, decimal, hexadecimal, and ASCII conversions.

Table F-1. ASCII Symbols

	Symbol	Meaning				Symbol	Meaning
	ACK	acknowledge			FS		file separator
	BEL		bell					GS		group separator
	BS		backspace 			HT		horizontal tabulation
	CAN	cancel				LF		line-feed
	CR		carriage return			NAK	negative acknowledge
	DC		device control			NUL 	null
	DEL		delete				RS		record separator
	DLE		data link escape		SI		shift in
	EM		end of medium			SO		shift out
	ENQ		enquiry				SOH		start of heading
	EOT		end of transmission		SP		space
	ESC		escape				STX		start of text
	ETB		end of transmission		SUB		substitute
	ETX		end of text			SYN		synchronous idle
	FF		form-feed				US		unit separator
								VT		vertical tabulation

F-1
�PL/I Reference Manual	F	ASCII Conversions

Table F-2. ASCII Conversion Table

Binary	Decimal	Hexadecimal	ASCII

0000000		0		0		NUL
0000001		1		1		SOH 	(CTRL-A)
0000010		2		2		STX 	(CTRL-B)
0000011		3		3		ETX 	(CTRL-C)
0000100		4		4		EOT 	(CTRL-D)
0000101		5		5		ENQ 	(CTRL-E)
0000110		6		6		ACK 	(CTRL-F)
0000111		7		7		BEL 	(CTRL-G)
0001000		8		8		BS		(CTRL-H)
0001001		9		9		HT		(CTRL-I)
0001010		10		A		LF		(CTRL-J)
0001011		11		B		VT		(CTRL-K)
0001100		12		C		FF		(CTRL-L)
0001101		13		D		CR		(CTRL-M)
0001110		14		E		SO		(CTRL-N)
0001111		15		F		SI		(CTRL-0)
0010000		16		10		DLE 	(CTRL-P)
0010001		17		11		DC1 	(CTRL-Q)
0010010		18		12		DC2 	(CTRL-R)
0010011		19		13		DC3 	(CTRL-S)
0010100		20		14		DC4 	(CTRL-T)
0010101		21		15		NAK	(CTRL-U)
0010110		22		16		SYN 	(CTRL-V)
0010111		23		17		ETB 	(CTRL-W)
0011000		24		18		CAN	(CTRL-X)
0011001		25		19		EM		(CTRL-Y)
0011010		26		1A		SUB 	(CTRL-Z)
0011011		27		IB		ESC 	(CTRL-[)
0011100		28		1C		FS		(CTRL-\)
0011101		29		1D		GS		(CTRL-])
0011110		30		1E		RS		(CTRL-^)
0011111		31		1F		US		(CTRL--)
0100000		32		20		(SPACE)
0100001		33		21		!
0100010		34		22		"
0100011		35		23		#
0100100		36		24		$
0100101		37		25		%
0100110		38		26		&
0100111		39		27		'
0101000		40		28		(
0101001		41		29)
0101010		42		2A		*
0101011		43		2B		+
0101100		44		2C		,
0101101		45		2D		–
0101110		46		2E		.
0101111		47		2F		/
0110000		48		30		0
0110001		49		31		1
0110010		50		32		2

F-2
�PL/I Reference Manual	F ASCII Conversions

Table F-2. (continued)

Binary	Decimal	Hexadecimal	ASCII

0110011		51		33		3
0110100		52		34		4
0110101		53		35		5
0110110		54		36		6
0110111		55		37		7
0111000		56		38		8
0111001		57		39		9
0111010		58		3A		:
0111011		59		3B		;
0111100		60		3C		<
0111101		61		3D		=
0111110		62		3E		>
0111111		63		3F		?
1000000		64		40		@
1000001		65		41		A
1000010		66		42		B
1000011		67		43		C
1000100		68		44		D
1000101		69		45		E
1000110		70		46		F
1000111		71		47		G
1001000		72		48		H
1001001		73		49		I
1001010		74		4A		J
1001011		75		4B		K
1001100		76		4C		L
1001101		77		4D		M
1001110		78		4E		N
1001111		79		4F		O
1010000		80		50		P
1010001		81		51		Q
1010010		82		52		R
1010011		83		53		S
1010100		84		54		T
1010101		85		55		U
1010110		86		56		V
1010111		87		57		W
1011000		88		58		X
1011001		89		59		Y
1011010		90		5A		Z
1011011		91		5B		[
1011100		92		5C		\
1011101		93		5D]
1011110		94		5E		^
1011111		95		5F		_
1100000		96		60		`
1100001		97		61		a
1100010		98		62		b
1100011		99		63		c
1100100		100		64		d

F-3
�PL/I Reference Manual	F	ASCII Conversions

Table F-2. (continued)

Binary	Decimal	Hexadecimal	ASCII

1100101		101		65		e
1100110		102		66		f
1100111		103		67		g
1101000		104		68		h
1101001		105		69		i
1101010		106		6A		i
1101011		107		6B		k
1101100		108		6C		l
1101101		109		6D		m
1101110		110		6E		n
1101111		111		6F		o
1110000		112		70		p
1110001		113		71		q
1110010		114		72		r
1110011		115		73		s
1110100		116		74		t
1110101		117		75		u
1110110		118		76		v
1110111		119		77		w
1111000		120		78		x
1111001		121		79		y
1111010		122		7A		z
1111011		123		7B		{
1111100		124		7C		|
1111101		125		7D		}
1111110		126		7E		~
1111111		127		7F		DEL

End of Appendix F

F-4
�Appendix G
PL/l Bibliography

This appendix lists several PL/I programming reference books. Some
are introductory textbooks for classroom use, while others are more
advanced applications guides. Each reference is followed by a short
description of the general content. You can obtain these books
through your local bookstore, or order them directly from the
publisher.

Although there are books now being prepared that specifically cover
PL/I Subset G, the books listed here cover subsets such as PL/C and
SP/k- or the full IBM implementations of PL/I. The statement forms
of PL/C and SP/k are usually included in the Subset G definition
while full PL/I contains a number of language facilities excluded
from the subset. Therefore, be aware that differences can arise
even though the sample programs and definitions are substantially
the same.

Your own reference library might consist of Lynch's book Computers,
Their Impact and Use which covers very general aspects of computing
with introductory language details provided by the Xenakis book.
Structured programming and program formulation is presented by one
of the Conway books, such as Primer on Structured Programming.
Additional application programming details are given in the Hughes
book. Details of more advanced data structures are given in the
Augenstein book.

Readers are encouraged to critique the individual books, and any
additional reference material they find useful. Digital Research
appreciates your comments and suggestions so that we can update this
list.

Augenstein, M., and A. Tenenbaum. Data Structures and PL/I
Programming. Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1979 (643p, Hardback, Typeset).

An advanced presentation of full PL/I. This is a college
textbook presenting the PL/I language through a series of
progressive examples covering recursion, list processing, trees
and graphs, sorting, searching, hash coding, and storage
management. An extensive bibliography is included. Emphasis
is upon implementing data structures using a subset of full
PL/I that nearly matches subset G. Structured programming is
not emphasized.

Bates, F., and M. Douglas. Programming Language/One. Prentice
Hall, Inc., Englewood Cliffs, New Jersey, 1970 (419p,
Paperback, Hand Typed).

G-1
�PL/I Reference Manual	G 	Bibliography

A simple introduction to PL/I. This book presents fundamental
elements of full PL/I, with some emphasis on commercial
processing including structures, records, formatting, and error
processing. Explanations are emphasized rather than examples.
Structured programming is not emphasized.

Cassel, D. PL/I: A Structured Approach. Reston Publishing, Inc. ,
Reston, Virginia, 1978 (219p, Paperback, Typeset).

A middle level introduction to PL/I. A portion of full PL/I is
presented emphasizing batch processing and commercial
applications. Language elements are clearly presented, but
there is no particular emphasis on program formulation or
proper structuring, as the title implies.

Clark, F. J. Introduction to PL/I Programming. Allyn and Bacon,
Inc., Boston 1971 (243p, Paperback, Typeset).

A basic, self-study introduction to PL/I through exercises.
This text presents a portion of full PL/I from a traditional
card-oriented approach, starting with a discussion of binary
numbers and continuing through the basic statement types to
simple STREAM and RECORD I/O. Structured programming is not
emphasized, although commercial processing examples are given.

Conway, R. A Primer on Disciplined Programming. Winthrop
Publishers, Cambridge, Mass., 1978 (419p, Paperback, Computer
Typed).

A textbook used for PL/C, Cornell University's dialect of PL/I.
One of three college textbooks by Conway, et. al., covering
introductory programming, with emphasis on techniques used to
formulate, develop, and test programs. Includes short
discussions of searching and ordering lists, accounting, string
operations, and interactive systems. Emphasis is upon
structured programming practices and programming mechanisms
rather than extensive examples of working programs.

Conway, R., and D. Gries. Primer on Structured Programming.
Winthrop Publishers, Cambridge, Mass., 1976 (397p, Paperback,
Computer Typed).

A book on structured programming centered around PL/C.
Essentially the same content as the previous book by Conway,
with perhaps more emphasis on the operation of the PL/C
programming system at Cornell.

G-2
�PL/I Reference Manual	G 		Bibliography

Conway, R., D. Gries, and D. Wortman. Introduction to Structured
Programming. Winthrop Publishers, Cambridge, Mass., 1977
(420p, Paperback, Computer Typed).

A book on structured programming using Cornell's PL/C and
Toronto's SP/k systems. Again, similar to Conway's first book
with the addition of sections on file processing, and language
translation using compilers and interpreters.

Groner, G. PL/I Programming in Technological Applications. John
Wiley & Sons, New York, 1971 (230p, Paperback, Typeset).

An introduction to engineering applications programming in
PL/I. This book discusses full PL/I, with examples derived
from batch processing under IBM implementations. Program
formulation through flowcharting is presented, with many
complete examples of scientific applications. Several examples
of plot and graph generation are presented. Emphasis is upon
explanations of FLOAT BINARY computations through complete
examples. Programs are not particularly well structured.

Hughes, J. K. PL/I Structured Programming. Second edition, John
Wiley & Sons, New York, 1979 (825p, Hardback, Typeset).

A comprehensive guide to general PL/I programming. This is one
of the more complete presentations of the full PL/I language.
Topics include structured programming, processing simple data
items, record and file handling, and list processing. Emphasis
is toward commercial programming using IBM's PL/I.

Hume, J. N. P., and R. C. Holt. Structured Programming Usinq PL/I
and SP/k. Reston Publishing, Inc., Reston, Virginia 1975
(340p, Paperback, Computer Typed).

An introduction to structured PL/I programming. This textbook
introduces PL/I through a graduated series of subsets called
SP/1 through SP/8. Each successive subset incorporates more of
the full PL/I language. The text begins with basic programming
concepts, and progresses through the various PL/I language
constructs. Sample programs include string and array handling,
list processing, and file handling. machine language, assembly
language, and compiling are also presented. Emphasis is upon
structured programming.

G-3
�PL/I Reference Manual	G Bibliography

Kennedy, M., and M. B. Solomon. Structured PL/Zero Plus PL/One.
Prentice-Hall, Englewood Cliffs, New Jersey, 1977 (695p,
Paperback, Computer Typed).

A fairly comprehensive introduction to PL/I. This book covers
the basic elements of PL/I in some detail, using PL/C for
examples. IBM's PL/I Level F language is discussed briefly.
Most language facilities are well illustrated in simple
examples.

Lynch, R. E. , and J. R. Rice. Computers, Their Impact and Use.
Holt, Rhinehart and Winston, New York, 1978 (440p, Paperback,
Typeset).

A basic introductory book to computers and PL/I. This is a
college textbook intended to introduce computers to
nontechnical people. Half the book gives an overview of
computers, their history, their impact upon society, and how
they are used. Operating systems, languages, and language
types are discussed. The remainder discusses IBM PL/I using a
variety of applications, ranging up to simple file processing.
Structured programming is not emphasized.

Ruston, H. Programming with PL/I. McGraw-Hill, New York, 1978
(541p, Paperback, Typeset).

A comprehensive textbook introduction to PL/I. This book
presents PL/I from a batch processing viewpoint, using the full
PL/I language for examples. Program construction through
flowcharting is emphasized. Elements of PL/I are presented,
including simple statements, control structures, arrays,
strings, procedures, and file handling. Examples have a
scientific orientation. Basics of error processing are
discussed. Structured programming is not emphasized.

Xenakis, J. J. Structured PL/I Programming. Duxbury Press, North
Scituate, Mass., 1979 (413p, Paperback, Typeset).

A comprehensive introduction to PL/I, close to Subset G. Basic
programming concepts are presented, with a brief history of
programming languages. Elements of full PL/I are shown,
including conversion between data types, arrays, strings, and
procedures. A section on go-to-less programming is included,
followed by a game-playing section that includes a tic-tac-toe
program. The book is simple in scope and easy to read.

End of Appendix G

G-4
�Appendix H
Glossary

aggregate: Collection of related data items that you can reference
together or individually.

algorithm: Any procedure consisting of a finite number of
unambiguous, repeatable steps that characterize the solution of a
problem.

allocation: A) process of obtaining storage for a variable, or
B) specific unit of storage that you obtain for a based variable.

argument: Value that you pass to a subroutine or function.

argument list: Zero or more arguments that you specify when
invoking a procedure or a built-in function.

array: Named collection of data items with the same attributes, and
in which you access individual items (elements) by subscripts.

ASCII character set: Set of numeric values that represent
characters and control information, established by American Standard
Code for Information Interchange.

assignment statement: Executable statement that assigns a value to
a variable.

attribute: Any characteristic of a data item, such as fixed- or
floating-point, decimal or binary, extent, and so on.

automatic variable: Variable for which the compiler allocates
storage when the block that declares it is activated. The storage
is released when the block is deactivated.

based variable: Variable that describes storage that you access
using a pointer.

BEGIN block: One or more statements delimited by a BEGIN statement
and a corresponding END statement. A begin block is entered when
control reaches the BEGIN statement. When control flows into a
BEGIN block, PL/I creates a block activation for it and for the
variables declared within it.

bit string: Zero or more binary digits (0 or 1).

block: Any sequence of PL/I statements delimited by one of the
statement pairs PROCEDURE and END or BEGIN and END.

H-1
�PL/I Reference Manual	H Glossary

bound-pair: Expression that sets the number of elements in each
dimension of an array.

built-in function: Any function provided as part of the PL/I
language.

character string: Zero or more ASCII characters.

comment: Any sequence of characters appearing between the composite
pairs /* and */. Comments provide documentary text and are ignored
by the compiler.

comparison operator: See relational operator.

compiler: Program that translates source statements of a high-level
programming language into an object module. The object module
consists of processor instructions and certain relocation
information that the linkage editor uses to form a command file.

computational: Data type on which you can perform operations. The
computational data types are arithmetic and string.

concatenation operator: Operator, 11, that joins two string values
to form a single string.

condition: Any occurrence that interrupts the normal program
execution and initiates a user-defined, or system default response.

condition name: PL/I keyword associated with a specific condition.
connected storage: Contiguous storage locations.

constant: A) any literal value that you specify to represent a
computational data item, or B) any entry or label name that you
declare implicitly in context, or C) any identifier that you declare
with one of the attributes ENTRY or FILE but without the VARIABLE
attribute.

control variable: Variable whose value changes on each iteration of
a DO-group and that can be tested to determine whether or not to
continue executing the statements in the DO-group.

conversion: Process of transforming a value from one data type to
another.

data type: Class to which a data item belongs, and which determines
the operations that you can perform on it.

declaration: Explicit or implicit specification of an identifier
and its data type.

dimension: Set of bounds that determine one extent of an array.

H-2
�PL/I Reference Manual	H Glossary

DO-group: Any sequence of executable statements delimited by a DO
statement and a corresponding END statement.

element: Any individual data item in an array, which you can
reference with subscripts.

entry point: Statement or instruction where the execution of a
procedure begins.

expression: Any valid combination of operands and operators that
reduces to a single value.

extent: Range between the low-bound and the high-bound for one
dimension of an array.

external procedure: Procedure that is not contained in any other
procedure.

external variable: Variable that is known in any block where you
declare it with the EXTERNAL attribute.

file: A) in PL/I, the input source or output target that you
specify in an I/O statement, or B) the collection of data on a mass
storage device.

file constant: Any identifier that you declare with the FILE
attribute but not the VARIABLE attribute.

filetype: Zero- to three-character component of a file
specification that generally describes the file's use.

FIXED BINARY: Data type that represents integer values.

FIXED DECIMAL: Data type that represents decimal values with a
decimal point and a fixed number of fractional digits.

floating-point: Data type that represents very small or very large
numbers. A floating-point number has a mantissa and an optionally
signed integer exponent.

flow of control: Sequence in which the processor executes the
individual instructions in a program.

format item: Value indicating data representation and formatting
information used with EDIT-directed I/O.

format list: List of format items corresponding to data items for
EDIT-directed I/O.

function: Procedure that executes when you use its name in an
expression, and that returns a value to its point of reference.

function reference: Any reference to the name of a built-in
function or a user-written function in a PL/I statement.

H-3
�PL/I Reference Manual	H Glossary

high bound: Upper limit of an array dimension.

I/O category: General method you use to read or write data items in
a file. The I/O categories are STREAM I/O and RECORD I/O.

identifier: Name consisting of 1 to 31 characters that you specify
for a variable, statement label, entry point, or file constant.

%INCLUDE file: External file from which the compiler reads source
text when compiling a PL/I program.

integer constant: Any optionally signed string of decimal digits

integer data: Data represented as FIXED BINARY or FIXED DECIMAL
with a zero scale factor.

internal procedure: Procedure that is contained within some other
procedure.

internal variable: Variable whose value you can reference within
the block that declares it and any blocks contained within the block
that declares it.

iteration factor: Integer constant enclosed in parentheses that
specifies the number of times to use a value when initializing array
elements, or the number of times to use a given format item in an
EDIT-directed I/O statement.

key: (A) any value that you use to specify a particular record in a
file, or (B) data item that is part of a record in an indexed
sequential file, or (C) relative record number of a record in a
RECORD file.

keyword: Any PL/I identifier that has a specific meaning when you
use it in the appropriate context.

label: Any PL/I identifier, terminated by a colon, which you use to
identify a statement.

level number: Integer constant that defines the hierarchical
relationship of a name within a structure with respect to other
names in the structure.

library: File containing object modules and a directory of the
external names within the object modules.

linker: Program that arranges relocatable object modules into a
command file, and resolves references among external variables
declared in the modules.

LIST-directed I/O: Any transmission of data between a program and
an external device, for which PL/I provides automatic data
conversion and formatting.

H-4
�PL/I Reference Manual	H Glossary

listing: Output file created by the compiler that lists the
statements in the source program, with corresponding line numbers
and additional information.

logical operator: Operator that performs a logical operation on
bit-string values.

low bound: Lower limit of an array dimension.

main procedure: Procedure that receives control when the program
begins executing. The main procedure is always an external
procedure.

major structure: Name of an entire structure by which you can
specify all members of the structure in a single reference. A major
structure always has a level number of 1.

member: Data item in a structure. A member can be a scalar data
item, an array, or a structure.

memory: Any addressable location that stores code or data.
minor structure: Structure that is a member of a structure.

noncomputational: Data item that is not string or arithmetic. The
noncomputational data types are ENTRY, FILE, and LABEL.

nonlocal GOTO: GOTO statement that transfers program control to a
statement in an encompassing block.

object module: Output from the compiler or assembler that you can
link with other modules to form a command file.

ON condition: Any one of several named conditions that can
interrupt a program and generate a signal.

ON-unit: PL/I statements specifying the action to take when a
program signals a specific ON condition.

one-bit: Binary digit 1.

operator: Symbol that directs PL/I to perform a specific function.

parameter: Variable that PL/I matches with an argument when the
program invokes a procedure.

parameter list: List of variable names whose values are determined
when a procedure is invoked. The PROCEDURE statement for the
procedure's entry point specifies the parameter list.

password: User-specified extension to a filename enabling file
security.

H-5
�PL/I Reference Manual	H Glossary

picture: Character-string representation of an arithmetic value
consisting of a character string constant defining the position of a
decimal point, zero suppression, and sign conventions.

pointer: Data item whose value is the address of a storage
location.

pointer-qualified reference: Specification of a based variable in
terms of a pointer value that indicates the location of the
variable.

pointer qualifier: Pointer reference and punctuation symbol that
associates a specific storage location with a based variable.

precedence: Priority of an operator that PL/I uses when evaluating
operations in an expression. PL/I performs an operation with a
higher precedence before an operation with a lower precedence.

precision: Number of digits associated with an arithmetic data
item.

prefix operator: Operator that precedes a variable or constant to
indicate or change its sign.

PRINT file: STREAM OUTPUT file for which PL/I aligns certain data
on predefined tab stops, and controls the output with a specified
page size and line size. In a PRINT file, PL/I does not enclose
strings in apostrophes.

procedure: Sequence of statements, delimited by a PROCEDURE
statement and an END statement. A procedure can be a subroutine
that you invoke with a CALL statement or a function that you invoke
with a function reference.

procedure block: Sequence of statements delimited by a PROCEDURE
statement and an END statement. Control flows into a procedure
block when you specify its name in a CALL statement or a function
reference, at which point PL/I creates a block activation for it and
for the internal variables declared within it.

pseudo-variable: Name of a built-in function that you can use on
the left-hand side of an assignment statement to give a special
meaning to the assignment.

qualified reference: Unambiguous reference to a member of a
structure that specifies each higher-level name within the structure
and separates the names with periods.

random access: An I/O operation on a RECORD file where individual
records within the file are accessed using FIXED BINARY values
called keys.

record: Organized collection of data that PL/I transmits using
RECORD I/O statements.

H-6
�PL/I Reference Manual	H Glossary

RECORD file: File containing binary data that PL/I transmits
without conversion.

RECORD I/O: Transmission of data grouped in user-defined units
called records.
recursive procedure: Procedure that can invoke itself.

reference: Appearance of an identifier in any context other than
its declaration.

relational operator: Operator that defines a relationship between
two expressions and results in a Boolean value indicating whether
the relationship is true or false.

return value: Value returned by a function that replaces the
function at its point of reference.

row-major order: Order in which PL/I stores elements, or assigns
values to elements in an array. In row-major order, the rightmost
subscript varies the most rapidly.

Run-time Subroutine Library: Library of procedures that support the
execution of a PL/I program.
scalar: Data item that is not an aggregate.

scale factor: Number of fractional digits that you specify for a
FIXED DECIMAL data item.

scope: Set of blocks within a program in which the declaration of
an identifier is known.

sequential access: Access method that allows you to access records
in a RECORD file serially.

sequential file: RECORD file in which the records are arranged
serially. You can only add new records at the end of the file, and
read records one after the other.

signal: Mechanism by which PL/I indicates that a condition has
occurred.

statement: Valid sequence of PL/I keywords, identifiers, and
special symbols that specifies an executable instruction or data
declaration.

static variable: Variable for which the compiler allocates storage
for the entire execution of a program.

storage: Any region of memory that is associated with a particular
variable.

H-7
�PL/I Reference Manual	H Glossary

storage class: Attribute of a variable that describes how its
storage is allocated and released by PL/I. The storage classes are
AUTOMATIC, BASED, PARAMETER, and STATIC.

STREAM I/O: Transmission and interpretation of data in terms of
sequences of ASCII characters delimited by spaces, tabs, commas, or
fields defined by format items.
string data: Bit-string data or character-string data.

structure: Hierarchical arrangement of logically related data
items, called members, that are not required to have the same data
type.

structure reference: Variable reference to an entire structure (as
opposed to a member of a structure).

subroutine: Procedure that receives control when you invoke it with
a CALL statement.

subscript: Integer expression specifying an individual element of
an array.

variable: Data item whose value can change during the execution of
a program.

variable reference:	Any reference to a variable including
qualification by subscripts and member names.

zero-bit: Binary digit 0.

Note: material in this appendix has been adapted in part from
publication(s) of Digital Equipment Corporation® . The material so
published herein is the sole responsibility of Digital Research Inc.

End of Appendix H

H-8
�Index

%INCLUDE statement, 2-22				characters, 2-15, 3-4, 10-2
%REPLACE statement, 2-22, A-2			collating sequence, 13-6,
'picspec', Picture							13-11, 13-26
	specification, 11-11					collating sequence in
*-extents in arrays, A-1					comparisons, 6-4
								ASIN built-in function, 13-6
A								assignment statement, 2-1, 6-1
								ATAN built-in function, 13-7
ABS built-in function, 13-4			ATAND built-in function, 13-7
ACOS built-in function, 13-5			attribute factoring, 3-13
ADDR built-in function,					in an ENTRY declaration, 3-1
	7-9, 13-5						attribute-list,
aggregates, 3-1, 5-1						in an array declaration, 5-1
ALLOCATE statement, 7-5, 7-10			in a DECLARE statement,
ambiguous file reference, 10-4					3-12, 3-13
argument, 6-8, 7-9						in a structure
	passed by reference, A-3					declaration, 5-8
	passed by value, A-3 			attributes of an array
argument-list,							variable, 5-1
	for a function, 2-9				AUTOMATIC attribute, 5-9,
	for a procedure, 2-9					7-1, A-3
	in a CALL statement, 2-10		AUTOMATIC storage class, 7-1
arguments, 2-10, 2-11				Af(w)] format, 11-7
	values passed to a
		procedure, 2-11			B
arithmetic constant, 11-3
arithmetic conversion, 4-2			base 10 logarithmic
arithmetic data, 3-1						function, 13-1
arithmetic error					base 2 logarithmic
		conditions, 9-6					function, 13-1
	FIXEDOVERFLOW, 9-1			base e logarithmic
	OVERFLOW, 9-1					function, 13-1
	UNDERFLOW, 9-1				BASED attribute, 5-9, 7-2
	ZERODIVIDE, 9-1				BASED storage class, 7-2
arithmetic expression, 4-2				based storage for a
arithmetic to bit-string					variable, 7-2
	conversion, 4-9 				based variable, 3-11, 7-2,
arithmetic to character					7-10, 13-4, B-1
	conversion, 4-9 				BEGIN block, 2-2, 7-1,
arrays,								8-7, 9-2
	elements, assignment and				statements, 2-2
		output ordering of, 5-6		bias of a binary exponent,
	in assignment						B-3, B-4, B-7
		statementSr 5-7			BIF, acronymn for built-in
	of structures, 5-11					function, 1-2
	referencer 5-3					BINARY built-in function,
	variable, 5-1, 6-1, 7-1				4-6, 13-8
ASCII,							Binary Coded Decimal (BCD),
	built-in function,					B-8, C-7
	13-6, A-2						binary exponent, B-2r B-4r
									B-6, C-2, C-7
Index-1
�BIT built-in function,					DIVIDE, 13-15
		4-9, 13-8						EXP, 13-15
bit SUBSTR, 6-7						FIXED, 13-16
bit-string constant,						FLOAT, 13-16
		3-6, 11-3						FLOOR, 13-17
	data, 3-5							for arithmetic conversion,
	to arithmetic							4-6, 4-11
	conversion, 4-10					HBOUND, 13-17
	to character-string					INDEX, 13-18
	conversion, 4-11					LBOUND, 13-18
	variables, 3-6						LENGTH, 13-19
blanks, 2-19							LINENO, 13-19
block,								LOCK, 13-20, A-4
	activation, 2-3, 6-4, 7-10				LOG, 13-20
	balance, 2-2						LOG10, 13-21
	termination, 2-3					LOG2, 13-21
block structure in PL/I, 2-2				mathematical, 13-1
BOOL built-in function,					MAX, 13-22
		6-5, 13-9						MIN, 13-22
Boolean,								miscellaneous, 13-3
	algebra, 6-5						MOD, 13-23
	expression, 8-2, 8-6					NULL, 13-23
	function, 6-5						ONCODE, 13-24
bound-pair,							ONFILE, 13-24
	in an array declaration, 5-1			ONKEY, 13-25
	list in an ENTRY					PAGENO, 13-25
		declaration, 3-10				RANK, 13-6, 13-26, A-2
Buff(b), option in						REVERSE, 13-26
	ENVIRONMENT attribute,10-5		ROUND, 13-27
built-in function, 1-2, 3-11,				SEARCH, 13-27
	4-2, A-2							SIGN, 13-28
	(BIF), 13-1						SIN, 13-28
	ABSr 13-4 						SIND, 13-29
	ACOS, 13-5						SINH, 13-29
	ADDR, 13-5						SQRT, 13-30
	arithmetic, 13-1					string-handling, 13-2
	ASCII, 13-6, A-2					SUBSTRrl3-30
	ASIN, 13-6						TAN, 13-31
	ATAN, 13-7						TAND, 13-31
	ATAND, 13-7						TANH, 13-32
	BINARY, 13-8						TIME, 13-32
	BIT, 13-8							TRANSLATE, 13-33
	BOOL, 13-9						trigonometric, 13-1
	CEIL, 13-10						TRIM, 13-33
	CHARACTER, 13-10				TRUNC, 13-34
	COLLATE, 13-11, 13-26, A-5			UNLOCK, 13-34, A-4
	condition-handling, 13-3				UNSPEC, 13-35
	conversion, 13-3					VERIFY, 13-35
	COPY, 13-11					BUILTIN attribute, 13-1
	COS, 13-12					B[n][(w)] format, 11-7
	COSD, 13-12
	COSH, 13-13					C
	DATE, 13-13
	DECIMAL, 13-14				CALL statement, 2-10, 2-12
	DIMENSION, 13-14				carriage return, 2-19

Index-2
�	line-feed pair, 2-19				conflicting file attributes,
CEIL built-in function, 13-10				10-2, 10-5
CHARACTER built-in function,		connected storage of
	4-9, 13-10							aggregates, 5-7, 5-12,
character SUBSTR, 6-6						12-1, 13-5, A-3
character to arithmetic				constant, 2-15, 2-18, 3-1
	conversion, 4-11					arithmetic, 2-18
character-string,						bit, 2-18
	constant, 3-5, 11-3					character string, 2-18
	data, 3-5						contained block, 3-8, 13-1
	to bit-string					containing block, 2-6, 8-8
		conversion, 4-12			context,
	variables, 3-5						for executable
Chebyshev polynomial						statements, 2-1
	approximation, 13-2					involving default data
circumflex character in a						conversion, 4-1
	string constant, 3-5					of a declaration, 2-18
CLOSE statement, 10-8					of arithmetic conversion, 4-2
COLLATE built-in function,				requiring FIXED BINARY
	13-11, 13-26, A-5						value, 3-2
collection of data elements,			contiguous storage in free
	data set, 10-1						storage area, 7-7
COLUMN(nc) format item, 11-9		control, 2-3
command line default				characters, 1-2
	name, 10-4						in a string constant, 3-5
comments, 2-15, 2-21					data items, 3-6
commercial applications, 3-3				format item, 11-6,
common data type, 4-3						11-9, 11-19
	in a comparison, 6-4				control-variable in a
common logarithmic						DO-group, 8-2
	function, 13-1					controlled,
compatibility of programs,				DO statement, 8-2
	3-5, 4-4, 7-4, 7-10, 10-5,				DO-group, 8-1
	11-4, 11-7, 11-15				conversion error, 4-11, 4-12
compiler, 2-9, 7-1, 7-3, 7-4,			conversion to intermediate
	7-6, A-3						character strings, 4-9
composite operator, 2-19				converting one data type to
concatenation of strings, 2-20				another, 4-2
concatenation operator,				COPY built-in function, 13-11
	2-20, 6-3						COS built-in function, 13-12
Condition Categories, 2-19			cos hyperbolic function, 13-2
condition,	COSD built-in function, 13-12
	handling statements, 2-1			COSH built-in function, 13-13
	processing, 9-1					credit characters, 11-16
	stack, A-4 					credit CR, Picture
condition-name, 9-1, 9-4					specification character,
conditional branching, 8-1				11-12, 11-16
conditional digit Picture				current column position within
	specification character,				a file, 10-9, 11-1,
	11-12, 11-14, 11-15						11-9, 11-10
conflicting attributes in a				current line,
	DECLARE statement, 3-13			count within a file,
										10-9, 10-11
									number within a file, 10-12,
										11-1, 11-10, 13-4

Index-3
�current page,						FIXED DECIMAL scale
	count within a file, 10-9				factor, 3-4
	number within a file, 10-12,		FLOAT BINARY precision,
		11-1, 13-4						3-3, 4-5
	size within a file, 11-10				for a filename in a command
current record position						line, 10-4
	within a file, 10-9					of run-time stack, 2-13
								DEFINED attribute, A-1
D								Delete password protection
									level, 10-4
data, 							delimiter, 2-15, 2-18
	attributes, 1-1					digit, Picture specification
	conversion, 3-2, 4-1, 4-2,				character, 11-12, 11-15
	8-6, 10-13f 13-2, 13-3,			DIMENSION built-in
	13-14, 1316, B-5					function, 13-14
	format item, 11-6				dimension of an array, 13-4
	set, 10-1, 10-5, 10-8,					of an array variable,
		11-7, 12-2							5-1, 5-7
	type matching when passing		DIRECT attribute, 10-2
		parameters, 2-12			DIRECT file, 10-3, 12-1, 12-2
DATE built-in function, 13-13			DIVIDE built-in function,
debit characters, 11-16					4-7, 13-15
debit DB, Picture					DIVIDE, built-in function, 4-5
	specification character,			DO statement, 8-1
		11-12, 11-16				DO-group, 2-15, 8-1, 8-7
DECIMAL built-in function,			documentary text, 2-21
		4-7, 13-14					DOS, operating system for IBM
decimal point position,					Personal Computer,
	Picture specification						A-1, A-5
	character, 11-12				double circumflex in a string
declaration of a based					constant, 3-5
	variable, 7-2					double-precision FLOAT BINARY,
declarative statements, 2-1				3-3, 11-8, 13-2, A-4,
DECLARE statement, 3-1,				B-6, C-7
	3-11, 8-7						drifting, Picture
	for a BASED variable, 7-2			specification character,
	for a FILE variable, 10-1					11-12, 11-14, 11-15, 11-16
	for scalar variables, 3-12			dynamic extents in
declared name, 2-15, 2-17					arrays, A-1
default action,						dynamic storage area,
	for an ON condition, 9-4				7-5, 7-7
	for an ON-unit, 10-11
default data attributes, 3-13			E
default I/O units, 10-11
default ON-units, 9-7				E(w[, d]) format, 11-8
default rules for forming a 			ELSE clause, option in an IF
	Picture							statement, 8-6
	specification, 11-16				encompassing block, 2-4,
default value,	8-8,	<<CHECK>>				9-3
	BIT length, 3-13				END statement, 2-2, 2-13f
	CHARACTER length, 3-13			8-1, 	8-7
	FIXED BINARY precision, 3-2		ENDFILE condition, 9-1, 10-10
	FIXED DECIMAL				ENDPAGE condition, 9-1, 10-10,
		precision, 3-4					11-1, 11-4, 11-10
		default action, 10-11

Index-4
�ENTRY attribute, 3-9 					open mode, 10-4
entry constant, 3-9, 3-10					password, 10-10
ENTRY,								specification, 2-22, 10-4
	constant, 7-9						variable, 3-11, 10-1, 10-9,
	data, 3-9, 4-1, 6-3						10-10, 12-1
	declaration, 3-9 				FILE,
	statement, 8-7						constant, 7-9
entry variable, 3-9, 3-10					data, 3-11, 4-1, 6-3
environment, 2-1						option in a GET or PUT
ENVIRONMENT attribute, 10-2,				statement, 11-3, 11-19
	10-4, 12-1, 12-2					option in GET or PUT
equal comparison operator,					statement, 11-3
	3-7, 3-8	File,
equal not equal comparison				Control Block (FCB),
	operators, 3-11							10-9, B-11
ERROR condition, 9-1, 9-4,				Descriptor, 10-9
	11-7, 11-8, 11-16					Parameter Block, 6-4
	subcodes, 9-4, 9-6, 13-24				Parameter Block (FPB),
error recovery, 2-1, 8-8, 9-1,					10-9, B-10
	9-5, 10-11, 13-3, A-4				filename, 10-4
ERROR(l) condition, 4-11, 4-12			filetype, 10-4
ERROR(3) condition, 13-5,			file id, file identifier,
	13-6, 13-20, 13-21,					10-1, 10-9, 11-2,
	13-30, 13-31						11-19, 12-1
ERROR(7) condition, 7-5				FIXED BINARY, 3-1, 3-2
ERROR(14) condition, 10-10			FIXED built-in function,
executable statements, 2-1				4-7, 13-16
EXP built-in function, 13-15			FIXED DECIMAL, 3-1, 3-3, 11-9
exponentiation, 4-5, 6-5					constant, 3-4
expression, 6-1							division, 4-5
	extents in arrays, A-1			Fixed(i), 10-5
	infix, 6-2							option in ENVIRONMENT
	involving								attribute, 10-5
	pseudo-variables, 6-6			fixed-length record size,
	precedence rules, 6-2				10-4, 10-5, 10-9,
	prefix, 6-2						12-1, 12-2
extent of an array					fixed-record size,
	dimension, 5-2						13-20, 13-34
EXTERNAL attribute, 2-7, 3-11, 		FIXEDOVERFLOW condition, 3-4,
	5-9, 10-1							9-1, 9-6
external,							FLOAT BINARY, 3-1, 3-2
	block, 2-4, 2-6						constant, 3-3
	device, 10-1, 10-3				FLOAT built-in function,
EXTERNAL option in a PROCEDURE		4-8, 13-16
	statement, 2-14					FLOAT DECIMAL attribute, A-1
external,							FLOOR built-in function, 13-17
	procedures, 2-6, 3-9				flow of control,
	system entry points, 2-17				between logical units, 2-1
	variable, 2-6, 2-8					within a program, 2-9, 3-7,
										8-1, 8-7, 8-8, 9-1, 9-2,
F										9-6, 10-11, C-8, C-9
								format item,
file,									COLUMN(nc), 11-9
	constant, 3-11, 10-1,					LINE(ln), 11-10
		10-9, 10-10, 12-1				PAGE, 11-10

Index-5
�	Picture, 11-11					IEEE floating-point format,
	SKIP[(nl)], 11-10					3-3, A-5, B-4,
	X(sp), 11-10						B-6, C-7
format list, 11-6, 11-9, 11-10			IF statement, 8-3, 8-6
FORMAT statement, 8-7, 11-11 		implicit normalized bit, B-2,
format-label on a Remote					B-4, B-7
	format item, 11-10				implied file attributes, 10-5,
format-list in a GET EDIT or				11-5, 12-1, 12-2
	PUT EDIT statement, 11-19		INDEX built-in function, 13-18
fractional digits, 3-1					infix,
FREE statement, 7-5, 7-7					expression, 6-2
free storage area, 10-9					operator, 6-2, 6-3
free-format language, 2-15 			INITIAL attribute, 5-5,
fully qualified reference to				5-6, 7-4
	a structure variable,				initializing elements in an
	5-10, 5-12							array, 5-5
function, 2-9						INPUT,
	procedure, 2-10, 3-9					attribute, 10-2, 10-10
									file, 10-2, 11-4, 12-1, 12-2
G								input-list in a STREAM file,
									11-2, 11-3, 11-6,
GET EDIT statement, 11-7,				11-9, 11-19
	11-8, 11-9, 11-10, 11-19			insertion, Picture
GET LIST statement, 11-3				specification character,
global data in PL/I							11-12, 11-15, 11-16
	programs, 2-14					integer, 3-2, 3-3
GOTO statement, 8-3, 8-4, 8-7				exponent, 3-2, 3-3, 4-10
									subscripts, 5-1
H									values, 3-1
								Intel object file format, A-4
HBOUND built-in					interfacing PL/I programs with
	function, 13-17						assembly language
hierarchical order in a						routines, C-1
	structure variable, 5-8			internal,
high-level organization of					block, 2-4, 2-6
	PL/I programs, 2-1					buffer for a file,
hyperbolic functions,						10-4, 10-8
	cos, 13-2							procedures, 3-9
	sin, 13-2						internal representation, 3-2,
									3-4, 5-6, 6-8, 7-10,
I									10-13, 13-35, B-1
									aggregate data, B-11
I/O categories, 10-13					BIT data, B-9
I/O condition BIFs, 10-11					CHARACTER data, B-9
I/O condition, 9-7						double-precision FLOAT
	ENDFILEr 9-1, 9-7, 10-10			BINARY, B-6
	ENDPAGE, 9-1, 9-7, 10-10			ENTRY and LABEL data, B-10
	KEY, 9-1, 9-7, 10-10				FILE data, B-10
	UNDEFINEDFILE, 9-1,				FIXED BINARY data, B-1
		9-7, 10-10						FIXED DECIMAL data, B-8
I/O statements, 2-1						FLOAT BINARY, B-4
identifier, 1-1, 2-15, 2-23					POINTER data, B-10
	formation of, 2-17					single-precision FLOAT
	maximum length, 2-17					BINARY data, B-2

Index-6
�invoking a procedure, 2-3,			LIST option in a GET or PUT
	2-9, 2-10, 2-11						statement, 11-3
invoking a subroutine, 2-10			local variable, 2-6, 2-8,
iteration factor,							3-8, 10-1
	for the INITIAL				LOCK built-in function,
		attribute, 5-5					13-20, A-4
	in an INITIAL attribute, 7-4		Locked file open mode, 10-4
iterative DO-group, 8-1,				LOG built-in function, 13-20
	8-8, 11-2						LOG10 built-in function, 13-21
								LOG2 built-in function, 13-21
K								logical,
									And operator, 6-5
KEY condition, 9-1, 10-10				data items, 3-5
key,									Not operator, 6-5
	for a RECORD file, 10-2,				Or operator, 6-5
	10-3, 10-10						units, 2-1, 2-2
	for a record file, 1-12 			low-level organization of
	for a RECORD file, 12-1,				PL/I programs, 2-15
	12-2, 13-25					lower-bound of an array
KEYED,								variable, 5-1
	attribute, 10-2
	file, 10-3, 10-10,				M
	12-1, 12-2
keywords, 2-15 					MAIN option,
									in a PROCEDURE
L										statement, 2-13
								main,
label,								procedure, 2-5
	constant, 3-7, 3-8,					procedure statement, 2-13
		8-8, 11-10						program, 2-13
	variables, 3-7, 3-8					structure, 5-8
LABEL,							major structure, 5-8,
	data, 3-7, 4-1, 6-3					5-11, 7-1
	constant, 7-9					mantissa, 3-2, B-2, B-4,
LBOUND built-in						B-6, C-7
	function, 13-18					MAX built-in function, 13-22
LENGTH built-in					member of a structure, 3-13,
	function, 13-19						5-1, 5-8, 7-1
level number of a structure			memory management
	member, 5-8						statements, 2-1
level numbers in a structure			microprocessors 8-bit, 8080,
	declaration, 3-13					8085, Z80, A-1
limit of dimensions in an				Microsoft,
	array variable, 5-3					floating-point format,
LINE(ln) format item, 11-10					B-2, C-7
line-feed, 2-19							object file format, A-4
linemark, 10-2, 11-1, 11-3,			micrprocessors 16-bit, 8086,
	11-4, 11-10						8088, A-1
linemarks, 1-13					MIN built-in function, 13-22
LINENO built-in function,			minor structure, 5-8, 5-11
	1-11, 1-12, 13-19				mixed,
LINESIZE attribute, 10-2, 10-5			aggregate, 5-11
linkage editor, 3-9						aggregate referencing, 5-12
linked list, 7-8							data types in an
										expression, 3-3

Index-7
�	operand expressions, 4-3			ONCODE built-in function,
MOD built-in function, 13-23				9-7, 13-24
most significant digit in a				one-bit, 3-5, 4-11, 4-12, 6-4,
	mantissa, 4-10						8-2, 13-20, 13-34
multiple %REPLACE 				ONFILE built-in function,
	statements, 2-23					1-11,	1-12, 13-24 << CHECK>>
multiple,							ONKEY built-in function, 1-11,
	allocations of based					1-12, 13-25
		storage, 7-5				Open List, PL/I internal data
	attributes in a						structure, 10-9
		declaration, 3-12			OPEN statement, 3-11, 10-1,
	data items, 3-1, 5-1					10-2, 12-1, 12-2
	declarations, 3-12				operands in an expression, 6-1
								operating system, 2-10, 10-3,
N									10-9, 13-13, 13-20, 13-32,
									13-34, A-1, A-5,
names of external devices,				B-11, C-12
	10-3, A-5						operator, symbol for a
natural,								mathematical of logical
	exponent function, 13-2			operation, 2-19
	logarithmic function, 13-1 		operators, 2-15
nested,								in an expression, 6-1
	%INCLUDE statements, 2-22		OUTPUT attribute, 10-2
	BEGIN blocks, 2-2				OUTPUT file, 10-2, 12-2
	blocks, 2-4, 2-15, 2-23			output-list in a STREAM file,
	IF statements, 8-7					11-2, 11-4, 11-6,
Newton's method, 13-2, 13-30				11-9, 11-19
nonrecoverable conditions,			OVERFLOW condition, 9-1, 9-6
	9-1, 9-5						OVERFLOW(2), arithmetic
nonzero scale factor, 4-4					condition, 4-6, 4-11
noniterative DO-group, 8-1
nonlocal GOTO statement,			P
	8-8r 9-2
nonrecoverable error, A-4 			padding of strings, 4-9, 4-10,
not equal comparison operator, 			4-11, 4-12, 6-4, 6-5, 7-4,
	3-7, 3-8							11-7, 11-8, 12-lr 12-2
NULL,							PAGE format item, 11-10
	built-in function, 5-5,			PAGE option in a GET or PUT
		7-8, 13-23						statement, 11-3, 11-19
	pointer value, 7-4				pagemark, 10-2, 10-13, 11-1,
null, 								11-4, 11-10
	character string, 3-5				PAGENO built-in function,
	statements, 2-1						1-11, 1-12, 13-25
	string, 4-11, 4-12, 10-12			PAGESTZE attribute, 10-2,
									10-3, 1-11
O								PARAMETER,
									attribute, 5-9, 7-3
object file format,						keyword, A-2
	Intel, A-4						parameter passing,
	Microsoft, A-4						by reference, 2-11, C-1
ON statement, 9-1						by value, 2-11, C-1
ON unit, 9-2						PARAMETER storage class, 7-3
	active, 9-2					parameter-list,
	enabled, 9-2, 13-3					in an ENTRY declaration, 3-9

Index-8
�	in a PROCEDURE				PROCEDURE blocks, 2-2, 7-1
	statement, 2-13					PROCEDURE statement, 2-2,
parameters, 2-11, 2-13, 3-9					2-11,* 2-13, 4-1, 8-7
	values expected by a 			procedure,
	procedure, 2-11					blocks, 2-9, 2-10
partially,								entry point, 2-13, 6-4, 7-1
	qualified mixed aggregate				exit point, 2-13, 4-3
		reference, 5-12					invocation, 2-3, 2-9,
	subscripted mixed aggregate				2-10, 2-11
		reference, 5-12					name, 3-11
passing parameters using a			pseudo-variables, 3-11,
	Parameter Block, C-1				6-1, 6-6
password, 						PUT EDIT statement, 11-7,
	for a file, 10-4						11-8, 11-9, 11-10, 11-19
	on a file, 10-10					PUT LIST statement, 11-3
	protection level, 10-4
PICTURE attribute, A-1				Q
Picture,
	format item, 11-11				qualified,
	semantics, 11-14					name in a structure, 5-10
	specification, 11-11, 11-12,			referenceto a structure
	11-14, 11-15						variable, 5-1, 5-10
	default rules, 11-16
	syntax, 11-11					R
PL/I,
	character set, 2-15				RANK built-in function, 13-6,
	data attributes, 3-1,					13-26, A-2
		3-12, 5-9					READ,
	keywords, 1-1, 2-2, 2-17,				statement, 11-1, 12-1
	6-1, 10-2							Varying statement, 11-4, A-2
	syntax, 1-1						with KEY statement, 12-1
PLILIB Run-time Subroutine				with KEYTO statement, 12-2
	Library (RSL), C-2, C-12			Read password protection
pointer, 7-2							level, 10-4
POINTER data, 3-11, 4-1, 6-3				readability of programs, 2-13,
pointer-qualified reference,				2-15, 8-8
	explicit, 7-2					Readonly, file open mode, 10-4
	implicit, 7-2					RECORD,
precedence rules for						attribute, 10-2
	expression evaluation, 6-2				file, 10-2, 10-10,
precision, 2-12, 3-2, 4-2,						12-1, 12-2
	4-4, 4-5, 4-6, 4-7, 4-8				I/O, 1-13, 12-1
	11-9, 11-16, 13-8, 13-14,			record size for a RECORD file,
	13-15, 13-16,						10-2, 13-20, 13-34
predefined file						recoverable conditions,
	constants, 1-12						9-1, 9-5
prefix,							RECURSIVE attribute, 2-15,
	expression, 6-2						7-1, A-3
	operator, 6-3					referencing an element of
preprocessor statements,					an array, 5-3
		2-1, 2-22					relational operator, 6-3
PRINT,							remote format items,
	attribute, 10-2						11-6, 11-10
	file, 10-2, 1-11,					REPEAT option in a
		11-4, 11-10					DO-group, 8-2

Index-9
�repetition factor for a format			SIGN built-in function, 13-28
	item, 11-6						SIGNAL statement, 9-4
result type in data					simple DO statement, 8-1
	conversion, 4-1					SIN,
RETURN statement, 2-10, 2-13,			built-in function, 13-28
	4-1, 9-2							hyperbolic function, 13-2
returning values in registers,			SIND built-in function, 13-29
	C-6, C-8, C-9					single-precision FLOAT BINARY,
	on the stack, C-6,					3-3, 11-8, 13-2, B-2,
		C-7, C-8						B-4, C-7
RETURNS,						SINH built-in function, 13-29
attribute, 2-10, 2-15, 4-3				size of internal file buffer,
statement, implicit data					10-4, 10-5, 10-9
	conversion, 4-3					SKIP option in a GET or PUT
REVERSE built-in					statement, 11-3, 11-19
	function, 13-26					SKIP[(nl)] format item, 11-10
REVERT statement, 9-3, 9-4			source program, 2-15,
reverting ON-units, 8-8,					2-21, 2-22
	9-4, A-3						source text, 2-22
ROUND built-in functionr 13-27		source type in data
row-major order, 5-6						conversion, 4-1
run-time errors, interception			spaces, 2-19
	of and recovery from, 2-1			special characters, 1-2,
run-time stack, C-6						2-20, 11-1
default value, 2-13					SQRT built-in function, 13-30
Run-time Subroutine Library			square root function, 13-2
	(RSL), 13-1, B-1				STACK(b) option in a PROCEDURE
									statement, 2-13
S								statement label, 2-2, 3-7,
									3-11, 8-8
scalar data,						statements,
	items, 3-1, 5-1, 5-8					%INCLUDE, 2-22
	type, 12-1 						%REPLACE, 2-22, A-2
scale factor, 2-12, 3-2, 3-4,				ALLOCATE, 7-5, 7-10
	4-2, 4-4, 4-5, 4-7, 4-8,				assignment, 2-1, 6-1
	11-9, 11-16, 13-8, 13-14r				BEGIN, 2-2
	13-15, 13-16						CALL, 2-12
scientific, 							CLOSEr 10-8
	applications, 3-2					condition handling, 2-1
	notation, 3-3, 4-10, 11-8				declarative, 2-1
scope of a variable, 2-6,					DECLARE, 3-1, 3-11, 8-7
	2-9, 3-7, 3-8, 5-10, 7-3,				DO, B-1
	7-4, 8-8, 11-10r 13-1				END, 2-2, 2-13, 8-1, 8-7
SEARCH built-in						ENTRY, 8-7
	function, 13-27						executable, 2-1
separate compilation of					FORMAT, 8-7
	external procedures, 2-5				FREE, 7-5, 7-7
separator, 2-18, 11-3						GET EDIT, 11-7, 11-8, 11-9,
sequence control statements,					11-10, 11-19
	2-1, 8-1							GET LIST, 11-3
SEQUENTIAL,						GOTO, 8-3, 8-4, 8-7
	attribute, 10-2						I/O, 2-1, 4-2
	file, 10-3, 12-1, 12-2					IF, 8-3, 8-6
Shared file open mode, 10-4,				memory management, 2-1
	13-20, 13-34						null, 2-1

Index-10
�	ON, 9-1							arrays, 3-8
	OPEN, 3-11, 10-1, 10-2,				entry variable, 2-10
		12-1, 12-2						entry variables, 3-9
	preprocessor, 2-1, 2-22				label variables, 8-8
	PROCEDURE, 2-2, 2-11, 2-13, 		labels, 3-8
		4-1, 9-7					Subset G standard, 2-14, 7-4,
	PUT EDIT, 11-7, 11-8,				7-10, 10-5, 11-15,
		11-91 11-10					A-1, A-2
	READ, 11-1, 12-1				 SUBSTR,
	READ Varying, 11-4, A-2 			built-in function, 6-6, 13-30
	READ with KEY, 12-1				as a pseudo-variable, 6-6
	READ with KEYTO, 12-2			substring,
	RETURN,, 2-10, 2-13,, 4-1, 9-2 		of a bit variable, 6-7
	REVERT, 9-3, 9-4					of a character string, 6-6
	sequence control, 2-1, 8-1				overwrite, 6-7
	SIGNAL, 9-4					substructures within a
	STOP, B-4, B-7 					structure, 5-8
	structural, 2-1					SYSIN, predefined file
	WRITE, 11-l, 12-2					constant, 1-12, 11-3,
	WRITE Varying, 11-5, A-2			11-4, 11-19
	WRITE with KEYFROM, 12-2		SYSPRINT, predefined file
STATIC,								constant, 1-12, 11-3, 11-5
	attribute, 5-9, 7-4				system,
	storage class, 7-4					console device, 1-12
static Picture specification 				printer device, 1-12
	character, 11-12,				system-defined subcodes for
	11-14, 11-16						the ERROR condition, 9-4
status of a file
	constant, 10-9					T
STOP statement, 8-4, 8-7
storage class,						tab characters, CRTL-I, 2-19
	attributes, 3-13					TAN built-in function, 13-31
	class of a variable, 7-1			TAND built-in function, 13-31
storage sharing, 2-11, 7-1, 			TANH built-in function, 13-32
	7-9, 7-10, B-1					target type, in data
STREAM,							conversion, 4-1
	attribute, 10-2						temporary result, 7-9
	file, 10-2, 10-10, 11-4				ten’s,
	I/O, 1-13							complement form, B-8
STREAM EDIT-directed					complement packed BCD
	11-1, 11-6							format, 3-4
	Line-directed, 11-1, 11-4			TIME built-in function, 13-32
	LIST-directed, 11-1, 11-2			TITLE attribute, 10-2, 10-3
string conversions, 4-8				TRANSLATE. built-in
structural statements, 2-1					function, 13-33
structure, 5-1						TRIM built-in function, 13-33
	members, 3-13, 5-l				TRUNC built-in function, 13-34
	variable, 3-10, 3-13, 5-1,			truncation, 4-5
	5-8, 6-1						truncation of strings, 4-11
	of arrays, 5-11					two’s,
subcodes, 2-19							complement, B-1
subroutine, 2-9							complement form, 3-2
	invocation, 2-10
subscripted,
	array references, 5-3

Index-11
�U								Z

unconditional branching, 8-1			zero supression, Picture
UNDEFINEDFILE condition,				specification character,
	9-1, 1-10								11-14, 11-15, 11-16
UNDERFLOW condition, 9-1,				zero-bit, 3-5, 4-9, 4-11,
	9-6, C-2								4-12, 6-4, 12-1, 12-2,
UNDERFLOW(2), arithmetic					13-9, 13-20, 13-34
	condition, 4-6, 4-11					ZERODIVIDE condition, 9-1, 9-6
UNLOCK built-in function,
	13-34, A-4
UNSPEC built-in function,
	6-6, 6-8, 13-35
UNSPEC, as a
	pseudo-variable, 6-6
up-level reference, 2-7
UPDATE attribute, 10-2
UPDATE file, 10-2, 10-10
upper-bound of an array
	variable, 5-1
user-defined subcodes for the
	ERROR condition, 9-4

V

variables, 1-1, 3-1
	local, 2-6
	external, 2-6
VARIABLE attribute, 3-10
variable subscripts in an
	array reference, 5-3
variable-length, record,
	11-4, 11-5
	size, 10-4, 10-5, 12-2, A-2
VARYING attribute, 3-5
VERIFY built-in
	function, 13-35

W

WHILE expression in a
	DO-group, 8-2
WRITE,
	statement, 11-1, 12-2
	Varying statement, 11-5, A-2
	with KEYFROM, 12-2
Write, password protection
	level, 10-4

X

X(sp) format item, 11-10

Index-12

